Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
eNeuro ; 4(5)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28966979

RESUMEN

GABA released from presynaptic sites induces short-lived phasic inhibition mediated by synaptic GABAA receptors (GABAARs) and longer-duration tonic inhibition mediated by extrasynaptic GABAA or GABAB receptors (GABABRs). A number of studies have found that contactin-associated protein 2 (Cntnap2) knockout (KO) mice, a well-established mouse model of autism, exhibit reduced interneuron numbers and aberrant phasic inhibition. However, little is known about whether tonic inhibition is disrupted in Cntnap2 KO mice and when the disruption of inhibition begins to occur during postnatal development. We examined tonic and phasic inhibition in layer 2/3 pyramidal cells of primary visual cortex of Cntnap2 KO at two different developmental stages, three to four and six to eight weeks of age. We found that both phasic inhibition and GABAAR but not GABABR-mediated tonic inhibition was reduced in pyramidal cells from six- to eight-week-old Cntnap2 KO mice, while in three- to four-week-old mice, no significant effects of genotype on tonic or phasic inhibition was observed. We further found that activation of tonic currents mediated by δ-subunit-containing GABAARs reduced neural excitability, an effect that was attenuated by loss of Cntnap2. While the relative contribution of tonic versus phasic inhibition to autism-related symptoms remains unclear, our data suggest that reduced tonic inhibition may play an important role, and δ-subunit-containing GABAARs may be a useful target for therapeutic intervention in autism.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de la Membrana/deficiencia , Proteínas del Tejido Nervioso/deficiencia , Inhibición Neural/genética , Células Piramidales/fisiología , Receptores de GABA-A/metabolismo , Corteza Visual/citología , Animales , Animales Recién Nacidos , Estimulación Eléctrica , Femenino , GABAérgicos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Corteza Visual/crecimiento & desarrollo , Ácido gamma-Aminobutírico/farmacología
2.
Neurobiol Dis ; 73: 106-17, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25281316

RESUMEN

Dominant loss-of-function mutations in voltage-gated sodium channel NaV1.1 cause Dravet Syndrome, an intractable childhood-onset epilepsy. NaV1.1(+/-) Dravet Syndrome mice in C57BL/6 genetic background exhibit severe seizures, cognitive and social impairments, and premature death. Here we show that Dravet Syndrome mice in pure 129/SvJ genetic background have many fewer seizures and much less premature death than in pure C57BL/6 background. These mice also have a higher threshold for thermally induced seizures, fewer myoclonic seizures, and no cognitive impairment, similar to patients with Genetic Epilepsy with Febrile Seizures Plus. Consistent with this mild phenotype, mutation of NaV1.1 channels has much less physiological effect on neuronal excitability in 129/SvJ mice. In hippocampal slices, the excitability of CA1 Stratum Oriens interneurons is selectively impaired, while the excitability of CA1 pyramidal cells is unaffected. NaV1.1 haploinsufficiency results in increased rheobase and threshold for action potential firing and impaired ability to sustain high-frequency firing. Moreover, deletion of NaV1.1 markedly reduces the amplification and integration of synaptic events, further contributing to reduced excitability of interneurons. Excitability is less impaired in inhibitory neurons of Dravet Syndrome mice in 129/SvJ genetic background. Because specific deletion of NaV1.1 in forebrain GABAergic interneuons is sufficient to cause the symptoms of Dravet Syndrome in mice, our results support the conclusion that the milder phenotype in 129/SvJ mice is caused by lesser impairment of sodium channel function and electrical excitability in their forebrain interneurons. This mild impairment of excitability of interneurons leads to a milder disease phenotype in 129/SvJ mice, similar to Genetic Epilepsy with Febrile Seizures Plus in humans.


Asunto(s)
Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Inhibición Neural/genética , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Fenómenos Biofísicos/genética , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/etiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Miedo/psicología , Hipocampo/citología , Hipertermia Inducida/efectos adversos , Técnicas In Vitro , Lidocaína/análogos & derivados , Lidocaína/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/fisiología , Bloqueadores de los Canales de Sodio/farmacología
3.
Behav Brain Res ; 275: 225-33, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25200515

RESUMEN

Many factors influence neurodevelopment. However, their contribution to adult neural function is often unclear. This is often due to complex expression profiles, cell signalling, neuroanatomy, and a lack of effective tests to assess the function of neural circuits in vivo. Ephrin-A2 and ephrin-A5 are cell surface proteins implicated in multiple aspects of neurodevelopment. While the role of ephrin-As in visual, auditory and learning behaviours has been explored, little is known about their role in dopaminergic and neuromotor pathways, despite expression in associated brain regions. Here we probe the function of ephrin-A2 and ephrin-A5 in the development of the dopaminergic and neuromotor pathways using counts of tyrosine hydroxylase (TH) positive cells in the substantia nigra pars compacta (SNpc) and the ventral tegmental area (VTA), the acoustic startle reflex (ASR), and a measure of sensorimotor gating, prepulse inhibition (PPI). Analysis of the ASR and PPI in ephrin-A2 and/or ephrin-A5 knock-out mice revealed that both genes play distinct roles in mediating ASR circuits, but are unlikely to play a role in PPI. Knock-out of either gene resulted in robust changes in startle response magnitude and measures of startle onset and peak latencies. However, ephrin-A2 and ephrin-A5 regulate aspects of the ASR differently: ephrin-A2 KO mice have increased startle amplitude, increased sensitivity and reduced latency to startle, whilst ephrin-A5 KO mice show opposite effects. Neither of the gene knock outs affected PPI, despite ephrin-A5 KO mice showing changes in dopamine cell numbers in nuclei thought to regulate PPI. We propose that majority of the changes observed ephrin-A2 and ephrin-A5 KO mice appear to be mediated by the effects on motor neurons and their muscle targets, rather than changes in auditory sensitivity.


Asunto(s)
Efrina-A2/deficiencia , Efrina-A5/deficiencia , Inhibición Neural/genética , Filtrado Sensorial/genética , Estimulación Acústica , Análisis de Varianza , Animales , Efrina-A2/genética , Efrina-A5/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Porción Compacta de la Sustancia Negra/metabolismo , Tiempo de Reacción/genética , Reflejo de Sobresalto/genética , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/metabolismo
4.
Neuron ; 82(4): 797-808, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24768300

RESUMEN

Brain function is mediated by neural circuit connectivity, and elucidating the role of connections is aided by techniques to block their output. We developed cell-type-selective, reversible synaptic inhibition tools for mammalian neural circuits by leveraging G protein signaling pathways to suppress synaptic vesicle release. Here, we find that the pharmacologically selective designer Gi-protein-coupled receptor hM4D is a presynaptic silencer in the presence of its cognate ligand clozapine-N-oxide (CNO). Activation of hM4D signaling sharply reduced synaptic release probability and synaptic current amplitude. To demonstrate the utility of this tool for neural circuit perturbations, we developed an axon-selective hM4D-neurexin variant and used spatially targeted intracranial CNO injections to localize circuit connections from the hypothalamus to the midbrain responsible for feeding behavior. This synaptic silencing approach is broadly applicable for cell-type-specific and axon projection-selective functional analysis of diverse neural circuits.


Asunto(s)
Conducta Alimentaria/fisiología , Hipotálamo/citología , Mesencéfalo/fisiología , Red Nerviosa/fisiología , Neuronas/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Channelrhodopsins , Clozapina/análogos & derivados , Clozapina/farmacología , Conducta Alimentaria/efectos de los fármacos , Humanos , Hipotálamo/efectos de los fármacos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Moleculares , Datos de Secuencia Molecular , Red Nerviosa/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Inhibición Neural/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Receptor Muscarínico M4/genética , Receptor Muscarínico M4/metabolismo , Proteínas Represoras/genética , Factores de Tiempo
5.
Epilepsia ; 55(2): 203-13, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24299204

RESUMEN

OBJECTIVE: To develop a constitutively active K(+) leak channel using TREK-1 (TWIK-related potassium channel 1; TREK-M) that is resistant to compensatory down-regulation by second messenger cascades, and to validate the ability of TREK-M to silence hyperactive neurons using cultured hippocampal neurons. To test if adenoassociated viral (AAV) delivery of TREK-M could reduce the duration of status epilepticus and reduce neuronal death induced by lithium-pilocarpine administration. METHODS: Molecular cloning techniques were used to engineer novel vectors to deliver TREK-M via plasmids, lentivirus, and AAV using a cytomegalovirus (CMV)-enhanced GABRA4 promoter. Electrophysiology was used to characterize the activity and regulation of TREK-M in human embryonic kidney (HEK-293) cells, and the ability to reduce spontaneous activity in cultured hippocampal neurons. Adult male rats were injected bilaterally with self-complementary AAV particles composed of serotype 5 capsid into the hippocampus and entorhinal cortex. Lithium-pilocarpine was used to induce status epilepticus. Seizures were monitored using continuous video-electroencephalography (EEG) monitoring. Neuronal death was measured using Fluoro-Jade C staining of paraformaldehyde-fixed brain slices. RESULTS: TREK-M inhibited neuronal firing by hyperpolarizing the resting membrane potential and decreasing input resistance. AAV delivery of TREK-M decreased the duration of status epilepticus by 50%. Concomitantly it reduced neuronal death in areas targeted by the AAV injection. SIGNIFICANCE: These findings demonstrate that TREK-M can silence hyperexcitable neurons in the brain of epileptic rats and treat acute seizures. This study paves the way for an alternative gene therapy treatment of status epilepticus, and provides the rationale for studies of AAV-TREK-M's effect on spontaneous seizures in chronic models of temporal lobe epilepsy.


Asunto(s)
Técnicas de Transferencia de Gen , Neuronas/patología , Canales de Potasio de Dominio Poro en Tándem/genética , Estado Epiléptico/genética , Estado Epiléptico/prevención & control , Animales , Muerte Celular/genética , Polaridad Celular/genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Células HEK293 , Humanos , Masculino , Inhibición Neural/genética , Neuronas/fisiología , Canales de Potasio de Dominio Poro en Tándem/administración & dosificación , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/patología
6.
J Neurosci ; 33(37): 14850-68, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24027285

RESUMEN

Thalamocortical circuits govern cognitive, sensorimotor, and sleep-related network processes, and generate pathological activities during absence epilepsy. Inhibitory control of thalamocortical (TC) relay neurons is partially mediated by GABA released from neurons of the thalamic reticular nucleus (nRT), acting predominantly via synaptic α1ß2γ2 GABA(A) receptors (GABA(A)Rs). Importantly, TC neurons also express extrasynaptic α4ß2δ GABA(A)Rs, although how they cooperate with synaptic GABA(A)Rs to influence relay cell inhibition, particularly during physiologically relevant nRT output, is unknown. To address this question, we performed paired whole-cell recordings from synaptically coupled nRT and TC neurons of the ventrobasal (VB) complex in brain slices derived from wild-type and extrasynaptic GABA(A)R-lacking, α4 "knock-out" (α4(0/0)) mice. We demonstrate that the duration of VB phasic inhibition generated in response to nRT burst firing is greatly reduced in α4(0/0) pairs, suggesting that action potential-dependent phasic inhibition is prolonged by recruitment of extrasynaptic GABA(A)Rs. Furthermore, the influence of nRT tonic firing frequency on VB holding current is also greatly reduced in α4(0/0) pairs, implying that the α4-GABA(A)R-mediated tonic conductance of relay neurons is dynamically influenced, in an activity-dependent manner, by nRT tonic firing intensity. Collectively, our data reveal that extrasynaptic GABA(A)Rs of the somatosensory thalamus do not merely provide static tonic inhibition but can also be dynamically engaged to couple presynaptic activity to postsynaptic excitability. Moreover, these processes are highly sensitive to the δ-selective allosteric modulator, DS2 and manipulation of GABA transport systems, revealing novel opportunities for therapeutic intervention in thalamocortical network disorders.


Asunto(s)
Inhibición Neural/fisiología , Neuronas/fisiología , Terminales Presinápticos/fisiología , Receptores de GABA-A/metabolismo , Tálamo/citología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Simulación por Computador , Estimulación Eléctrica , GABAérgicos/farmacología , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Neuronas/efectos de los fármacos , Ácidos Nipecóticos/farmacología , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Receptores de GABA-A/genética , Tilosina/análogos & derivados , Tilosina/farmacología
7.
Neuron ; 78(6): 1063-74, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23727119

RESUMEN

Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission and responses to GABA uncaging in the thalamic reticular nucleus (nRT) that is absent in both nm1054 mice, in which the Dbi gene is deleted, and mice in which BZ binding to α3 subunit-containing GABAARs is disrupted. Viral transduction of DBI into nRT is sufficient to rescue the endogenous potentiation of GABAergic transmission in nm1054 mice. Both mutations enhance thalamocortical spike-and-wave discharges characteristic of absence epilepsy. Together, these results indicate that DBI mediates endogenous nucleus-specific BZ-mimicking ("endozepine") roles to modulate nRT function and suppress thalamocortical oscillations. Enhanced DBI signaling might serve as a therapy for epilepsy and other neurological disorders.


Asunto(s)
Inhibidor de la Unión a Diazepam/fisiología , Potenciales Postsinápticos Inhibidores/genética , Receptores de GABA-A/metabolismo , Tálamo/fisiología , Regulación Alostérica/genética , Sustitución de Aminoácidos/genética , Animales , Benzodiazepinas/metabolismo , Inhibidor de la Unión a Diazepam/deficiencia , Inhibidor de la Unión a Diazepam/genética , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación/genética , Inhibición Neural/genética , Receptores de GABA-A/genética , Receptores de GABA-A/fisiología , Ácido gamma-Aminobutírico/metabolismo
8.
J Neurosci ; 33(8): 3624-32, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23426689

RESUMEN

POMC-derived melanocortins inhibit food intake. In the adult rodent brain, POMC-expressing neurons are located in the arcuate nucleus (ARC) and the nucleus tractus solitarius (NTS), but it remains unclear how POMC neurons in these two brain nuclei regulate feeding behavior and metabolism differentially. Using pharmacogenetic methods to activate or deplete neuron groups in separate brain areas, in the present study, we show that POMC neurons in the ARC and NTS suppress feeding behavior at different time scales. Neurons were activated using the DREADD (designer receptors exclusively activated by designer drugs) method. The evolved human M3-muscarinic receptor was expressed in a selective population of POMC neurons by stereotaxic infusion of Cre-recombinase-dependent, adeno-associated virus vectors into the ARC or NTS of POMC-Cre mice. After injection of the human M3-muscarinic receptor ligand clozapine-N-oxide (1 mg/kg, i.p.), acute activation of NTS POMC neurons produced an immediate inhibition of feeding behavior. In contrast, chronic stimulation was required for ARC POMC neurons to suppress food intake. Using adeno-associated virus delivery of the diphtheria toxin receptor gene, we found that diphtheria toxin-induced ablation of POMC neurons in the ARC but not the NTS, increased food intake, reduced energy expenditure, and ultimately resulted in obesity and metabolic and endocrine disorders. Our results reveal different behavioral functions of POMC neurons in the ARC and NTS, suggesting that POMC neurons regulate feeding and energy homeostasis by integrating long-term adiposity signals from the hypothalamus and short-term satiety signals from the brainstem.


Asunto(s)
Tronco Encefálico/fisiología , Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Proopiomelanocortina/fisiología , Adiposidad/genética , Animales , Tronco Encefálico/virología , Dependovirus/genética , Femenino , Vectores Genéticos/administración & dosificación , Células HEK293 , Homeostasis/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Inhibición Neural/genética , Vías Nerviosas/fisiopatología , Neuronas/virología , Proopiomelanocortina/antagonistas & inhibidores
9.
Neuron ; 77(1): 155-67, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23312523

RESUMEN

Subtypes of GABAergic interneurons (INs) are crucial for cortical function, yet their specific roles are largely unknown. In contrast to supra- and infragranular layers, where most somatostatin-expressing (SOM) INs are layer 1-targeting Martinotti cells, the axons of SOM INs in layer 4 of somatosensory cortex largely remain within layer 4. Moreover, we found that whereas layers 2/3 SOM INs target mainly pyramidal cells (PCs), layer 4 SOM INs target mainly fast-spiking (FS) INs. Accordingly, optogenetic inhibition of SOM INs in an active cortical network increases the firing of layers 2/3 PCs whereas it decreases the firing of layer 4 principal neurons (PNs). This unexpected effect of SOM INs on layer 4 PNs occurs via their inhibition of local FS INs. These results reveal a disinhibitory microcircuit in the thalamorecipient layer through interactions among subtypes of INs and suggest that the SOM IN-mediated disinhibition represents an important circuit mechanism for cortical information processing.


Asunto(s)
Neuronas GABAérgicas/fisiología , Interneuronas/metabolismo , Neocórtex/metabolismo , Inhibición Neural/genética , Somatostatina/biosíntesis , Tálamo/metabolismo , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Regulación de la Expresión Génica , Ratones , Ratones Transgénicos , Neocórtex/citología , Somatostatina/genética , Tálamo/citología
10.
Nat Neurosci ; 16(1): 64-70, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23143518

RESUMEN

Cerebrocortical injuries such as stroke are a major source of disability. Maladaptive consequences can result from post-injury local reorganization of cortical circuits. For example, epilepsy is a common sequela of cortical stroke, but the mechanisms responsible for seizures following cortical injuries remain unknown. In addition to local reorganization, long-range, extra-cortical connections might be critical for seizure maintenance. In rats, we found that the thalamus, a structure that is remote from, but connected to, the injured cortex, was required to maintain cortical seizures. Thalamocortical neurons connected to the injured epileptic cortex underwent changes in HCN channel expression and became hyperexcitable. Targeting these neurons with a closed-loop optogenetic strategy revealed that reducing their activity in real-time was sufficient to immediately interrupt electrographic and behavioral seizures. This approach is of therapeutic interest for intractable epilepsy, as it spares cortical function between seizures, in contrast with existing treatments, such as surgical lesioning or drugs.


Asunto(s)
Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Corteza Cerebral/fisiopatología , Vías Nerviosas/fisiología , Optogenética , Convulsiones/etiología , Tálamo/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Fenómenos Biofísicos/fisiología , Biofisica , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Modelos Animales de Enfermedad , Capacidad Eléctrica , Estimulación Eléctrica , Electroencefalografía , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Técnicas In Vitro , Canales Iónicos/genética , Canales Iónicos/metabolismo , Luz , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Potenciales de la Membrana/genética , Microscopía Confocal , Modelos Neurológicos , Inhibición Neural/genética , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Análisis Espectral , Vigilia/genética
11.
Nat Neurosci ; 16(1): 13-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23222912

RESUMEN

Despite the prevailing idea that neurogliaform cells produce a spatially unrestricted widespread inhibition, we demonstrate here that their activity attenuates thalamic-evoked feed-forward inhibition in layer IV barrel cortex but has no effect on feed-forward excitation. The result of this circuit selectivity is a dynamic regulation in the temporal window for integration of excitatory thalamic input, thus revealing a new role for neurogliaform cells in shaping sensory processing.


Asunto(s)
Neuroglía/fisiología , Dinámicas no Lineales , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Potenciales de Acción/genética , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , GABAérgicos/farmacología , Proteínas Fluorescentes Verdes/genética , Humanos , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Ratones , Ratones Transgénicos , Modelos Neurológicos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Inhibición Neural/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuropéptido Y/genética , Ácidos Nipecóticos/farmacología , Parvalbúminas/metabolismo , Ácidos Fosfínicos/farmacología , Propanolaminas/farmacología , Receptores de Serotonina/genética , Sinapsis/efectos de los fármacos , Sinapsis/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
12.
Nat Neurosci ; 16(1): 71-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23222913

RESUMEN

Midbrain dopaminergic (DA) neurons are thought to guide learning via phasic elevations of firing in response to reward predicting stimuli. The mechanism for these signals remains unclear. Using extracellular recording during associative learning, we found that inhibitory neurons in the ventral midbrain of mice responded to salient auditory stimuli with a burst of activity that occurred before the onset of the phasic response of DA neurons. This population of inhibitory neurons exhibited enhanced responses during extinction and was anticorrelated with the phasic response of simultaneously recorded DA neurons. Optogenetic stimulation revealed that this population was, in part, derived from inhibitory projection neurons of the substantia nigra that provide a robust monosynaptic inhibition of DA neurons. Thus, our results elaborate on the dynamic upstream circuits that shape the phasic activity of DA neurons and suggest that the inhibitory microcircuit of the midbrain is critical for new learning in extinction.


Asunto(s)
Extinción Psicológica/fisiología , Mesencéfalo/citología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Estimulación Acústica , Potenciales de Acción/fisiología , Animales , Mapeo Encefálico , Channelrhodopsins , Simulación por Computador , Dopamina/metabolismo , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/fisiología , Luz , Masculino , Mesencéfalo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Inhibición Neural/genética , Optogenética , Técnicas de Placa-Clamp , Estimulación Luminosa , Tiempo de Reacción/fisiología , Ácido gamma-Aminobutírico/metabolismo
13.
Curr Top Behav Neurosci ; 12: 251-318, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22367921

RESUMEN

Sensorimotor gating, or the ability of a sensory event to suppress a motor response, can be measured operationally via prepulse inhibition (PPI) of the startle response. PPI is deficient in schizophrenia patients as well as other neuropsychiatric disorders, can be measured across species, and has been used widely as a translational tool in preclinical neuropharmacological and genetic research. First developed to assess drug effects in pharmacological and developmental models, PPI has become one of the standard behavioral measures in genetic models of schizophrenia and other neuropsychiatric disorders that exhibit PPI deficits. In this chapter we review the literature on genetic models of sensorimotor gating and discuss the utility of PPI as a tool in phenotyping mutant mouse models. We highlight the approaches to genetic mouse models of neuropsychiatric disease, discuss some of the important caveats to these approaches, and provide a comprehensive table covering the more recent genetic models that have evaluated PPI.


Asunto(s)
Trastornos Neurológicos de la Marcha/etiología , Modelos Genéticos , Reflejo de Sobresalto/genética , Esquizofrenia/complicaciones , Filtrado Sensorial/genética , Estimulación Acústica , Animales , Trastornos Neurológicos de la Marcha/genética , Humanos , Ratones , Inhibición Neural/genética , Esquizofrenia/genética
14.
Schizophr Res ; 136(1-3): 82-7, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22285656

RESUMEN

Genetic and post mortem evidence has implicated the α7 neuronal nicotinic receptor (NNR) in the etiology of schizophrenia and related disorders. In schizophrenia, enhanced subcortical dopamine (DA) correlates with positive and cognitive of the disease, including impairments in sensorimotor gating. We measured the levels of extracellular DA and DA metabolites during an acoustic test session of prepulse inhibition (PPI) of the startle response, a measure of sensorimotor gating, by microdialysis and HPLC-EC in a transgenic mouse model of schizophrenia. In th-fgfr1(tk-) mice, blockade of fibroblast growth factor receptor 1 (FGFR1) signaling during development in catecholaminergic neurons results in reduced size and density of midbrain DA neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA). These mice displayed reduced PPI and enhanced startle response relative to control mice as well as a potentiation of DA release in the dorsal striatum during a 30 minute PPI test session. Acute administration of a partial α7 NNR agonist TC-7020 (1.0 mg/kg) normalized PPI and startle deficits and attenuated increases of DA release during acoustic PPI testing. These results provide direct evidence of elevated striatal dopaminergic transmission with impaired sensorimotor gating that may underlie cognitive and positive symptoms and motor deficits in schizophrenia and related disorders. Also, systemic targeting of alpha7 NNRs may ameliorate these deficits by functionally suppressing striatal DA activity.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Inhibición Neural/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/fisiopatología , Filtrado Sensorial/efectos de los fármacos , Ácido 3,4-Dihidroxifenilacético/metabolismo , Estimulación Acústica/métodos , Animales , Cromatografía Líquida de Alta Presión , Cuerpo Estriado/metabolismo , Relación Dosis-Respuesta a Droga , Ácido Homovanílico/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microdiálisis/métodos , Inhibición Neural/genética , Agonistas Nicotínicos/farmacología , Quinuclidinas/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Reflejo de Sobresalto/efectos de los fármacos , Reflejo de Sobresalto/genética , Esquizofrenia/genética , Filtrado Sensorial/genética , Tiofenos/farmacología
15.
Neurobiol Aging ; 33(6): 1045-53, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20961665

RESUMEN

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late onset neurodegenerative disorder that affects carriers of the fragile X premutation, typically after age 50. Common symptoms include intention tremor, ataxia, neuropathy, autonomic dysfunction, cognitive decline, and dementia. The objectives of this study were to determine if patients with FXTAS have altered prepulse inhibition (PPI; a measure of sensorimotor gating), and to study possible correlations between PPI, molecular status, and cognitive performance. A passive acoustic PPI paradigm was applied in 163 subjects; 121 carriers of the fragile X premutation, and 42 healthy controls. There were significant differences in PPI between premutation carriers with FXTAS and controls at PPI 60 ms, and at 120 ms. This effect was more prominent in the male FXTAS patients. There was a tendency to an impaired PPI in female premutation carriers at the 120 ms condition. There was a significant correlation between the PPI deficit and a higher CGG repeat number. The results show an impairment in sensorimotor gating processes in male carriers of the fragile X premutation, which is more prominent in patients with FXTAS.


Asunto(s)
Ataxia/fisiopatología , Síndrome del Cromosoma X Frágil/fisiopatología , Inhibición Neural , Temblor/fisiopatología , Estimulación Acústica/métodos , Anciano , Ataxia/epidemiología , Ataxia/genética , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/epidemiología , Síndrome del Cromosoma X Frágil/genética , Humanos , Masculino , Persona de Mediana Edad , Inhibición Neural/genética , Reflejo de Sobresalto/genética , Temblor/epidemiología , Temblor/genética
16.
J Pain ; 12(9): 974-84, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21680256

RESUMEN

UNLABELLED: Although electroacupuncture (EA) has been proven to effectively relieve pain associated with arthritis, the underlying mechanism of EA analgesia requires further investigation. Here, the involvement of spinal neurotrophin-3 (NT-3) in EA's analgesic effects on complete Freund's adjuvant (CFA)-induced inflammatory pain was examined. The present study demonstrated that: 1) repeated EA stimulation of ipsilateral GB30 and GB34 acupoints remarkably suppressed CFA-induced hyperalgesia; 2) EA treatment markedly enhanced the upregulation of spinal NT-3 mRNA and protein levels following CFA injection; 3) antisense oligodeoxynucleotides (ODN) specifically against NT-3 intrathecally administered during EA treatment for 7 days significantly attenuated the EA analgesia; and 4) the suppressed expression of spinal GFAP (astrocytic marker), OX-42 (microglial marker) as well as proinflammatory cytokines, interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α by EA treatment was significantly attenuated following NT-3 antisense ODN delivery. These results suggested that endogenous NT-3 may be involved in the analgesic effect of EA on inflammatory pain in rats, mediated through the inhibition of spinal glial activity as well as proinflammatory cytokine production. PERSPECTIVE: The present study may initiate a discussion on the possible roles of NT-3/glia/cytokines in the therapeutic effects of acupuncture and provide insight on the mechanism underlie the analgesic effects of acupuncture on pain associated with arthritis.


Asunto(s)
Artritis/metabolismo , Modelos Animales de Enfermedad , Electroacupuntura , Inhibición Neural/fisiología , Neuroglía/metabolismo , Neurotrofina 3/fisiología , Médula Espinal/metabolismo , Analgesia/métodos , Animales , Artritis/terapia , Electroacupuntura/métodos , Mediadores de Inflamación/fisiología , Masculino , Inhibición Neural/genética , Neuroglía/fisiología , Neurotrofina 3/genética , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/genética
17.
Nat Neurosci ; 14(5): 620-6, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21499253

RESUMEN

Generalized anxiety is thought to result, in part, from impairments in contingency awareness during conditioning to cues that predict aversive or fearful outcomes. Dopamine neurons of the ventral midbrain exhibit heterogeneous responses to aversive stimuli that are thought to provide a critical modulatory signal to facilitate orientation to environmental changes and assignment of motivational value to unexpected events. Here we describe a mouse model in which activation of dopamine neurons in response to an aversive stimulus is attenuated by conditional genetic inactivation of functional NMDA receptors on dopamine neurons. We discovered that altering the magnitude of excitatory responses by dopamine neurons in response to an aversive stimulus was associated with impaired conditioning to a cue that predicts an aversive outcome. Impaired conditioning by these mice was associated with the development of a persistent, generalized anxiety-like phenotype. These data are consistent with a role for dopamine in facilitating contingency awareness that is critical for the prevention of generalized anxiety.


Asunto(s)
Ansiedad , Reacción de Prevención/fisiología , Dopamina/metabolismo , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Área Tegmental Ventral/patología , Estimulación Acústica/efectos adversos , Potenciales de Acción/genética , Análisis de Varianza , Animales , Ansiedad/patología , Ansiedad/fisiopatología , Ansiedad/prevención & control , Conducta Animal , Monoaminas Biogénicas/metabolismo , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Modelos Animales de Enfermedad , Electrochoque/efectos adversos , Conducta Exploratoria/fisiología , Miedo , Hidrocortisona/sangre , Técnicas In Vitro , Locomoción/genética , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibición Neural/genética , Estimulación Física/efectos adversos , Psicolingüística , Receptores de N-Metil-D-Aspartato/deficiencia , Reflejo de Sobresalto/efectos de los fármacos , Reflejo de Sobresalto/fisiología , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/metabolismo
18.
J Alzheimers Dis ; 24(3): 421-54, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21297257

RESUMEN

Physical exercise is considered to exert a positive neurophysiological effect that helps to maintain normal brain activity in the elderly. Expectations that it could help to fight Alzheimer's disease (AD) were recently raised. This study analyzed the effects of different patterns of physical exercise on the 3xTg-AD mouse. Male and female 3xTg-AD mice at an early pathological stage (4-month-old) have had free access to a running wheel for 1 month, whereas mice at a moderate pathological stage(7-month-old) have had access either during 1 or 6 months. The non-transgenic mouse strain was used as a control. Parallel animal groups were housed in conventional conditions. Cognitive loss and behavioral and psychological symptoms of dementia (BPSD)-like behaviors were present in the 3xTg-AD mice along with alteration in synaptic function and ong-term potentiation impairment in vivo. Brain tissue showed AD-pathology and oxidative-related changes. Disturbances were more severe at the older age tested. Oxidative stress was higher in males but other changes were similar or higher in females. Exercise treatment ameliorated cognitive deterioration and BPSD-like behaviors such as anxiety and the startle response. Synaptic changes were partially protected by exercise. Oxidative stress was reduced. The best neuroprotection was generally obtained after 6 months of exercise in 7-month-old 3xTg-AD mice. Improved sensorimotor function and brain tissue antioxidant defence were induced in both 3xTg-AD and NonTg mice. Therefore, the benefits of aerobic physical exercise on synapse, redox homeostasis, and general brain function demonstrated in the 3xTg-AD mouse further support the value of this healthy life-style against neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/rehabilitación , Ejercicio Físico/fisiología , Modalidades de Fisioterapia , Estimulación Acústica , Factores de Edad , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Peso Corporal/genética , Encéfalo/metabolismo , Encéfalo/patología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/prevención & control , Condicionamiento Operante/fisiología , Adaptación a la Oscuridad/genética , Modelos Animales de Enfermedad , Electroencefalografía , Ensayo de Inmunoadsorción Enzimática , Potenciales Postsinápticos Excitadores/genética , Conducta Exploratoria/fisiología , Femenino , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Mutación/genética , Inhibición Neural/genética , Fragmentos de Péptidos/metabolismo , Presenilina-1/genética , Reflejo de Sobresalto/genética , Proteínas tau/genética
19.
Neurobiol Aging ; 32(1): 75-84, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19178986

RESUMEN

Apolipoprotein E (apoE) is involved in the risk to develop sporadic Alzheimer's disease (AD). Since impaired central acetylcholine (ACh) function is a hallmark of AD, apoE may influence ACh function by modulating muscarinic ACh receptors (mAChRs). To test this hypothesis, mAChR binding was measured in mice lacking apoE and wild type C57BL/6J mice. Mice were also tested on the pre-pulse inhibition, delay eyeblink classical conditioning, and 5-choice serial reaction time tasks (5-SRTT), which are all modulated by ACh transmission. Mice were also given scopolamine to challenge central mAChR function. Compared to wild type mice, mice lacking apoE had reduced number of cortical and hippocampal mAChRs. Scopolamine had a small effect on delay eyeblink classical conditioning in wild type mice but a large effect in mice lacking apoE. Mice lacking apoE were also unable to acquire performance on the 5-SRTT. These results support a role for apoE in ACh function and suggest that modulation of cortical and hippocampal mAChRs might contribute to genotype differences in scopolamine sensitivity and task acquisition. Impaired apoE functioning may result in cholinergic deficits that contribute to the cognitive impairments seen in AD.


Asunto(s)
Apolipoproteínas E/deficiencia , Síntomas Conductuales/genética , Regulación de la Expresión Génica/genética , Receptores Muscarínicos/metabolismo , Estimulación Acústica/métodos , Análisis de Varianza , Animales , Síntomas Conductuales/sangre , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Conducta de Elección/efectos de los fármacos , Conducta de Elección/fisiología , Antagonistas Colinérgicos/farmacología , Corticosterona/sangre , Relación Dosis-Respuesta a Droga , Electrochoque/efectos adversos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/genética , Reflejo Acústico/efectos de los fármacos , Reflejo Acústico/genética , Escopolamina/farmacología
20.
Genes Brain Behav ; 9(8): 899-909, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20662939

RESUMEN

Fast excitatory transmission in the mammalian central nervous system is mediated by AMPA-type glutamate receptors. The tetrameric AMPA receptor complexes are composed of four subunits, GluR1-4. The GluR4 subunit is highly expressed in the cerebellum and the early postnatal hippocampus and is thought to be involved in synaptic plasticity and the development of functional neural circuitry through the recruitment of other AMPA receptor subunits. Previously, we reported an association of the human GluR4 gene (GRIA4) with schizophrenia. To examine the role of the GluR4 subunit in the higher brain function, we generated GluR4 knockout mice and conducted electrophysiological and behavioural analyses. The mutant mice showed normal long-term potentiation (LTP) in the CA1 region of the hippocampus. The GluR4 knockout mice showed mildly improved spatial working memory in the T-maze test. Although the retention of spatial reference memory was intact in the mutant mice, the acquisition of spatial reference memory was impaired in the Barnes circular maze test. The GluR4 knockout mice showed impaired prepulse inhibition. These results suggest the involvement of the GluR4 subunit in cognitive function.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Potenciación a Largo Plazo/genética , Aprendizaje por Laberinto/fisiología , Inhibición Neural/genética , Receptores AMPA/genética , Estimulación Acústica , Animales , Región CA1 Hipocampal/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Técnicas In Vitro , Inhibición Psicológica , Potenciación a Largo Plazo/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/genética , Tiempo de Reacción/fisiología , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo , Reflejo de Sobresalto/efectos de los fármacos , Reflejo de Sobresalto/genética , Reflejo de Sobresalto/fisiología , Filtrado Sensorial/efectos de los fármacos , Filtrado Sensorial/genética , Filtrado Sensorial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA