Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 712
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Ethnopharmacol ; 330: 118239, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38657877

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetes mellitus, a widespread chronic illness, affects millions worldwide, and its incidence is increasing alarmingly, especially in developing nations. Current pharmacological treatments can be costly and have undesirable side effects. To address this, medicinal plants with antidiabetic effects, particularly targeting α-glucosidase for controlling hyperglycaemia in type-2 diabetes mellitus (T2DM), hold promise for drug development with reduced toxicity and adverse reactions. AIM OF THIS REVIEW: This review aims to succinctly collect information about medicinal plant extracts that exhibit antidiabetic potential through α-glucosidase inhibition using acarbose as a standard reference in Southeast Asia. The characteristics of this inhibition are based on in vitro studies. MATERIALS AND METHODS: Relevant information on medicinal plants in Southeast Asia, along with α-glucosidase inhibition studies using acarbose as a positive control, was gathered from various scientific databases, including Scopus, PubMed, Web of Science, and Google Scholar. RESULTS: About 49 papers were found from specific counties in Southeast Asia demonstrated notable α-glucosidase inhibitory potential of their medicinal plants, with several plant extracts showcasing activity comparable to or surpassing that of acarbose. Notably, 19 active constituents were identified for their α-glucosidase inhibitory effects. CONCLUSIONS: The findings underscore the antidiabetic potential of the tested medicinal plant extracts, indicating their promise as alternative treatments for T2DM. This review can aid in the development of potent therapeutic medicines with increased effectiveness and safety for the treatment of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Extractos Vegetales , Plantas Medicinales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/uso terapéutico , Plantas Medicinales/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Asia Sudoriental , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Animales , alfa-Glucosidasas/metabolismo , Fitoterapia
2.
Chem Biodivers ; 21(5): e202301788, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484132

RESUMEN

Curcuma angustifolia Roxb. is a plant with medicinal potential, traditionally used to treat different diseases. The present study aimed to determine the antidiabetic activity of C. angustifolia rhizome in vitro and in silico. The methanolic extract of C. angustifolia rhizome was analyzed by FTIR and GC-MS to determine the phytochemicals present. The antidiabetic potential of the extract was evaluated by different assays in vitro. The extract inhibited both α-amylase and α-glucosidase enzymes and the glucose diffusion through the dialysis membrane in a concentration-dependent manner with IC50 values of 530.39±0.09, 293.75±0.11, and 551.74±0.3 µg/ml respectively. The methanolic extract also improved yeast cell's ability to take up glucose across plasma membranes and the adsorption of glucose. The findings were supported by molecular docking studies. The results showed that the methanol extract of C. angustifolia rhizome has significant antidiabetic activity and thus can be also studied to isolate the potential compound with antidiabetic activities.


Asunto(s)
Curcuma , Hipoglucemiantes , Metanol , Simulación del Acoplamiento Molecular , Extractos Vegetales , Rizoma , alfa-Amilasas , alfa-Glucosidasas , Curcuma/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Rizoma/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Metanol/química , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Glucosa/metabolismo
3.
J Chromatogr A ; 1720: 464822, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38502989

RESUMEN

α-Glucosidase plays a direct role in the metabolic pathways of starch and glycogen, any dysfunction in its activity could result in metabolic disease. Concurrently, this enzyme serves as a target for diverse drugs and inhibitors, contributing to the regulation of glucose metabolism in the human body. Here, an integrated analytical method was established to screen inhibitors of α-glucosidase. This step-by-step screening model was accomplished through the biosensing and affinity chromatography techniques. The newly proposed sensing program had a good linear relationship within the enzyme activity range of 0.25 U mL-1 to 1.25 U mL-1, which can quickly identify active ingredients in complex samples. Then the potential active ingredients can be captured, separated, and identified by an affinity chromatography model. The combination of the two parts was achieved by an immobilized enzyme technology and a microdevice for reaction, and the combination not only ensured efficiency and accuracy for inhibitor screening but also eliminated the occurrence of false positive results in the past. The emodin, with a notable inhibitory effect on α-glucosidase, was successfully screened from five traditional Chinese medicines using this method. The molecular docking results also demonstrated that emodin was well embedded into the active pocket of α-glucosidase. In summary, the strategy provided an efficient method for developing new enzyme inhibitors from natural products.


Asunto(s)
Emodina , Inhibidores de Glicósido Hidrolasas , Humanos , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , Cromatografía de Afinidad , Extractos Vegetales/química
4.
Carbohydr Res ; 537: 109074, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38452719

RESUMEN

Two new glycosides, sindosides A-B (1-2), along with 11 previously identified metabolites (3-13), were isolated from an ethanolic extract of the leaves of Sindora siamensis var. maritima. The structures of the purified phytochemicals were elucidated by interpreting their spectroscopic data (IR, NMR, and HRMS). The absolute configuration of compound 1 was established by experimental and calculated ECD spectra. The antimicrobial results revealed that compound 8 selectively inhibited C. albicans fungal with a MIC value of 64 µg/mL, whereas 11 presented a weak inhibition toward E. faecalis, S. aureus, and B. cereus bacterial strains with the same MIC value of 128 µg/mL. Interestingly, compounds 1, 2, 8, 9, and 11 showed α-glucosidase inhibitory activity with IC50 values ranging from 14.42 ± 0.21 to 30.62 ± 0.18 µM, which were more active than the positive control (acarbose, with an IC50 value of 46.78 ± 1.37 µM). Enzyme kinetic analysis revealed that compounds 1, 2, and 11 behaved as uncompetitive inhibitors with Ki values of 8.60 ± 1.04, 5.16 ± 0.73, and 7.17 ± 0.98 µM, respectively.


Asunto(s)
Antiinfecciosos , alfa-Glucosidasas , alfa-Glucosidasas/metabolismo , Cinética , Staphylococcus aureus , Antiinfecciosos/farmacología , Extractos Vegetales/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química
5.
Phytochemistry ; 221: 114066, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38494085

RESUMEN

A bichalconoid, globunoid A (1) and three biflavanones, globunoids B-D (2-4), previously undescribed, were isolated from the stems of Knema globularia, along with fourteen known analogues 5-18. The chemical structures of 1-4 were elucidated by the comprehensive spectroscopic analysis including UV, IR, HRESIMS, and NMR; the absolute configurations were determined based on their NOESY data, DP4+ statistical analysis, and ECD calculation. Up to now, compounds 2 and 3 represent the first 3,3″-linked biflavanone structures. Among the isolated compounds, 2, 3, and 2,3-dihydrocalodenin B (6) potently inhibited α-glucosidase and α-amylase activities, with IC50 values in the range 1.1-7.5 µM. Furthermore, the most active compound 6 was found to be a non-competitive inhibitor against these two enzymes.


Asunto(s)
Plantaginaceae , alfa-Glucosidasas , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , alfa-Amilasas , Extractos Vegetales/química
6.
J Pharm Biomed Anal ; 242: 116037, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387130

RESUMEN

Identifying medicinally relevant compounds from natural resources generally involves the tedious work of screening plants for the desired activity before capturing the bioactive molecules from them. In this work, we created a paper-based ligand fishing platform to vastly simplify the discovery process. This paper-based method exploits the enzymatic cascade reaction between α-glucosidase (GAA), glucose oxidase (GOx), and horseradish peroxidase (HRP), to simultaneously screen the plants and capture the GAA inhibitors from them. The designed test strip could capture ligands in tandem with screening the plants, and it features a very simply operation based on direct visual assessment. Multiple acylated flavonol glycosides from the leaves of Quercus variabilis Blume were newly found to possess GAA inhibitory activities, and they may be potential leads for new antidiabetic medications. Our study demonstrates the prospect of the newly discovered GAA ligands as potential bioactive ingredients as well as the utility of the paper-based ligand fishing method.


Asunto(s)
Antineoplásicos , Inhibidores de Glicósido Hidrolasas , Inhibidores de Glicósido Hidrolasas/farmacología , Ligandos , Hipoglucemiantes , Glicósidos , alfa-Glucosidasas
7.
J Chromatogr A ; 1717: 464667, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38301331

RESUMEN

In the present work, comprehensive two-dimensional reversed-phase countercurrent chromatography × reversed-phase liquid chromatography combined (2D RPCCC × RPLC) with 2D microfraction bioactive evaluation was employed to screen and isolate α-glucosidase inhibitors from Rheum palmatum L. Countercurrent chromatography was employed to improve 2D analysis and preparative separation. A selected biphasic solvent system composed of petroleum ether/ethyl acetate/methanol/water with gradient elution mode was used for the first dimension RPCCC separation (1D RPCCC). Solid-phase extraction was applied to eliminate interfering polar compounds before the second dimension analysis (2D RPLC). 76 components were shown in 2D contour plot in UV 280 nm. 11 Candidates were separated by a scaled-up CCC and identified by 1H NMR and 13C NMR, including anthraquinones, flavonoids, stilbenes, phenols, and glucoside derivatives. In addition, it was found that two components, resveratrol-4'-O-(6″-galloyl)glucoside (36) and lyciumaside (43) were identified as natural α-glucosidase inhibitors in Rheum palmatum L. for the first time.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Rheum , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Rheum/química , Distribución en Contracorriente/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa , Solventes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glucósidos
8.
Chem Biodivers ; 21(3): e202400124, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38279623

RESUMEN

Two undescribed triterpenes, syzyfolium A (1) and syzyfolium B (2), together with twelve known compounds, terminolic acid (3), actinidic acid (4), piscidinol A (5), threo-dihydroxydehydrodiconiferyl alcohol (6), lariciresinol-4-O-ß-D-glucoside (7), icariol A2 (8), 14ß,15ß-dihydroxyklaineanone (9), garcimangosone D (10), (+)-catechin (11), myricetin-3-O-α-L-rhamnopyranoside (12), quercitrin (13), and 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-ß-D-glucopyranoside (14) were isolated from the leaves of Syzygium myrsinifolium. Their chemical structures were determined by IR, HR-ESI-MS, 1D and 2D NMR spectra. Compounds 3 and 4 inhibited significantly α-glucosidase with IC50 values of 23.99 and 36.84, respectively, and compounds 1 and 2 inhibited significantly α-amylase with IC50 values of 35.48 and 43.65 µM, respectively.


Asunto(s)
Syzygium , Triterpenos , Syzygium/química , alfa-Glucosidasas , Extractos Vegetales/farmacología , Triterpenos/farmacología , alfa-Amilasas , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química
9.
Luminescence ; 39(1): e4668, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38286596

RESUMEN

Curcumin (Cur) is an acidic polyphenol with some effects on α-glucosidase (α-Glu), but Cur has disadvantages such as being a weak target, lacking passing the blood-brain barrier and having low bioavailability. To enhance the curative effect of Cur, the hybrid composed of ZnO nanoparticles decorated on rGO was used to load Cur (ZnO@rGO-Cur). The use of the multispectral method and enzyme inhibition kinetics analysis certify the inhibitory effect and interaction mechanism of ZnO@rGO-Cur with α-Glu. The static quenching of α-Glu with both Cur and ZnO@rGO-Cur is primarily driven by hydrogen bond and van der Waals interactions. The conformation-changing ability by binding to the neighbouring phenolic hydroxyl group of Cur increased their ability to alter the secondary structure of α-Glu, resulting in the inhibition of enzyme activity. The inhibition constant (Ki, Cur > Kis,ZnO@rGO-Cur ) showed that the inhibition effect of ZnO@rGO-Cur on α-Glu was larger than that of Cur. The CCK-8 experiments proved that ZnO@rGO nanocomposites have good biocompatibility. These results suggest that the therapeutic potential of ZnO@rGO-Cur composite is an emerging nanocarrier platform for drug delivery systems for the potential treatment of diabetes mellitus.


Asunto(s)
Curcumina , Diabetes Mellitus , Nanopartículas , Óxido de Zinc , Humanos , alfa-Glucosidasas/efectos de los fármacos , Curcumina/farmacología , Curcumina/química , Sistemas de Liberación de Medicamentos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología
10.
Chem Biodivers ; 21(2): e202300960, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38217335

RESUMEN

Diabetes is a prevalent metabolic disorder associated with various complications. Inhibition of α-glucosidase and α-amylase enzymes is an effective strategy for managing non-insulin-dependent diabetes mellitus. This study aimed to investigate the antioxidant and antidiabetic potential of Ormocarpum cochinchinense leaf through in vitro and in silico approaches. The methanol extract exhibited the highest phenolic and flavonoid content over solvent extracts aqueous, acetone, hexane, and chloroform, the same has been correlating with strong antioxidant activity. Furthermore, the methanol extract demonstrated significant inhibitory effects on α-amylase and α-glucosidase enzymes, indicating its potential as an antidiabetic agent. Molecular docking analysis identified compounds, including myo-inositol, with favorable binding energies comparable to the standard drug metformin. The selected compounds displayed strong binding affinity towards α-amylase and α-glucosidase enzymes. Structural dynamics analysis revealed that myo-inositol formed a more stable complex with the enzymes. These findings suggest that O. cochinchinense leaf possesses antioxidant and antidiabetic properties, making it a potential source for developing therapeutic agents.


Asunto(s)
Antioxidantes , Hipoglucemiantes , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Antioxidantes/farmacología , Antioxidantes/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , alfa-Glucosidasas/metabolismo , Metanol , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , alfa-Amilasas/metabolismo , Hojas de la Planta/metabolismo , Inositol/farmacología
11.
Int J Biol Macromol ; 257(Pt 2): 128616, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070815

RESUMEN

Persimmon tannins, particularly in immature persimmons, haven't yet received corresponding attention to research on therapy of diabetes mellitus in spite of high hypoglycemic activity. To accurately screening key hypoglycemic components, immature persimmon extracts were isolated and identified using enzyme affinity ultrafiltration and HRLC-ESI-MS/MS. Among them, Hederagenin (IC50 = 0.077 ± 0.003 mg/mL), Ursolic acid (IC50 = 0.001 ± 0.000 mg/mL) and Quercetin dehydrate (IC50 = 0.081 ± 0.001 mg/mL) exhibited the strongest inhibitory effect on α-amylase (HSA and PPA) and α-glucosidase, respectively. And their inhibition mechanisms were analyzed using multi-spectral analysis, atomic force microscope and molecular docking, indicating the bonding with starch digestion enzymes through hydrogen bonding and hydrophobic interaction, and generating the enzyme aggregation. In vivo starch-tolerance experiment further verified that these inhibitors could improve postprandial hyperglycemia (17.18 % âˆ¼ 40.29 %), far more than acarbose. Suppressing, Hederagenin and Ursolic acid as triterpenoids appeared amazing potentiality to alleviate postprandial hyperglycemia, which suggested that IPE were comprehensive exploration values on prevention and treatment of hyperglycemia.


Asunto(s)
Diospyros , Hiperglucemia , Ácido Oleanólico/análogos & derivados , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Diospyros/química , alfa-Glucosidasas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Simulación del Acoplamiento Molecular , alfa-Amilasas , Espectrometría de Masas en Tándem , Almidón , Inhibidores de Glicósido Hidrolasas/farmacología
12.
Comput Biol Chem ; 108: 107996, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061170

RESUMEN

Targeting multiple factors such as oxidative stress, alpha glucosidase and acetylcholinesterase (AChE) are considered advantageous for the treatment of diabetes and diabetes associated-cognitive dysfunction. In the present study, Hibiscus rosa-sinensis flowers anthocyanin-rich extract (HRA) was prepared. Phytochemical analysis of HRA using LC-ESI/MS/MS revealed the presence of various phenolic acids, flavonoids and anthocyanins. HRA showed in vitro antioxidant activity at low concentrations. HRA inhibited all the activities of mammalian glucosidases and AChE activity. The IC50 value of HRA for the inhibition of maltase, sucrase, isomaltase, glucoamylase and AChE was found to be 308.02 ± 34.25 µg/ml, 287.8 ± 19.49 µg/ml, 424.58 ± 34.75 µg/ml, 408.94 ± 64.82 µg/ml and 264.13 ± 30.84 µg/ml, respectively. Kinetic analysis revealed mixed-type inhibition against all the activities except for glucoamylase (competitive) activity. In silico analysis confirmed the interaction of two active constituents cyanidin 3-sophoroside (CS) and quercetin 3-O-sophoroside (QS) with four subunits, n-terminal and c-terminal subunits of human maltase-glucoamylase and sucrase-isomaltase as well as with AChE. Molecular dynamics simulation, binding free energy calculation, DCCM, PCA, PCA-based free energy surface analysis ascertained the stable binding of CS and QS with target proteins studied. HRA could be used as complementary therapy for diabetes and cognitive improvement.


Asunto(s)
Flores , Glucosidasas , Hibiscus , Animales , Humanos , Acetilcolinesterasa/metabolismo , alfa-Glucosidasas/metabolismo , Antocianinas/farmacología , Diabetes Mellitus , Flores/química , Glucano 1,4-alfa-Glucosidasa/antagonistas & inhibidores , Glucano 1,4-alfa-Glucosidasa/metabolismo , Glucosidasas/antagonistas & inhibidores , Hibiscus/química , Cinética , Oligo-1,6-Glucosidasa/antagonistas & inhibidores , Extractos Vegetales/farmacología , Sacarasa/antagonistas & inhibidores , Espectrometría de Masas en Tándem , Inhibidores de Glicósido Hidrolasas/farmacología , Fitoquímicos/farmacología
13.
J Biomol Struct Dyn ; 42(5): 2512-2524, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37293926

RESUMEN

The anti-diabetic properties of medicinal plants are becoming more widely recognized. To identify potential anti-diabetic agents for diabetes drug discovery, the current study used in vitro and in silico approaches to assess the alpha glucosidase inhibitory activities of Tapinanthus cordifolius (TC) leaf extracts and its bioactive components respectively. In vitro alpha glucosidase inhibitory assay was carried out on TC extract and fractions at various concentrations (50-1600 µg/mL), and the compounds with alpha glucosidase inhibitory potentials were identified using molecular docking, pharmacophore modelling, and molecular dynamics simulation. The crude extract exhibited the highest activity with an IC50 value of 248 µg/mL. Out of the 42 phytocompounds of the extract, α-Tocopherol-ß-d-mannoside gave the lowest binding energy of -6.20 Kcal/mol followed by, 5-Ergosterol (-5.46 kcal/mol), Acetosyringone (-4.76 kcal/mol), and Benzaldehyde, 4-(Ethylthio)-2,5-Dimethoxy-(-4.67 kcal/mol). The selected compounds interacted with critical active site amino acid residues of alpha-glucosidase, just like the reference ligand. Molecular dynamics simulation revealed the formation of a stable complex between α-glucosidase and α-Tocopherol-ß-d-mannoside, with ASP 564 sustaining two hydrogen bond connections for 99.9 and 75.0% of the simulation duration, respectively. Therefore, the selected TC compounds, especially α-Tocopherol-ß-d-mannoside might be explored for future research and development as diabetic medicines.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de Glicósido Hidrolasas , Loranthaceae , alfa-Glucosidasas , alfa-Tocoferol , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Loranthaceae/química , Manósidos , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología
14.
J Ethnopharmacol ; 322: 117645, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38147942

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Morus alba L. (mulberry) is a well-known medicinal species that has been used by herbalist doctors for the treatment of diabetes for a long history, and modern ethnopharmacological studies have demonstrated the ameliorating effects of different mulberry extracts toward diabetes-related symptoms and identified a number of α-glucosidase inhibitors as hypoglycemic ingredients. AIM OF THE STUDY: The present study aims to explore new potent α-glucosidase inhibitors from the root bark of M. alba (known as Sang-Bai-Pi in traditional medicine) based on an in vivo antidiabetic evaluation of its extract fractions and further characterize the preliminary mechanism of the new active constituents. MATERIALS AND METHODS: α-Glucosidase inhibitory assay and diabetic mice model were used to locate and evaluate the active fractions from the extract. Diverse separation techniques (e.g. Sephadex LH-20 column chromatograph (CC) and HPLC) and spectroscopic methods (e.g. MS, NMR and ECD) were employed to isolate and structurally characterize the obtained constituents, respectively. Fluorescence quenching, kinetics and molecular docking experiments were conducted to investigate the enzyme inhibitory mechanism of the active compounds. RESULTS: The 80% ethanol eluate from the macroporous resin CC exerted good antidiabetic effects in the tested mice. Fifty-two flavonoids including 22 new ones were then separated and identified, and most of them showed strong inhibition against α-glucosidase with their structure-activity relationship being also discussed. The four new most active ingredients were further characterized to be mixed type of α-glucosidase inhibitors, and their binding modes with the enzyme were also explored. CONCLUSIONS: Our current work has demonstrated that the root bark of M. alba is an extremely rich source of flavonoids as potent α-glucosidase inhibitors and potential antidiabetic agents, which makes it a promising candidate species to develop new natural remedies for the prevention and treatment of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Morus , Ratones , Animales , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , alfa-Glucosidasas/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Morus/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/química , Extractos Vegetales/uso terapéutico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Flavonoides/química
15.
Talanta ; 270: 125583, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38141464

RESUMEN

In this study, a method for the screening and identification of α-glucosidase inhibitors from natural products was developed. The α-glucosidase was immobilized on carboxyl terminated magnetic beads to form a ligand fishing system to screen the potential inhibitors. A total of 9 compounds were fishing out from the crude Houttuynia cordata Thunb. extract. Meanwhile, ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) was used for the identification of the chemical structures, including 3 chlorogenic acid isomers, 2 flavone C-glycosides and 4 flavone O-glycosides. The combination of enzyme immobilization magnetic beads and UHPLC-QTOF MS could be used for the screening of bioactive multi-components from herbs with appropriate targets. Taking the advantage of the specificity of enzyme binding and the convenience of magnetic separation, the method has great potential for rapid screening of α-glucosidase inhibitors from complicated natural product extracts.


Asunto(s)
Flavonas , Houttuynia , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Extractos Vegetales/química , Ligandos , Cromatografía Líquida de Alta Presión/métodos , Glicósidos/química , Fenómenos Magnéticos
16.
BMC Complement Med Ther ; 23(1): 440, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053195

RESUMEN

BACKGROUND: Oxidative stress and diabetes are medical conditions that have a growing prevalence worldwide, significantly impacting our bodies. Thus, it is essential to develop new natural antioxidant and antidiabetic agents. Dypsis pembana (H.E.Moore) Beentje & J.Dransf (DP) is an ornamental palm of the family Arecaceae. This study aimed to broaden the understanding of this plant's biological properties by evaluating its in vitro antioxidant and antidiabetic activities. METHODS: The in vitro antioxidant activities of the crude extract, fractions, and selected isolates were evaluated by DPPH method. While the in vitro antidiabetic activities of these samples were evaluated by assessing the degree of inhibition of α-glucosidase. Additionally, molecular docking analysis was performed to investigate the interactions of tested compounds with two potential targets, the cytochrome c peroxidase and alpha glucosidase. RESULTS: The crude extract displayed the highest antioxidant activity (IC50 of 11.56 µg/ml), whereas among the fractions, the EtOAc fraction was the most potent (IC50 of 14.20 µg/ml). Among tested compounds, isoquercetrin (10) demonstrated the highest potency, with an IC50 value of 3.30 µg/ml, followed by rutin (8) (IC50 of 3.61 µg/ml). Regarding antidiabetic activity, the EtOAc (IC50 of 60.4 µg/ml) and CH2Cl2 fractions (IC50 of 214.9 µg/ml) showed activity, while the other fractions did not demonstrate significant antidiabetic effects. Among tested compounds, kaempferol-3-O-neohesperidoside (9) showed the highest antidiabetic activity, with an IC50 value of 18.38 µg/ml, followed by kaempferol (4) (IC50 of 37.19 µg/ml). These experimental findings were further supported by molecular docking analysis, which revealed that isoquercetrin and kaempferol-3-O-neohesperidoside exhibited strong enzyme-binding affinities to the studied enzyme targets. This analysis provided insights into the structure-activity relationships among the investigated flavonol-O-glycosides. CONCLUSION: The biological and computational findings revealed that isoquercetrin and kaempferol-3-O-neohesperidoside have potential as lead compounds for inhibiting cytochrome c peroxidase and alpha glucosidase enzymes, respectively.


Asunto(s)
Arecaceae , Citocromo-c Peroxidasa , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Antioxidantes/química , Quempferoles , Simulación del Acoplamiento Molecular , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Extractos Vegetales/química , Flavonoides/química , alfa-Glucosidasas/química
17.
Molecules ; 28(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138447

RESUMEN

Ampelopsis grossedentata is a valuable medicinal and edible plant, which is often used as a traditional tea by the Tujia people in China. A. grossedentata has numerous biological activities and is now widely used in the pharmaceutical and food industries. In this study, two new flavonoids (1-2) and seventeen known compounds (3-19) were isolated and identified from the dried stems and leaves of A. grossedentata. These isolated compounds were characterized by various spectroscopic data including mass spectrometry and nuclear magnetic resonance spectroscopy. All isolates were assessed for their α-glucosidase inhibitory, antioxidant, and hepatoprotective activities, and their structure-activity relationships were further discussed. The results indicated that compound 1 exhibited effective inhibitory activity against α-glucosidase, with an IC50 value of 0.21 µM. In addition, compounds 1-2 demonstrated not only potent antioxidant activities but also superior hepatoprotective properties. The findings of this study could serve as a reference for the development of A. grossedentata-derived products or drugs aimed at realizing their antidiabetic, antioxidant, and hepatoprotective functions.


Asunto(s)
Ampelopsis , Antioxidantes , Inhibidores de Glicósido Hidrolasas , alfa-Glucosidasas , Ampelopsis/química , Antioxidantes/farmacología , Antioxidantes/química , Flavonoides/química , Extractos Vegetales/química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología
18.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003703

RESUMEN

α-Amylase is a generally acknowledged molecular target of a distinct class of antidiabetic drugs named α-glucosidase inhibitors. This class of medications is scarce and rather underutilized, and treatment with current commercial drugs is accompanied by unpleasant adverse effects. However, mammalian α-amylase inhibitors are abundant in nature and form an extensive pool of high-affinity ligands that are available for drug discovery. Individual compounds and natural extracts and preparations are promising therapeutic agents for conditions associated with impaired starch metabolism, e.g., diabetes mellitus, obesity, and other metabolic disorders. This review focuses on the structural diversity and action mechanisms of active natural products with inhibitory activity toward mammalian α-amylases, and emphasizes proteinaceous inhibitors as more effective compounds with significant potential for clinical use.


Asunto(s)
Enfermedades Metabólicas , alfa-Amilasas , Animales , Humanos , alfa-Amilasas/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/uso terapéutico , Inhibidores de Glicósido Hidrolasas/química , Enfermedades Metabólicas/tratamiento farmacológico , alfa-Glucosidasas/química , Extractos Vegetales/uso terapéutico , Mamíferos/metabolismo
19.
Sci Rep ; 13(1): 18597, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903808

RESUMEN

Stachytarpheta jamaicensis is one of the folk medicines used for the treatment of diabetes in Ambon, Indonesia, but there are limited studies on the bioactivities of its constituents. This study aims to assess the antioxidant and antidiabetic activities of four extracts of S. jamaicensis leaves extracted using several solvents. Bioassay guided fractionation on each extract establishes for exploring S. jamaicensis leaves active compounds. The antioxidant was evaluated using the DPPH and ABTS methods, while the α-glucosidase inhibitory was carried out in vitro assay. The results showed that the methanol extract of S. jamaicensis leaves displays inhibition of DPPH, ABTS and α-glucosidase activity compared to other solvent extracts. Furthermore, 6ß-hydroxyipolamiide was successfully isolated from the methanol extract of S. jamicensis leaves which was reported to have α-glucosidase inhibitory activity with an IC50 of 539.17 µg/mL. Based on the results, S. jamaicensis could be recommended as an antioxidant and antidiabetic agent.


Asunto(s)
Antioxidantes , Inhibidores de Glicósido Hidrolasas , Antioxidantes/farmacología , Antioxidantes/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , alfa-Glucosidasas/química , Metanol , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Solventes/química
20.
J Enzyme Inhib Med Chem ; 38(1): 2274798, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37905438

RESUMEN

Type 2 diabetes (T2D) is a progressive metabolic disorder of glucose metabolism. One of the therapeutic approaches for the treatment of T2D is reducing postprandial hyperglycaemia through inhibition of the digestive enzymes α-glucosidase and α-amylase. In this context, aimed at identifying natural products endowed with anti-T2D potential, we focused on Ptilostemon casabonae (L.) Greuter, a species belonging to Asteraceae family. Enzymatic inhibition, antioxidant activity, phenolic composition and cellular assays were performed. This study revealed that the P. casabonae hydroalcoholic extract exerts a potent inhibitory activity against α-glucosidase. This activity is supported by an antioxidant effect, preventing ROS formation in a stressed cellular system. HPLC-PDA-MS/MS analysis, revealed a complex polyphenolic fraction. Among the tested pure compounds, 1,5-dicaffeoylquinic acid, apigenin and rutin displayed good α-glucosidase inhibitory activity. Our study suggested new potential of P. casabonae encouraging us to further testing the possible therapeutic potential of this extract.


Asunto(s)
Asteraceae , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Antioxidantes/farmacología , Hipoglucemiantes/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , alfa-Glucosidasas/metabolismo , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem , alfa-Amilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA