Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Bol. latinoam. Caribe plantas med. aromát ; 20(6): 660-671, nov. 2021. tab, ilus
Artículo en Inglés | LILACS | ID: biblio-1369981

RESUMEN

Search for safe antioxidants and novel nutraceuticals urged to evaluate the antioxidant, anti-acetylcholine esterase and anti-lipoxygenase activity of various leaf extracts of Conocarpus lancifolius. Extraction was optimized from freeze dried plant extracts quenched with liquid nitrogen using water, ethanol, methanol, hexane, ethyl acetate and chloroform. Maximum extract yield, total phenolic contents and total flavonoid contents were obtained in case of ethanolic extraction. The highest 2,2-diphenyl-1-picrylhydrazylradical scavenging in terms of IC50 value of 55.26 µg/mL was observed for ethanolic leaf extract. The acetylcholine esterase and lipoxygenase inhibitory activities (IC50) were also observed for ethanolic extract. These findings for ethanolic extract were statistically significant when compared with other extracts (ρ<0.05). The haemolytic % values indicated that all extracts were associated with very low or negligible toxicity. The epicatechin, isorhamnetin, rutin, scopoleptin, skimmianine, quercetin-3-O-α-rhamnoside, quercetin-3-O-ß-glucoside, cornoside, creatinine, choline, pyruvic acid, α-hydroxybutyric acid, phyllanthin and hypophyllanthin were identified as major functional metabolites in ethanolic leaf extract of C. lancifoliusby 1H-NMR. The identified metabolites were probably responsible for the pharmacological properties of C.lancifolius. The findings may be utilized as pharmacological leads for drug development and food fortification.


Se insta a la búsqueda de antioxidantes seguros y nuevos nutracéuticos para evaluar la actividad antioxidante, anti-acetilcolina esterasa y anti-lipoxigenasa de varios extractos de hojas de Conocarpus lancifolius. La extracción se optimizó a partir de extractos de plantas liofilizados enfriados con nitrógeno líquido usando agua, etanol, metanol, hexano, acetato de etilo y cloroformo. En el caso de extracción etanólica se obtuvo el rendimiento máximo de extracto, el contenido de fenoles totales y el contenido de flavonoides totales. La mayor eliminación de radicales 2,2-difenil-1-picrilhidrazilo en términos de valor de CI50 de 55,26 µg/mL se observó para el extracto de hoja etanólico. También se observaron las actividades inhibidoras de la acetilcolina esterasa y lipoxigenasa (CI50) para el extracto etanólico. Estos hallazgos para el extracto etanólico fueron estadísticamente significativos en comparación con otros extractos (ρ<0.05). Los valores del % hemolítico indicaron que todos los extractos estaban asociados con una toxicidad muy baja o insignificante. Se identificaron la epicatequina, isorhamnetina, rutina, escopoleptina, skimmianina, quercetina-3-O-α-ramnosido, quercetina-3-O-ß-glucósido, cornosido, creatinina, colina, ácido pirúvico, ácido α-hidroxibutírico, filantrina e hipofillantina. como metabolitos funcionales principales en el extracto etanólico de hojas de C. lancifoliuspor 1H-NMR. Los metabolitos identificados probablemente fueron responsables de las propiedades farmacológicas de C. lancifolius. Los hallazgos pueden utilizarse como pistas farmacológicas para el desarrollo de fármacos y la fortificación de alimentos.


Asunto(s)
Extractos Vegetales/farmacología , Combretaceae/química , Antioxidantes/farmacología , Fenoles/análisis , Flavonoides/análisis , Técnicas In Vitro , Extractos Vegetales/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Depuradores de Radicales Libres , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/química , Etanol , Antioxidantes/química
2.
Molecules ; 26(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34684809

RESUMEN

The chemical variability and the in vitro anti-inflammatory activity of the leaf essential oil from Ivorian Isolona dewevrei were investigated for the first time. Forty-seven oil samples were analyzed using a combination of CC, GC(RI), GC-MS and 13C-NMR, thus leading to the identification of 113 constituents (90.8-98.9%). As the main components varied drastically from sample to sample, the 47 oil compositions were submitted to hierarchical cluster and principal components analyses. Three distinct groups, each divided into two subgroups, were evidenced. Subgroup I-A was dominated by (Z)-ß-ocimene, ß-eudesmol, germacrene D and (E)-ß-ocimene, while (10ßH)-1ß,8ß-oxido-cadina-4-ene, santalenone, trans-α-bergamotene and trans-ß-bergamotene were the main compounds of Subgroup I-B. The prevalent constituents of Subgroup II-A were germacrene B, (E)-ß-caryophyllene, (5αH,10ßMe)-6,12-oxido-elema-1,3,6,11(12)-tetraene and γ-elemene. Subgroup II-B displayed germacrene B, germacrene D and (Z)-ß-ocimene as the majority compounds. Germacrene D was the most abundant constituent of Group III, followed in Subgroup III-A by (E)-ß-caryophyllene, (10ßH)-1ß,8ß-oxido-cadina-4-ene, germacrene D-8-one, and then in Subgroup III-B by (Z)-ß-ocimene and (E)-ß-ocimene. The observed qualitative and quantitative chemical variability was probably due to combined factors, mostly phenology and season, then harvest site to a lesser extent. The lipoxygenase inhibition by a leaf oil sample was also evaluated. The oil IC50 (0.020 ± 0.005 mg/mL) was slightly higher than the non-competitive lipoxygenase inhibitor NDGA IC50 (0.013 ± 0.003 mg/mL), suggesting a significant in vitro anti-inflammatory potential.


Asunto(s)
Annonaceae/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Antiinflamatorios/aislamiento & purificación , Côte d'Ivoire , Evaluación Preclínica de Medicamentos , Cromatografía de Gases y Espectrometría de Masas , Técnicas In Vitro , Lipooxigenasa/efectos de los fármacos , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/aislamiento & purificación , Inhibidores de la Lipooxigenasa/farmacología , Espectroscopía de Resonancia Magnética , Aceites Volátiles/clasificación , Hojas de la Planta/química , Aceites de Plantas/clasificación , Plantas Medicinales/química , Glycine max/enzimología
3.
Bioorg Chem ; 115: 105197, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34426159

RESUMEN

Chinese herbal medicines (CHM) are frequently used to treat different types of inflammatory diseases and 15-Lipoxygenase (15-LOX) is a critical target enzyme for treating various inflammatory diseases. In this study, natural 15-LOX inhibitors were identified in CHM using an approach of virtual screening combined with the biological assays. First, an in-house Chinese medicine database containing 360 compounds was screened using a virtual screening approach based on pharmacophore and molecular docking to uncover several novel potential 15-LOX inhibitors. Secondly, the inhibitory effect of virtual screening hits against the 15-LOX enzyme was validated in an in vitro enzyme inhibition assay. Then, a tumor necrosis factor-α (TNF-α) release assay was carried out to explore the anti-inflammatory response of the active compounds. Furthermore, molecular dynamics (MD) simulation and binding free energy calculation were applied to analyze the process of inhibitors binding and also compared the mode of binding of the inhibitors by using the Molecular Mechanics-Generalized Born Surface Area (MM/GBSA) method. Finally, licochalcone B and eriodictyol were confirmed as inhibitors of the 15-LOX enzyme with IC50 values of 9.67 and 18.99 µM, respectively. In vitro cell-based assay showed that licochalcone B and eriodictyol inhibited the release of TNF-α factor in RAW264.7 cells stimulated by lipopolysaccharides (LPS) in a dose-dependent manner. Molecular dynamics and binding free energy analysis showed that the two 15-LOX-ligand systems immediately attained equilibrium with almost 1 Å fluctuation, the calculated binding free energies were found around -18.89 and -12.96 kcal/mol for licochalcone B and eriodictyol, respectively. Thr412, Arg415, Val420, Thr429, Ile602 and Trp606 were the main amino acid residues for the inhibition of 15-LOX enzyme activity. The current study confirms that licochalcone B and eriodictyol are 15-LOX inhibitors and can suppress the release of the TNF-α factor in RAW264.7 cells stimulated by LPS, thus providing a basis for the follow-up research and development for 15-LOX inhibitors.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Productos Biológicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Simulación de Dinámica Molecular , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Productos Biológicos/síntesis química , Productos Biológicos/química , Teoría Funcional de la Densidad , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/síntesis química , Medicamentos Herbarios Chinos/química , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/química , Medicina Tradicional China , Ratones , Estructura Molecular , Células RAW 264.7 , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
4.
Molecules ; 26(11)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198914

RESUMEN

The five-membered heterocyclic group of pyrazoles/pyrazolines plays important role in drug discovery. Pyrazoles and pyrazolines present a wide range of biological activities. The synthesis of the pyrazolines and pyrazole derivatives was accomplished via the condensation of the appropriate substituted aldehydes and acetophenones, suitable chalcones and hydrazine hydrate in absolute ethanol in the presence of drops of glacial acetic acid. The compounds are obtained in good yields 68-99% and their structure was confirmed using IR, 1H-NMR, 13C-NMR and elemental analysis. The novel derivatives were studied in vitro for their antioxidant, anti-lipid peroxidation (AAPH) activities and inhibitory activity of lipoxygenase. Both classes strongly inhibit lipid peroxidation. Compound 2g was the most potent lipoxygenase inhibitor (IC50 = 80 µM). The inhibition of the carrageenin-induced paw edema (CPE) and nociception was also determined, with compounds 2d and 2e being the most potent. Compound 2e inhibited nociception higher than 2d. Pyrazoline 2d was found to be active in a preliminary test, for the investigation of anti-adjuvant-induced disease (AID) activity. Pyrazoline derivatives were found to be more potent than pyrazoles. Docking studies of the most potent LOX inhibitor 2g highlight hydrophobic interactions with VAL126, PHE143, VAL520 and LYS526 and a halogen bond between the chlorine atom and ARG182.


Asunto(s)
Antiinflamatorios/síntesis química , Inhibidores de la Lipooxigenasa/síntesis química , Lipooxigenasa/química , Pirazoles/síntesis química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Concentración 50 Inhibidora , Peroxidación de Lípido/efectos de los fármacos , Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Pirazoles/química , Pirazoles/farmacología , Ratas
5.
Molecules ; 26(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299499

RESUMEN

The present study aims at the isolation and identification of diverse phenolic polyketides from Aloe vera (L.) Burm.f. and Aloe plicatilis (L.) Miller and includes their 5-LOX/COX-1 inhibiting potency. After initial Sephadex-LH20 gel filtration and combined silica gel 60- and RP18-CC, three dihydroisocoumarins (nonaketides), four 5-methyl-8-C-glucosylchromones (heptaketides) from A. vera, and two hexaketide-naphthalenes from A. plicatilis have been isolated by means of HSCCC. The structures of all polyketides were elucidated by ESI-MS and 2D 1H/13C-NMR (HMQC, HMBC) techniques. The analytical/preparative separation of 3R-feralolide, 3'-O-ß-d-glucopyranosyl- and the new 6-O-ß-d-glucopyranosyl-3R-feralolide into their respective positional isomers are described here for the first time, including the assignment of the 3R-configuration in all feralolides by comparative CD spectroscopy. The chromones 7-O-methyl-aloesin and 7-O-methyl-aloeresin A were isolated for the first time from A. vera, together with the previously described aloesin (syn. aloeresin B) and aloeresin D. Furthermore, the new 5,6,7,8-tetrahydro-1-O-ß-d-glucopyranosyl- 3,6R-dihydroxy-8R-methylnaphtalene was isolated from A. plicatilis, together with the known plicataloside. Subsequently, biological-pharmacological screening was performed to identify Aloe polyketides with anti-inflammatory potential in vitro. In addition to the above constituents, the anthranoids (octaketides) aloe emodin, aloin, 6'-(E)-p-coumaroyl-aloin A and B, and 6'-(E)-p-coumaroyl-7-hydroxy-8-O-methyl-aloin A and B were tested. In the COX-1 examination, only feralolide (10 µM) inhibited the formation of MDA by 24%, whereas the other polyketides did not display any inhibition at all. In the 5-LOX-test, all aloin-type anthranoids (10 µM) inhibited the formation of LTB4 by about 25-41%. Aloesin also displayed 10% inhibition at 10 µM in this in vitro setup, while the other chromones and naphthalenes did not display any activity. The present study, therefore, demonstrates the importance of low molecular phenolic polyketides for the known overall anti-inflammatory activity of Aloe vera preparations.


Asunto(s)
Aloe/química , Cumarinas/química , Ciclooxigenasa 1/metabolismo , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Lipooxigenasa/química , Naftalenos/química , Policétidos/química , Antraquinonas/química , Antraquinonas/farmacología , Antiinflamatorios , Araquidonato 5-Lipooxigenasa/metabolismo , Cromonas/química , Cromonas/farmacología , Cumarinas/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Glucósidos/química , Glucósidos/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Naftalenos/farmacología , Fenoles/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Policétidos/farmacología
6.
Molecules ; 26(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921198

RESUMEN

Cyclooxygenase (COX) and lipoxygenase (LOX) are key targets for the development of new anti-inflammatory agents. LOX, which is involved in the biosynthesis of mediators in inflammation and allergic reactions, was selected for a biochemical screening campaign to identify LOX inhibitors by employing the main natural product library of Brazilian biodiversity. Two prenyl chalcones were identified as potent inhibitors of LOX-1 in the screening. The most active compound, (E)-2-O-farnesyl chalcone, decreased the rate of oxygen consumption to an extent similar to that of the positive control, nordihydroguaiaretic acid. Additionally, studies on the mechanism of the action indicated that (E)-2-O-farnesyl chalcone is a competitive LOX-1 inhibitor. Molecular modeling studies indicated the importance of the prenyl moieties for the binding of the inhibitors to the LOX binding site, which is related to their pharmacological properties.


Asunto(s)
Chalconas/farmacología , Evaluación Preclínica de Medicamentos , Inhibidores de la Lipooxigenasa/farmacología , Modelos Moleculares , Prenilación , Chalconas/química , Concentración 50 Inhibidora , Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Simulación del Acoplamiento Molecular , Consumo de Oxígeno/efectos de los fármacos
7.
Molecules ; 26(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668106

RESUMEN

Tagetes erecta L. is a popular ornamental plant of the Asteraceae family, which is widely cultivated not only for its decorative use, but also for the extraction of lutein. Besides carotenoid representatives, which have been extensively studied, other important classes of secondary metabolites present in the plant, such as polyphenols, could exhibit important biological activities. The phytochemical analysis of a methanolic extract obtained from T. erecta inflorescences was achieved using liquid chromatography-mass spectrometry (LC-MS) techniques. The extract was further subjected to a multistep purification process, which allowed the separation of different fractions. The total extract and its fractions contain several polyphenolic compounds, such as hydroxybenzoic and hydroxycinnamic acid derivatives, flavonols (especially quercetagetin glycosides), and several aglycons (e.g., quercetin, patuletin). One of the fractions, containing mostly quercetagitrin, was subjected to two different antioxidant assays (metal chelating activity and lipoxygenase inhibition) and to in vitro cytotoxicity assessment. Generally, the biological assays showed promising results for the investigated fraction compared to the initial extract. Given the encouraging outcome of the in vitro assays, further purification and structural analysis of compounds from T. erecta extracts, as well as further in vivo investigations are justified.


Asunto(s)
Antioxidantes/farmacología , Flores/química , Inhibidores de la Lipooxigenasa/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Tagetes/química , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/aislamiento & purificación , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Conejos , Relación Estructura-Actividad
8.
Food Funct ; 12(3): 1271-1290, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33434253

RESUMEN

The aim of the study was to broadly determine the biological activities of purple potato ethanolic extract of the Blue Congo variety (BCE). The antioxidant activity of BCE was determined in relation to liposome membranes, and peroxidation was induced by UVB and AAPH. To clarify the antioxidant activity of BCE, we investigated its interactions with hydrophilic and hydrophobic regions of a membrane using fluorimetric and FTIR methods. Next, we investigated the cytotoxicity and pro-apoptotic activities of BCE in two human colon cancer cell lines (HT-29 and Caco-2) and in normal cells (IPEC-J2). In addition, the ability to inhibit enzymes that are involved in pro-inflammatory reactions was examined. Furthermore, BCE interactions with serum albumin and plasmid DNA were investigated using steady state fluorescence spectroscopy and a single molecule fluorescence technique (TCSPC-FCS). We proved that BCE effectively protects lipid membranes against the process of peroxidation and successfully inhibits the cyclooxygenase and lipoxygenase enzymes. Furthermore, it interacts with the hydrophilic and hydrophobic parts of lipid membranes as well as with albumin and plasmid DNA. It was observed that BCE is more cytotoxic against colon cancer cell lines than normal IPEC-J2 cells; it also induces apoptosis in cancer cell lines, but does not induce cell death in normal cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Solanum tuberosum/química , Albúminas , Antineoplásicos Fitogénicos/química , Antioxidantes/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/farmacología , Humanos , Lípidos/química , Liposomas , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Extractos Vegetales/química , Plásmidos , Unión Proteica , Especies Reactivas de Oxígeno , Albúmina Sérica/química , Albúmina Sérica/metabolismo
9.
Biomolecules ; 11(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503885

RESUMEN

Lipoxygenases are widespread enzymes that catalyze oxidation of polyunsaturated fatty acids (linoleic, linolenic, and arachidonic acid) to produce hydroperoxides. Lipoxygenase reactions can be desirable, but also lipoxygenases can react in undesirable ways. Most of the products of lipoxygenase reactions are aromatic compounds that can affect food properties, especially during long-term storage. Lipoxygenase action on unsaturated fatty acids could result in off-flavor/off-odor development, causing food spoilage. In addition, lipoxygenases are present in the human body and play an important role in stimulation of inflammatory reactions. Inflammation is linked to many diseases, such as cancer, stroke, and cardiovascular and neurodegenerative diseases. This review summarized recent research on plant families and species that can inhibit lipoxygenase activity.


Asunto(s)
Ácidos Grasos Insaturados/química , Inflamación/tratamiento farmacológico , Inhibidores de la Lipooxigenasa/farmacología , Oxígeno/química , Extractos Vegetales/farmacología , Animales , Araquidonato 15-Lipooxigenasa/biosíntesis , Araquidonato 5-Lipooxigenasa/biosíntesis , Ácido Araquidónico , Ácidos Grasos , Flores/enzimología , Humanos , Peróxido de Hidrógeno/química , Concentración 50 Inhibidora , Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Oxidación-Reducción , Hojas de la Planta/enzimología , Polifenoles/química
10.
Nat Prod Res ; 35(12): 1949-1958, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31507218

RESUMEN

Chromene derivatives with manifold structural framework and pharmacological properties were ubiquitous in the mollusks of marine origin. A previously undescribed 1H-benzochromenone was isolated through bioassay-guided chromatographic purification of the organic extract of the marine gastropod mollusk Chicoreus ramosus. The compound was characterised as 6-(2',2'-dimethyl)-3'-en-1'-yl-1'-oxy)-3-hydroxy-1H-benzo[c]chromene-2(10aH)-one based on integrated spectroscopic analysis. The antioxidant studies by employing the stable free radicals reported that the antioxidant activity (IC50 1.4-1.6 mM) was comparable to α-tocopherol (IC50 1.4-1.7 mM). The attenuating potential of the studied compound against pro-inflammatory 5-lipoxygenase (IC50 2.12 mM) was significantly greater than that exhibited by anti-inflammatory drug ibuprofen (IC50 4.4 mM), whereas its inhibitory properties against carbolytic α-amylase (IC50 ∼0.72 mM) was comparable with that displayed by acarbose (IC50 0.43 mM). The present study recognised the potential of 1H-benzochromenone derivative isolated from C. ramosus as important pharmaceutical lead with anti-diabetic and anti-inflammatory potentials to reduce the risk of hyperglycaemia and inflammatory pathologies.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Inhibidores Enzimáticos/farmacología , Gastrópodos/química , Animales , Antiinflamatorios/química , Araquidonato 5-Lipooxigenasa/metabolismo , Benzopiranos/química , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Estructura Molecular , alfa-Amilasas/antagonistas & inhibidores
11.
Molecules ; 25(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142839

RESUMEN

Stratiotes aloides L. is common water plant in central Poland. Due to its expansive character, S. aloides L. can strongly affect the functioning of aquatic ecosystems. S. aloides L. was an important famine plant in central Poland. This plant was commonly collected and cooked until the turn of the 20th century. It has also been used to heal wounds, especially when these are made by an iron implement. The objective of the present work was to study the phenolic profile in the leaves and roots of S. aloides as well as their antioxidant potential and ability to inhibit lipoxygenase (LOX) in the light of their potential bioaccessibility. The dominant compound in its leaves was luteolin-7-O-hexoside-glucuronide (5.84 mg/g DW), whereas the dominant root component was chrysoeriol-7-O-hexoside-glucuronide (0.83 mg/g DW). Infusions from leaves, roots, and their 1:1 (v/v) mixture contained potentially bioaccessible antiradical compounds. S. aloides is a good source of water-extractable reductive compounds. Especially valuable are the leaves of this plant. The roots of S. aloides contained very active hydrophilic compounds able to chelate metal ions. However, their potential bioaccessibility was relatively low. The hydrophilic compounds from the leaves were the most effective XO inhibitors (EC50 = 9.91 mg DW/mL). The water-extractable compounds derived from the leaves and roots acted as uncompetitive LOX inhibitors.


Asunto(s)
Antioxidantes/química , Extractos Vegetales/química , Hojas de la Planta/química , Raíces de Plantas/química , Tracheophyta/química , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Ecosistema , Glucurónidos/química , Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Modelos Químicos , Fenoles/química , Fenoles/metabolismo , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem , Agua , Xantina Oxidasa/metabolismo
12.
Molecules ; 25(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066378

RESUMEN

A novel series of zileuton-hydroxycinnamic acid hybrids were synthesized and screened as 5-lipoxygenase (5-LO) inhibitors in stimulated HEK293 cells and polymorphonuclear leukocytes (PMNL). Zileuton's (1) benzo[b]thiophene and hydroxyurea subunits combined with hydroxycinnamic acid esters' ester linkage and phenolic acid moieties were investigated. Compound 28, bearing zileuton's (1) benzo[b]thiophene and sinapic acid phenethyl ester's (2) α,ß-unsaturated phenolic acid moiety 28, was shown to be equipotent to zileuton (1), the only clinically approved 5-LO inhibitor, in stimulated HEK293 cells. Compound 28 was three times as active as zileuton (1) for the inhibition of 5-LO in PMNL. Compound 37, bearing the same sinapic acid (3,5-dimethoxy-4-hydroxy substitution) moiety as 28, combined with zileuton's (1) hydroxyurea subunit was inactive. This result shows that the zileuton's (1) benzo[b]thiophene moiety is essential for the inhibition of 5-LO product biosynthesis with our hydrids. Unlike zileuton (1), Compound 28 formed two π-π interactions with Phe177 and Phe421 as predicted when docked into 5-LO. Compound 28 was the only docked ligand that showed a π-π interaction with Phe177 which may play a part in product specificity as reported.


Asunto(s)
Ácidos Cumáricos/química , Hidroxiurea/análogos & derivados , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Araquidonato 5-Lipooxigenasa/química , Araquidonato 5-Lipooxigenasa/metabolismo , Simulación por Computador , Evaluación Preclínica de Medicamentos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Células HEK293 , Humanos , Hidroxiurea/química , Inhibidores de la Lipooxigenasa/síntesis química , Simulación del Acoplamiento Molecular , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Relación Estructura-Actividad
13.
Sci Rep ; 10(1): 15965, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994508

RESUMEN

Natural metabolites with their specific bioactivities are being considered as a potential source of materials for pharmacological studies. In this study, we successfully isolated and identified five known clerodane diterpenes, namely 16-oxo-cleroda-3,13(14)E-dien-15-oic acid (1), 16-hydroxy-cleroda-3,13-dien-15-oic acid (2), 16-hydroxy-cleroda-4(18),13-dien-16,15-olide (3), 3α,16α-dihydroxy-cleroda-4(18),13(14)Z-dien-15,16-olide (4), and 16α-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide (5) from the methanolic extract of seeds of Polyalthia longifolia. Initially, all the isolated metabolites were investigated for COX-1, COX-2, and 5-LOX inhibitory activities using the standard inhibitory kits. Of which, compounds 3, 4, and 5 exhibited to be potent COX-1, COX-2, and 5-LOX inhibitors with the IC50 values similar or lower to those of the reference drugs. To understand the underlying mechanism, these compounds were subjected to molecular docking on COX-1, COX-2, and 5-LOX proteins. Interestingly, the in silico study results were in high accordance with in vitro studies where compounds 3, 4, and 5 hits assumed interactions and binding pattern comparable to that of reference drugs (indomethacin and diclofenac), as a co-crystallized ligand explaining their remarkable dual (COX/LOX) inhibitor actions. Taken together, our findings demonstrated that compounds 3, 4, and 5 functioned as dual inhibitors of COX/5-LOX and can contribute to the development of novel, more effective anti-inflammatory drugs with minimal side-effects.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Diterpenos de Tipo Clerodano/farmacología , Polyalthia/química , Araquidonato 5-Lipooxigenasa/química , Simulación por Computador , Ciclooxigenasa 1/química , Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/farmacología , Diterpenos de Tipo Clerodano/química , Humanos , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Semillas/química
14.
Eur J Med Chem ; 202: 112518, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32668380

RESUMEN

Inflammation contributes to the development of various pathologies, e.g. asthma, cardiovascular diseases, some types of cancer, and metabolic disorders. Leukotrienes (LT), biosynthesized from arachidonic acid by 5-lipoxygenase (5-LO), constitute a potent family of pro-inflammatory lipid mediators. δ-Garcinoic acid (δ-GA) (1), a natural vitamin E analogue, was chosen for further structural optimization as it selectively inhibited 5-LO activity in cell-free and cell-based assays without impairing the production of specialized pro-resolving mediators by 15-LO. A model of semi-quantitative prediction of 5-LO inhibitory potential developed during the current study allowed the design of 24 garcinamides that were semi-synthesized. In accordance with the prediction model, biological evaluations showed that eight compounds potently inhibited human recombinant 5-LO (IC50 < 100 nM). Interestingly, four compounds were substantially more potent than 1 in activated primary human neutrophils assays. Structure - activity relationships shed light on a supplementary hydrophobic pocket in the allosteric binding site that could be fitted with an aromatic ring.


Asunto(s)
Amidas/farmacología , Antiinflamatorios no Esteroideos/farmacología , Araquidonato 5-Lipooxigenasa/metabolismo , Diseño de Fármacos , Inhibidores de la Lipooxigenasa/farmacología , Vitamina E/análogos & derivados , Amidas/síntesis química , Amidas/química , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Relación Dosis-Respuesta a Droga , Humanos , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Vitamina E/síntesis química , Vitamina E/química , Vitamina E/farmacología
15.
Phytomedicine ; 77: 153284, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32707371

RESUMEN

BACKGROUND: Modulation of the arachidonic acid (AA) cascade via 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) represent the two major pathways for treatments of inflammation and pain. The design and development of inhibitors targeting both 5-LOX and COX-2 has gained increasing popularity. As evidenced, 5-LOX and COX-2 dual targeted inhibitors have recently emerged as the front runners of anti-inflammatory drugs with improved efficacy and reduced side effects. Natural products represent a rich resource for the discovery of dual targeted 5-LOX and COX-2 inhibitors. By combining affinity ultrafiltration and high-performance liquid chromatography-mass spectrometry (AUF-LC-MS), an efficient method was developed to identify spirostanol glycosides and furostanol glycosides as the 5-LOX/COX-2 dual inhibitors from saponins extract of Anemarrhenae Rhizoma (SEAR). METHODS: A highly efficient method by combining affinity ultrafiltration and high-performance liquid chromatography-mass spectrometry (AUF-LC-MS) was first developed to screen and characterize the 5-LOX/COX-2 dual targeted inhibitors from SEAR. The structures of compounds in the ultrafiltrate were characterized by high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). In addition, in vitro 5-LOX/COX-2 inhibition assays and their dual expression in vivo were performed to confirm the inhibitory activities of the compounds screened by AUF-LC-MS. Molecular docking studies with the corresponding binding energy were obtained which fit nicely to both 5-LOX and COX-2 protein cavities and in agreement with our affinity studies. RESULTS: A total of 5 compounds, timosaponin A-II, timosaponin A-III, timosaponin B-II, timosaponin B-III and anemarrhenasaponin I, were identified as potential 5-LOX/COX-2 dual targeted inhibitors with specific binding values > 1.5 and IC50 ≤ 6.07 µM. CONCLUSION: The present work demonstrated that spirostanol glycoside and furostanol glycoside were identified as two novel classes of dual inhibitors of 5-LOX/COX-2 enzymes by employing a highly efficient screening method of AUF-LC-MS. These natural products represent a novel class of anti-inflammatory agents with the potential of improved efficacy and reduced side effects.


Asunto(s)
Anemarrhena/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Glicósidos/química , Inhibidores de la Lipooxigenasa/farmacología , Espirostanos/química , Esteroles/química , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Araquidonato 5-Lipooxigenasa/química , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Cromatografía Líquida de Alta Presión , Ciclooxigenasa 2/química , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/química , Evaluación Preclínica de Medicamentos , Glicósidos/farmacología , Inflamación/tratamiento farmacológico , Inhibidores de la Lipooxigenasa/química , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Ratas , Rizoma/química , Saponinas/química , Saponinas/farmacología , Espirostanos/farmacología , Esteroides/química , Esteroides/farmacología , Esteroles/farmacología , Ultrafiltración
16.
PLoS One ; 15(7): e0236319, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32726328

RESUMEN

Jacaranda mimosifolia trees are grown in frost-free regions globally. The aim of this study was to evaluate the methanol crude extract and various fractions of increasing polarity of J. mimosifolia leaves for bioactive metabolites, as well as antimicrobial, antioxidant and anticancer activities. The anti-inflammatory potential of the various fractions of J. mimosifolia leaf extract was studied via the lipoxygenase (LOX) inhibitory assay. Methanol crude extract (ME), derived fractions extracted with chloroform (CF) and ethyl acetate (EAF), and residual aqueous extract (AE) of dried J. mimosifolia leaves were assayed for polyphenolic compounds, their antioxidant, antimicrobial and lipoxygenase (LOX) inhibitory activities, and anticancer properties. Polyphenolic compounds were determined via HPLC while phytochemicals (total phenolics, flavonoids, tannins and ortho-diphenol contents), antioxidant activities (DPPH, hydrogen peroxideperoxide, hydroxyl and superoxide radical anions) and LOX were measured via spectrophotometry. Methanol extracts and various fractions were evaluated for antibacterial activities against Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa and Staphylococcus aureus. Antifungal potential of the fractions was tested against three species: Aspergillus flavus, Aspergillus fumigatus and Fusarium oxysporum. The highest values for total phenolic content (TPC), total flavonoid content (TFC), flavonols, tannins and ortho-diphenols were in the ME, followed by CF > EAF > AE. ME also had the highest antioxidant activity with EC50 values 48±1.3, 45±2.4, 42±1.3 and 46±1.3 µg/mL based on the DPPH, hydrogen peroxide, hydroxyl radical and superoxide radical assays, respectively. TPC and TFC showed a significant, strong and positive correlation with the values for each of these antioxidant activities. ME exhibited anti-inflammatory potential based on its LOX inhibitory activity (IC50 = 1.3 µg/mL). ME also had the maximum antibacterial and antifungal potential, followed by EAF > CF > AE. Furthermore, ME showed the strongest cytotoxic effect (EC50 = 10.7 and 17.3 µg/mL) against human hormone-dependent prostate carcinoma (LnCaP) and human lung carcinoma (LU-1) cell lines, respectively. Bioactive compounds present in leaf methanol extracts of J. mimosifolia were identified using gas chromatography-mass spectrometry (GC-MS). Fifteen compounds were identified including phenolic and alcoholic compounds, as well as fatty acids. Our results suggest that J. mimosifolia leaves are a good source of natural products with antioxidant, anti-inflammatory and anti-cancer properties for potential therapeutic, nutraceutical and functional food applications.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Bignoniaceae/química , Extractos Vegetales/farmacología , Antiinfecciosos/química , Antioxidantes/química , Aspergillus/efectos de los fármacos , Aspergillus/patogenicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citotoxinas/química , Citotoxinas/farmacología , Humanos , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Extractos Vegetales/química , Hojas de la Planta/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
17.
Mol Pharm ; 17(3): 810-816, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31967843

RESUMEN

Hyperforin, a highly hydrophobic prenylated acylphloroglucinol from the medical plant St. John's Wort, possesses anti-inflammatory properties and suppresses the formation of proinflammatory leukotrienes by inhibiting the key enzyme 5-lipoxygenase (5-LO). Despite its strong effectiveness and the unique molecular mode of interference with 5-LO, the high lipophilicity of hyperforin hampers its efficacy in vivo and, thus, impairs its therapeutic value, especially because of poor water solubility and strong plasma (albumin) protein binding. To overcome these hurdles that actually apply to many other hydrophobic 5-LO inhibitors, we have encapsulated hyperforin into nanoparticles (NPs) consisting of acetalated dextran (AcDex) to avoid plasma protein binding and thus improve its cellular supply under physiologically relevant conditions. Encapsulated hyperforin potently suppressed 5-LO activity in human neutrophils, but it failed to interfere with 5-LO activity in a cell-free assay, as expected. In the presence of human serum albumin (HSA), hyperforin was unable to inhibit cellular 5-LO activity, seemingly because of strong albumin binding. However, when encapsulated into NPs, hyperforin caused strong inhibition of 5-LO activity in the presence of HSA. Together, encapsulation of the highly hydrophobic hyperforin as a representative of lipophilic 5-LO inhibitors into AcDex-based NPs allows for efficient inhibition of 5-LO activity in neutrophils in the presence of albumin because of effective uptake and circumvention of plasma protein binding.


Asunto(s)
Antiinflamatorios/farmacología , Productos Biológicos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Hypericum/química , Inhibidores de la Lipooxigenasa/farmacología , Nanopartículas/química , Floroglucinol/análogos & derivados , Extractos Vegetales/farmacología , Terpenos/farmacología , Adulto , Antiinflamatorios/química , Antiinflamatorios/metabolismo , Araquidonato 5-Lipooxigenasa/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Donantes de Sangre , Cápsulas , Células Cultivadas , Voluntarios Sanos , Humanos , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Floroglucinol/química , Floroglucinol/metabolismo , Floroglucinol/farmacología , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Unión Proteica/efectos de los fármacos , Albúmina Sérica Humana/metabolismo , Solubilidad , Terpenos/química , Terpenos/metabolismo , Agua/química
18.
Nat Prod Res ; 34(24): 3451-3461, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30835545

RESUMEN

The organic extract of Turbinaria conoides, a brown seaweed harvested from the Gulf of Manner region of Indian peninsular was chromatographically fractionated to yield three substituted 2H-pyranoids, namely methyl-21-yl-[5', 6'- dihydro-5'-yl-{54-(4-hydroxybenzoyl)-oxy-(52-methylbutyl)}-3'-methyl-2H-pyran]-21-methyl butanoate (1), 11-[(3', 6'-dihydro-4'-methyl-2'-oxo-2H-pyran-3'-yl)methyl]-10-methylhexyl benzoate (2), and [6-ethyl-3,4-dimethyl-(tetrahydro-2', 2', 6'-trimethyl-2H-pyran-3'-yl)-2,5-cycloheptadiene]-1-propanoate (3). The compounds 1 and 2 bearing 2H-pyranyl-4-hydroxybenzoyl and 2H-pyranyl-10-methylhexylbenzoate moieties exhibited potential antioxidant activities (IC50 0.54-0.69 mg mL-1) as commercial antioxidant (α-tocopherol IC50 0.63-0.73 mg mL-1). Likewise, potential bioactivity of the 2H-pyran derivative, 1 against 5-lipoxygenase (IC50 ∼ 1 mg mL-1) along with higher index of selectivity (COX-1 inhibitoryIC50/COX-2 inhibitoryIC50 1.88) indicated their selective anti-inflammatory properties against inducible inflammatory mediators than that displayed by commercially available non-steroidal anti-inflammatory drug (ibuprofen, 0.44). Structure activity relationship analysis of the studied compounds showed that the antioxidative and anti-inflammatory properties were directly proportional to their electronic properties. The previously undescribed 2H-pyranoids might constitute as potential antioxidative and anti-inflammatory pharmacophores for medicinal applications. [Formula: see text].


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Phaeophyceae/química , Piranos/química , Relación Estructura-Actividad , Antiinflamatorios no Esteroideos/química , Antioxidantes/química , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/farmacología , Evaluación Preclínica de Medicamentos , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular , Algas Marinas/química
19.
Nat Prod Res ; 34(24): 3470-3482, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30887827

RESUMEN

Phytochemical investigation on biologically active compounds of an intertidal red seaweed Gracilaria salicornia (family Gracilariaceae) guided to the separation of two previously undisclosed 2H-chromenyl derivatives. The compounds were characterised as 4'-[10'-[7-hydroxy-2,8-dimethyl-6-(pentyloxy)-2H-chromen-2-yl]ethyl]-3',4'-dimethyl-cyclohexanone (1) and 3'-[10'-(8-hydroxy-5-methoxy-2,6,7-trimethyl-2H-chromen-2-yl)ethyl]-3'-methyl-2'-methylene cyclohexyl butyrate (2) by extensive spectroscopic experiments. The studied metabolites recorded prospective bioactivities against 5-lipoxygenase (IC50 < 2.50 mM), whereas their selectivity indices were significantly greater (∼1) than ibuprofen (0.89) (p < 0.05), which attributed higher anti-inflammatory selectivity of 2H-chromenyl compounds against inducible cyclooxygenase-2 than its constitutive pro-inflammatory isoform of cyclooxygenase-1. The radical scavenging potential of 2 against oxidants, 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3 ethylbenzothiozoline-6-sulfonic acid were higher (IC50 < 1.35 mM) than standard antioxidant, α-tocopherol (IC50 1.42-1.79 mM). The greater hydrogen bond interactions and binding affinity of 2 (-7.35 kcal mol-1) bearing 2H-chromenyl ethyl-3'-methyl-4'-methylenecyclohexyl butyrate moiety with 5-lipoxygenase, along with higher electronic properties and permissible hydrophobic-hydrophilic balance, manifested towards its greater anti-inflammatory activity than 1.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Gracilaria/química , Antiinflamatorios no Esteroideos/química , Antioxidantes/química , Araquidonato 5-Lipooxigenasa/química , Araquidonato 5-Lipooxigenasa/metabolismo , Benzopiranos/química , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Evaluación Preclínica de Medicamentos , Enlace de Hidrógeno , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Extractos Vegetales/química , Algas Marinas/química
20.
J Ethnopharmacol ; 247: 112259, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31577938

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ximenia americana L. is popularly known as yellow plum, brave plum or tallow wood. All the parts of this plant are used in popular medicine. Its reddish and smooth bark are used to treat skin infections, inflammation of the mucous membranes and in the wound healing process. OBJECTIVE: Verification of phytochemical profile, the molecular interaction between flavonoid, (-) epi-catechin and 5-LOX enzyme, by means of in silico study, the genotoxic effect and to investigate the pharmacological action of the aqueous extract of the stem bark of X. americana in pulmonary alterations caused by experimental COPD in Rattus norvegicus. MATERIALS AND METHODS: The identification of secondary metabolites was carried out by TLC and HPLC chromatographic methods, molecular anchoring tests were applied to analyze the interaction of flavonoid present in the extract with the enzyme involved in pulmonary inflammation process and the genotoxic effect was assessed by comet assay and micronucleus test. For induction of COPD, male rats were distributed in seven groups. The control group was exposed only to ambient air and six were subjected to passive smoke inhalations for 20 min/day for 60 days. One of the groups exposed to cigarette smoke did not receive treatment. The others were treated by inhalation with beclomethasone dipropionate (400 mcg/kg) and aqueous and lyophilized extracts of X. americana (500 mg/kg) separately or in combination for a period of 15 days. The structural and inflammatory pulmonary alterations were evaluated by histological examination. Additional morphometric analyses were performed, including the alveolar diameter and the thickness of the right ventricle wall. RESULTS: The results showed that the aqueous extract of the bark of X. americana possesses (-) epi -catechin, in silico studies with 5-LOX indicate that the EpiC ligand showed better affinity parameters than the AracA ligand, which is in accordance with the results obtained in vivo studies. Genotoxity was not observed at the dose tested and the extract was able to stagnate the alveolar enlargement caused by the destruction of the interalveolar septa, attenuation of mucus production and decrease the presence of collagen fibers in the bronchi of animals submitted to cigarette smoke. CONCLUSION: Altogether, the results proved that the aqueous extract of X. americana presents itself as a new option of therapeutic approach in the treatment of COPD.


Asunto(s)
Daño del ADN/efectos de los fármacos , Inhibidores de la Lipooxigenasa/farmacología , Olacaceae/química , Extractos Vegetales/farmacología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Animales , Araquidonato 5-Lipooxigenasa/química , Araquidonato 5-Lipooxigenasa/farmacología , Brasil , Modelos Animales de Enfermedad , Etnofarmacología , Femenino , Humanos , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/aislamiento & purificación , Inhibidores de la Lipooxigenasa/uso terapéutico , Masculino , Simulación del Acoplamiento Molecular , Pruebas de Mutagenicidad , Corteza de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Tallos de la Planta/química , Enfermedad Pulmonar Obstructiva Crónica/etiología , Ratas , Ratas Wistar , Contaminación por Humo de Tabaco/efectos adversos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA