Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Case Rep ; 21: e926779, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32865522

RESUMEN

BACKGROUND Coronavirus disease 2019 (COVID-19) is associated with lung inflammation and cytokine storm. Photobiomodulation therapy (PBMT) is a safe, non-invasive therapy with significant anti-inflammatory effects. Adjunct PBMT has been employed in treating patients with lung conditions. Human studies and experimental models of respiratory disease suggest PBMT reduces inflammation and promotes lung healing. This is the first time supportive PBMT was used in a severe case of COVID-19 pneumonia. CASE REPORT A 57-year-old African American man with severe COVID-19 received 4 once-daily PBMT sessions by a laser scanner with pulsed 808 nm and super-pulsed 905 nm modes for 28 min. The patient was evaluated before and after treatment via radiological assessment of lung edema (RALE) by CXR, pulmonary severity indices, blood tests, oxygen requirements, and patient questionnaires. Oxygen saturation (SpO2) increased from 93-94% to 97-100%, while the oxygen requirement decreased from 2-4 L/min to 1 L/min. The RALE score improved from 8 to 5. The Pneumonia Severity Index improved from Class V (142) to Class II (67). Additional pulmonary indices (Brescia-COVID and SMART-COP) both decreased from 4 to 0. CRP normalized from 15.1 to 1.23. The patient reported substantial improvement in the Community-Acquired Pneumonia assessment tool. CONCLUSIONS This report has presented supportive PBMT in a patient with severe COVID-19 pneumonia. Respiratory indices, radiological findings, oxygen requirements, and patient outcomes improved over several days and without need for a ventilator. Future controlled clinical trials are required to evaluate the effects of PBMT on clinical outcomes in patients with COVID-19 pneumonia.


Asunto(s)
Betacoronavirus , Negro o Afroamericano , Infecciones por Coronavirus/radioterapia , Terapia por Luz de Baja Intensidad/métodos , Neumonía Viral/radioterapia , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/etnología , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/etnología , SARS-CoV-2 , Tomografía Computarizada por Rayos X , Estados Unidos/epidemiología
2.
Photobiomodul Photomed Laser Surg ; 38(7): 395-397, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32579049

RESUMEN

Objective: To evaluate the hypothesis that light could reduce the lethality of COVID-19. Methods: Most models for projections of the spread and lethality of COVID-19 take into account the ambient temperature, neglecting light. Recent advances in understanding the mechanism of action of COVID-19 have shown that it causes a systemic infection that significantly affects the hematopoietic system and hemostasis, factors extremely dependent of light, mainly in the region of visible and infrared radiation. Results: In the COVID-19 patients hemoglobin is decreasing and protoporphyrin is increasing, generating an extremely harmful accumulation of iron ions in the bloodstream, which are able to induce an intense inflammatory process in the body with a consequent increase in C-reactive protein and albumin. Observing the unsaturation characteristics of the cyclic porphyrin ring allows it to absorb and emit radiation mainly in the visible region. This characteristic can represent an important differential to change this process in the event of an imbalance in this system, through the photobiomodulation to increase the production of adenosine triphosphate (ATP) using red and near-infrared radiation (R-NIR) and vitamin D using ultraviolet B (UVB) radiation. These two compounds have the primary role of activating the defense mechanisms of the immune system, enabling greater resistance of the individual against the attack by the virus. According to the theory of electron excitation in photosensitive molecules, similar to hemoglobin heme, after the photon absorption there would be an increase in the stability of the iron ion bond with the center of the pyrrole ring, preventing the losses of heme function oxygen transport (HbO2). The light is also absorbed by cytochrome c oxidase in the R-NIR region, with a consequent increase in electron transport, regulating enzyme activity and resulting in a significant increase of oxygen rate consumption by mitochondria, increasing ATP production. Conclusions: The most favorable range of optical radiation to operate in this system is between R-NIR region, in which cytochrome c oxidase and porphyrin present absorption peaks centered at 640 nm and HbO2 with absorption peak centered at 900 nm. Based on the mechanisms described earlier, our hypothesis is that light could reduce the lethality of COVID-19.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/radioterapia , Terapia por Luz de Baja Intensidad , Neumonía Viral/radioterapia , Terapia Ultravioleta , COVID-19 , Humanos , Rayos Infrarrojos/uso terapéutico , Pandemias , SARS-CoV-2 , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA