Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Photochem Photobiol B ; 221: 112247, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34175580

RESUMEN

A need exists for further research elucidating the benefits of environmentally safe photoprotective agents against ultraviolet (UV) exposure, and plant extracts represent a human-friendly alternative formulation. This study was designed to evaluate the potential use of Bellis perennis extract (BPE), from the Asteraceae family, known as the common daisy or the English daisy, in cosmeceuticals as a photoprotective factor, using an in vitro model of UVA-induced keratinocyte damage. Human skin keratinocytes (HaCaT cell line) were incubated with BPE at 0.01, 0.1, or 1% in Dulbecco's Modified Eagle Medium (DMEM), and after 15 min they were submitted to UVA radiation at 5, 10, and 15 J/cm2 doses, respectively. For comparative purposes, Polypodium leucotomos extract (PLE), known as the fern, was used as a positive control in assessing the photoprotective effect. After 24 h of UVA exposure, cell viability (MTT and LDH assays), levels of cleaved caspase-3, cyclooxygenase-2, IL-6, reactive oxygen species (ROS) and antioxidant enzyme (catalase, SOD, and glutathione peroxidase) activity were determined. UVA radiation at 5, 10, and 15 J/cm2 doses reduced cell viability to 63%, 43%, and 23%, respectively; we selected 10 J/cm2 for our purposes. After 24 h of UVA exposure, treatment with 1% BPE and 1% PLE significantly recovered cell viability (p < 0.05). Furthermore, treatment was associated with lower cleaved caspase-3 and ROS levels, higher catalase activity, and lower IL-6 levels in the treated UVA keratinocytes compared with the untreated UVA group (p < 0.01). Our results demonstrate photoprotective and immunomodulatory effects of BPE in skin keratinocytes and support its use as a bioactive agent in cosmetic formulations to prevent skin damage caused by exposure to the UV light.


Asunto(s)
Asteraceae/química , Inmunomodulación/efectos de los fármacos , Extractos Vegetales/farmacología , Protectores contra Radiación/farmacología , Rayos Ultravioleta , Asteraceae/metabolismo , Caspasa 3/metabolismo , Catalasa/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Humanos , Inmunomodulación/efectos de la radiación , Queratinocitos/citología , Queratinocitos/metabolismo , Extractos Vegetales/química , Protectores contra Radiación/química , Especies Reactivas de Oxígeno/metabolismo
2.
J Immunol Res ; 2021: 6664453, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33628851

RESUMEN

BACKGROUND: The immune mechanisms underlying low-intensity ultrasound- (LIUS-) mediated suppression of inflammation and tumorigenesis remain poorly determined. METHODS: We used microarray datasets from the NCBI GEO DataSet repository and conducted comprehensive data-mining analyses, where we examined the gene expression of 1376 innate immune regulators (innatome genes (IGs) in cells treated with LIUS. RESULTS: We made the following findings: (1) LIUS upregulates proinflammatory IGs and downregulates metastasis genes in cancer cells, and LIUS upregulates adaptive immunity pathways but inhibits danger-sensing and inflammation pathways and promote tolerogenic differentiation in bone marrow (BM) cells. (2) LIUS upregulates IGs encoded for proteins localized in the cytoplasm, extracellular space, and others, but downregulates IG proteins localized in nuclear and plasma membranes, and LIUS downregulates phosphatases. (3) LIUS-modulated IGs act partially via several important pathways of reactive oxygen species (ROS), reverse signaling of immune checkpoint receptors B7-H4 and BTNL2, inflammatory cytokines, and static or oscillatory shear stress and heat generation, among which ROS is a dominant mechanism. (4) LIUS upregulates trained immunity enzymes in lymphoma cells and downregulates trained immunity enzymes and presumably establishes trained tolerance in BM cells. (5) LIUS modulates chromatin long-range interactions to differentially regulate IGs expression in cancer cells and noncancer cells. CONCLUSIONS: Our analysis suggests novel molecular mechanisms that are utilized by LIUS to induce tumor suppression and inflammation inhibition. Our findings may lead to development of new treatment protocols for cancers and chronic inflammation.


Asunto(s)
Citocinas/metabolismo , Proteínas de Punto de Control Inmunitario/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Escape del Tumor/inmunología , Ondas Ultrasónicas , Inmunidad Adaptativa , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Hipertermia Inducida/métodos , Proteínas de Punto de Control Inmunitario/genética , Inmunidad Innata , Inmunomodulación/efectos de la radiación , Modelos Biológicos , Neoplasias/patología , Neoplasias/terapia , Transducción de Señal/efectos de la radiación
3.
Commun Biol ; 3(1): 783, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335270

RESUMEN

Thermal ablation is a standard therapy for patients with hepatocellular carcinoma (HCC). Contemporary ablation devices are imperfect, as they lack tumor specificity. An ideal ablation modality would generate thermal energy only within tumoral tissue. Furthermore, as hyperthermia is known to influence tumor immunity, such a tumor-specific ablation modality may have the ability to favorably modulate the tumor immune landscape. Here we show a clinically relevant thermal ablation modality that generates tumor-specific hyperthermia, termed molecularly targeted photothermal ablation (MTPA), that is based upon the excellent localization of indocyanine green to HCC. In a syngeneic rat model, we demonstrate the tumor-specific hyperthermia generated by MTPA. We also show through spatial and transcriptomic profiling techniques that MTPA favorably modulates the intratumoral myeloid population towards tumor immunogenicity and diminishes the systemic release of oncogenic cytokines relative to conventional ablation modalities.


Asunto(s)
Carcinoma Hepatocelular/etiología , Inmunomodulación/efectos de la radiación , Neoplasias Hepáticas/etiología , Terapia Fototérmica/métodos , Animales , Biomarcadores de Tumor , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Citocinas/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Expresión Génica , Hipertermia Inducida , Inmunomodulación/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Terapia Molecular Dirigida , Ratas , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación
4.
Cancer Immunol Immunother ; 69(2): 293-306, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31953578

RESUMEN

Cancer immunotherapies are promising treatments for many forms of cancer. Nevertheless, the response rates to, e.g., immune checkpoint inhibitors (ICI), are still in low double-digit percentage. This calls for further therapy optimization that should take into account combination of immunotherapies with classical tumor therapies such as radiotherapy. By designing multimodal approaches, immune modulatory properties of certain radiation schemes, additional immune modulation by immunotherapy with ICI and hyperthermia, as well as patient stratification based on genetic and immune constitutions have to be considered. In this context, both the tumor and its microenvironment including cells of the innate and adaptive immune system have to be viewed in synopsis. Knowledge of immune activation and immune suppression by radiation is the basis for well-elaborated addition of certain immunotherapies. In this review, the focus is set on additional immune stimulation by hyperthermia and restoration of an immune response by ICI. The impact of radiation dose and fractionation on immune modulation in multimodal settings has to be considered, as the dynamics of the immune response and the timing between radiotherapy and immunotherapy. Another big challenge is the patient stratification that should be based on matrices of biomarkers, taking into account genetics, proteomics, radiomics, and "immunomics". One key aim is to turn immunological "cold" tumors into "hot" tumors, and to eliminate barriers of immune-suppressed or immune-excluded tumors. Comprehensive knowledge of immune alterations induced by radiation and immunotherapy when being applied together should be utilized for patient-adapted treatment planning and testing of innovative tumor therapies within clinical trials.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Diseño de Fármacos , Inmunomodulación/efectos de los fármacos , Neoplasias/etiología , Neoplasias/terapia , Animales , Antineoplásicos Inmunológicos/farmacología , Biomarcadores de Tumor , Terapia Combinada , Humanos , Hipertermia Inducida/métodos , Inmunidad , Factores Inmunológicos/farmacología , Inmunomodulación/efectos de la radiación , Inmunoterapia , Neoplasias/patología , Proyectos de Investigación , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación
5.
Maturitas ; 116: 11-17, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30244771

RESUMEN

As the population grows and ages, non-pharmaceutical options for the treatment and management of wounds, disease and injury are required to ensure adequate care. Polarized light therapy (PLT) utilizes visible-spectrum polarized light for a number of clinical applications. The advantage of polarized light is that it is able to penetrate the skin to a depth of up to 5 cm, reaching deeper tissues involved in wound healing. PLT has been shown to accelerate the healing process for ulcers, surgical wounds and dermal burns as well as a small number of musculoskeletal injuries. As research into the histological and physiological effects of PLT is largely absent, studies related to other light therapy modalities, largely low-level laser therapy, may pave the way to identify putative mechanisms by which PLT might exert its effects. Changes to cell signalling and secretion of substances required for wound healing have been identified in response to phototherapies. The reviewed literature suggests that PLT may be efficacious in some wound and injury healing contexts, though a gap in the literature exists regarding its mechanisms of action. Future studies should fully explain the therapeutic effects of PLT and the physiological mechanisms underpinning them.


Asunto(s)
Inmunomodulación/efectos de la radiación , Fototerapia , Cicatrización de Heridas/efectos de la radiación , Animales , Quemaduras/radioterapia , Humanos , Enfermedades Musculoesqueléticas/radioterapia , Piel/efectos de la radiación , Úlcera Cutánea/radioterapia
6.
Transfus Apher Sci ; 50(3): 379-87, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24215840

RESUMEN

Extracorporeal photochemotherapy (ECP) is a widely used method for either immunization against cutaneous T cell lymphoma or immunosuppression of graft-versus-host disease and organ transplant rejection (OTR). Leukapheresed blood is routed through a chamber, in which 8-methoxypsoralen is activated by ultraviolet energy (PUVA), thereby causing DNA crosslinks in processed leukocytes. Return of ECP-processed mononuclear leukocytes to the patient then modulates aberrant T cell immunity. Since interaction with the ECP flow chamber induces monocyte-to-dendritic antigen presenting cell (DC) maturation, we examined the possibility that PUVA may direct the most heavily exposed monocytes to differentiate into tolerogenic DC, while the least exposed DC might remain immunogenic. Expression of the glucocorticoid-induced leucine zipper (GILZ) gene is a distinguishing marker of tolerogenic DC. We report that PUVA directly stimulates GILZ expression. PUVA-exposed DC up-regulated GILZ, down-regulated costimulatory CD80 and CD86, became resistant to Toll-like receptor-induced maturation, increased IL-10 production and decreased IL-12p70 production, all features of immunosuppressive DC. Knockdown of GILZ with siRNA reduced IL-10 and increased IL-12p70 production, demonstrating that GILZ is critical for this profile. PUVA-induction of GILZ expression by DC may help explain how ECP suppresses GVHD and OTR. Conversely, those ECP-processed monocytes minimally exposed to PUVA may mediate ECP's immunogenic effects.


Asunto(s)
Células Dendríticas/inmunología , Inmunomodulación , Metoxaleno/farmacología , Fotoféresis , Fármacos Fotosensibilizantes/farmacología , Factores de Transcripción/inmunología , Adulto , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Células Dendríticas/citología , Femenino , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/efectos de la radiación , Inmunomodulación/efectos de los fármacos , Inmunomodulación/efectos de la radiación , Masculino , Terapia PUVA/métodos
7.
Br J Nutr ; 109(3): 457-66, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22874095

RESUMEN

Probiotics are live micro-organisms that when administered in adequate amounts confer a health benefit on the host. Cell surface molecules of these micro-organisms are being studied in relation to their ability to interact with the host. The cell wall of lactobacilli possesses lipoteichoic acids (LTA) which are molecules with immunomodulatory properties. UV radiation (UVR) has been proposed as the main cause of skin cancer because of its mutagenic and immunosuppressive effects. Photoprotection with some nutrition interventions including probiotics has recently been shown. The aim of the present study was to investigate whether the oral administration of purified LTA from Lactobacillus rhamnosus GG can modulate the immune-suppressive effect of UVR and skin tumour development in female Crl:SKH-1-hrBR mice. For this purpose, two irradiation models were studied: (1) a chronic irradiation scheme consisting of daily irradiations during twenty consecutive days and (2) a long-term irradiation schedule, irradiating the animals three times per week, during 34 weeks for tumour development. The results showed that T-cells in the inguinal lymph node of LTA-treated mice produced higher levels of (1) interferon-γ and (2) a number of total, helper and cytotoxic T-cells compared with non-treated mice. Moreover, a significant delay in tumour appearance was found in LTA-treated mice. An increased IgA⁺ cell number was found in the small intestine together with a higher number of activated dendritic cells in the mesenteric lymph nodes. The latter results might be indicative of a direct effect of LTA in the gut, affecting the cutaneous immune system and restoring homeostasis through the gut-skin axis.


Asunto(s)
Anticarcinógenos/uso terapéutico , Intestino Delgado/inmunología , Lipopolisacáridos/uso terapéutico , Neoplasias Inducidas por Radiación/prevención & control , Neoplasias Cutáneas/prevención & control , Piel/inmunología , Ácidos Teicoicos/uso terapéutico , Rayos Ultravioleta/efectos adversos , Animales , Anticarcinógenos/efectos adversos , Anticarcinógenos/aislamiento & purificación , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/patología , Células Presentadoras de Antígenos/efectos de la radiación , Apoptosis/efectos de la radiación , Carcinogénesis/inmunología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinogénesis/efectos de la radiación , Células Cultivadas , Suplementos Dietéticos/efectos adversos , Femenino , Inmunomodulación/efectos de la radiación , Intestino Delgado/patología , Intestino Delgado/efectos de la radiación , Lacticaseibacillus rhamnosus/inmunología , Lacticaseibacillus rhamnosus/metabolismo , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/aislamiento & purificación , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Ganglios Linfáticos/efectos de la radiación , Ratones , Ratones Pelados , Neoplasias Inducidas por Radiación/inmunología , Neoplasias Inducidas por Radiación/metabolismo , Neoplasias Inducidas por Radiación/patología , Probióticos/efectos adversos , Probióticos/metabolismo , Probióticos/uso terapéutico , Piel/metabolismo , Piel/patología , Piel/efectos de la radiación , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Bazo/inmunología , Bazo/metabolismo , Bazo/patología , Bazo/efectos de la radiación , Ácidos Teicoicos/efectos adversos , Ácidos Teicoicos/aislamiento & purificación , Carga Tumoral/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA