Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Chem Biol ; 10(12): 2716-24, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26398879

RESUMEN

Many therapeutically important enzymes are present in multiple cellular compartments, where they can carry out markedly different functions; thus, there is a need for pharmacological strategies to selectively manipulate distinct pools of target enzymes. Insulin-degrading enzyme (IDE) is a thiol-sensitive zinc-metallopeptidase that hydrolyzes diverse peptide substrates in both the cytosol and the extracellular space, but current genetic and pharmacological approaches are incapable of selectively inhibiting the protease in specific subcellular compartments. Here, we describe the discovery, characterization, and kinetics-based optimization of potent benzoisothiazolone-based inhibitors that, by virtue of a unique quasi-irreversible mode of inhibition, exclusively inhibit extracellular IDE. The mechanism of inhibition involves nucleophilic attack by a specific active-site thiol of the enzyme on the inhibitors, which bear an isothiazolone ring that undergoes irreversible ring opening with the formation of a disulfide bond. Notably, binding of the inhibitors is reversible under reducing conditions, thus restricting inhibition to IDE present in the extracellular space. The identified inhibitors are highly potent (IC50(app) = 63 nM), nontoxic at concentrations up to 100 µM, and appear to preferentially target a specific cysteine residue within IDE. These novel inhibitors represent powerful new tools for clarifying the physiological and pathophysiological roles of this poorly understood protease, and their unusual mechanism of action should be applicable to other therapeutic targets.


Asunto(s)
Citosol/química , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/química , Espacio Extracelular/enzimología , Insulisina/antagonistas & inhibidores , Compuestos de Sulfhidrilo/farmacología , Simulación por Computador , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Concentración 50 Inhibidora , Antagonistas de Insulina/farmacología , Insulisina/química , Modelos Biológicos , Estructura Molecular , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/química
2.
J Biomol Struct Dyn ; 31(11): 1219-35, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23146021

RESUMEN

Insulin-degrading enzyme (IDE) gene is one of the type 2 diabetes mellitus susceptibility genes specific to the Han Chinese population. IDE, a zinc-metalloendopeptidase, is a potential target for controlling insulin degradation. Potential lead compounds for IDE inhibition were identified from traditional Chinese medicine (TCM) through virtual screening and evaluation of their pharmacokinetic properties of absorption, distribution, metabolism, excretion, and toxicity. Molecular dynamics (MD) simulation was performed to validate the stability of complexes from docking simulation. The top three TCM compounds, dihydrocaffeic acid, isopraeroside IV, and scopolin, formed stable H-bond interactions with key residue Asn139, and were linked to active pocket residues His108, His112, and Glu189 through zinc. Torsion angle trajectories also indicated some stable interactions for each ligand with IDE. Molecular level analysis revealed that the TCM candidates might affect IDE through competitive binding to the active site and steric hindrance. Structural feature analysis reveals that high amounts of hydroxyl groups and carboxylic moieties contribute to anchor the ligand within the complex. Hence, we suggest the top three TCM compounds as potential inhibitor leads against IDE protein to control insulin degradation for type 2 diabetes mellitus. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:29.


Asunto(s)
Pueblo Asiatico , Ácidos Cafeicos/química , Cumarinas/química , Diabetes Mellitus Tipo 2/enzimología , Glucósidos/química , Hipoglucemiantes/química , Insulisina/antagonistas & inhibidores , Sitios de Unión , Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/genética , Humanos , Enlace de Hidrógeno , Insulisina/química , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA