Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(7): 1352-1368.e18, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37001500

RESUMEN

Resilience enables mental elasticity in individuals when rebounding from adversity. In this study, we identified a microcircuit and relevant molecular adaptations that play a role in natural resilience. We found that activation of parvalbumin (PV) interneurons in the primary auditory cortex (A1) by thalamic inputs from the ipsilateral medial geniculate body (MG) is essential for resilience in mice exposed to chronic social defeat stress. Early attacks during chronic social defeat stress induced short-term hyperpolarizations of MG neurons projecting to the A1 (MGA1 neurons) in resilient mice. In addition, this temporal neural plasticity of MGA1 neurons initiated synaptogenesis onto thalamic PV neurons via presynaptic BDNF-TrkB signaling in subsequent stress responses. Moreover, optogenetic mimicking of the short-term hyperpolarization of MGA1 neurons, rather than merely activating MGA1 neurons, elicited innate resilience mechanisms in response to stress and achieved sustained antidepressant-like effects in multiple animal models, representing a new strategy for targeted neuromodulation.


Asunto(s)
Corteza Auditiva , Ratones , Animales , Corteza Auditiva/metabolismo , Tálamo/fisiología , Neuronas/metabolismo , Cuerpos Geniculados , Interneuronas/fisiología , Parvalbúminas/metabolismo
2.
Front Neural Circuits ; 17: 1098913, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817644

RESUMEN

The thalamic nuclear complex contains excitatory projection neurons and inhibitory local neurons, the two cell types driving the main circuits in sensory nuclei. While excitatory neurons are born from progenitors that reside in the proliferative zone of the developing thalamus, inhibitory local neurons are born outside the thalamus and they migrate there during development. In addition to these cell types, which occupy most of the thalamus, there are two small thalamic regions where inhibitory neurons target extra-thalamic regions rather than neighboring neurons, the intergeniculate leaflet and the parahabenular nucleus. Like excitatory thalamic neurons, these inhibitory neurons are derived from progenitors residing in the developing thalamus. The assembly of these circuits follows fine-tuned genetic programs and it is coordinated by extrinsic factors that help the cells find their location, associate with thalamic partners, and establish connections with their corresponding extra-thalamic inputs and outputs. In this review, we bring together what is currently known about the development of the excitatory and inhibitory components of the thalamocortical sensory system, in particular focusing on the visual pathway and thalamic interneurons in mice.


Asunto(s)
Neuronas , Tálamo , Ratones , Animales , Neuronas/fisiología , Tálamo/fisiología , Interneuronas/fisiología
3.
Elife ; 112022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36342840

RESUMEN

Axons of retinal ganglion cells (RGCs) play critical roles in the development of inhibitory circuits in visual thalamus. We previously reported that RGC axons signal astrocytes to induce the expression of fibroblast growth factor 15 (FGF15), a motogen required for GABAergic interneuron migration into visual thalamus. However, how retinal axons induce thalamic astrocytes to generate Fgf15 and influence interneuron migration remains unknown. Here, we demonstrate that impairing RGC activity had little impact on interneuron recruitment into mouse visual thalamus. Instead, our data show that retinal-derived sonic hedgehog (SHH) is essential for interneuron recruitment. Specifically, we show that thalamus-projecting RGCs express SHH and thalamic astrocytes generate downstream components of SHH signaling. Deletion of RGC-derived SHH leads to a significant decrease in Fgf15 expression, as well as in the percentage of interneurons recruited into visual thalamus. Overall, our findings identify a morphogen-dependent neuron-astrocyte signaling mechanism essential for the migration of thalamic interneurons.


Asunto(s)
Proteínas Hedgehog , Interneuronas , Ratones , Animales , Proteínas Hedgehog/metabolismo , Interneuronas/fisiología , Tálamo/metabolismo , Axones/metabolismo , Células Ganglionares de la Retina/metabolismo
4.
Cell Rep ; 41(2): 111476, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223743

RESUMEN

Sensory signals are transmitted via the thalamus primarily to layer 4 (L4) of the primary sensory cortices. While information about average neuronal connectivity in L4 is available, its detailed higher-order circuit structure is not known. Here, we used three-dimensional electron microscopy for a connectomic analysis of the thalamus-driven inhibitory network in L4. We find that thalamic input drives a subset of interneurons with high specificity, which in turn target excitatory neurons with subtype specificity. These interneurons create a directed disinhibitory network directly driven by the thalamic input. Neuronal activity recordings show that strong synchronous sensory activation yields about 1.5-fold stronger activation of star pyramidal cells than spiny stellates, in line with differential windows of opportunity for activation of excitatory neurons in the thalamus-driven disinhibitory circuit model. With this, we have identified a high degree of specialization of the microcircuitry in L4 of the primary sensory cortex.


Asunto(s)
Conectoma , Interneuronas/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Tálamo/fisiología
5.
J Neurosci ; 42(43): 8095-8112, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36104281

RESUMEN

Intracortical inhibition in motor cortex (M1) regulates movement and motor learning. If cortical and thalamic inputs target different inhibitory cell types in different layers, then these afferents may play different roles in regulating M1 output. Using mice of both sexes, we quantified input to two main classes of M1 interneurons, parvalbumin+ (PV+) cells and somatostatin+ (SOM+) cells, using monosynaptic rabies tracing. We then compared anatomic and functional connectivity based on synaptic strength from sensory cortex and thalamus. Functionally, each input innervated M1 interneurons with a unique laminar profile. Different interneuron types were excited in a distinct, complementary manner, suggesting feedforward inhibition proceeds selectively via distinct circuits. Specifically, somatosensory cortex (S1) inputs primarily targeted PV+ neurons in upper layers (L2/3) but SOM+ neurons in middle layers (L5). Somatosensory thalamus [posterior nucleus (PO)] inputs targeted PV+ neurons in middle layers (L5). In contrast to sensory cortical areas, thalamic input to SOM+ neurons was equivalent to that of PV+ neurons. Thus, long-range excitatory inputs target inhibitory neurons in an area and a cell type-specific manner, which contrasts with input to neighboring pyramidal cells. In contrast to feedforward inhibition providing generic inhibitory tone in cortex, circuits are selectively organized to recruit inhibition matched to incoming excitatory circuits.SIGNIFICANCE STATEMENT M1 integrates sensory information and frontal cortical inputs to plan and control movements. Although inputs to excitatory cells are described, the synaptic circuits by which these inputs drive specific types of M1 interneurons are unknown. Anatomical results with rabies tracing and physiological quantification of synaptic strength shows that two main classes of inhibitory cells (PV+ and SOM+ interneurons) both receive substantial cortical and thalamic input, in contrast to interneurons in sensory areas (where thalamic input strongly prefers PV+ interneurons). Further, each input studied targets PV+ and SOM+ interneurons in a different fashion, suggesting that separate, specific circuits exist for recruitment of feedforward inhibition.


Asunto(s)
Corteza Motora , Rabia , Femenino , Masculino , Ratones , Animales , Parvalbúminas/metabolismo , Corteza Motora/metabolismo , Rabia/metabolismo , Tálamo/fisiología , Neuronas/fisiología , Interneuronas/fisiología , Somatostatina/metabolismo
6.
Elife ; 112022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35815934

RESUMEN

The tonic activity of striatal cholinergic interneurons (CINs) is modified differentially by their afferent inputs. Although their unitary synaptic currents are identical, in most CINs cortical inputs onto distal dendrites only weakly entrain them, whereas proximal thalamic inputs trigger abrupt pauses in discharge in response to salient external stimuli. To test whether the dendritic expression of the active conductances that drive autonomous discharge contribute to the CINs' capacity to dissociate cortical from thalamic inputs, we used an optogenetics-based method to quantify dendritic excitability in mouse CINs. We found that the persistent sodium (NaP) current gave rise to dendritic boosting, and that the hyperpolarization-activated cyclic nucleotide-gated (HCN) current gave rise to a subhertz membrane resonance. This resonance may underlie our novel finding of an association between CIN pauses and internally-generated slow wave events in sleeping non-human primates. Moreover, our method indicated that dendritic NaP and HCN currents were preferentially expressed in proximal dendrites. We validated the non-uniform distribution of NaP currents: pharmacologically; with two-photon imaging of dendritic back-propagating action potentials; and by demonstrating boosting of thalamic, but not cortical, inputs by NaP currents. Thus, the localization of active dendritic conductances in CIN dendrites mirrors the spatial distribution of afferent terminals and may promote their differential responses to thalamic vs. cortical inputs.


Asunto(s)
Interneuronas , Tálamo , Animales , Colinérgicos/metabolismo , Cuerpo Estriado/fisiología , Dendritas/fisiología , Interneuronas/fisiología , Ratones , Tálamo/fisiología
7.
Cell Rep ; 39(2): 110667, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417707

RESUMEN

Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development.


Asunto(s)
Interneuronas , Células Piramidales , Dendritas/fisiología , Interneuronas/fisiología , Neuronas/fisiología , Tálamo
8.
Nature ; 600(7887): 100-104, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34614503

RESUMEN

Interactions between the mediodorsal thalamus and the prefrontal cortex are critical for cognition. Studies in humans indicate that these interactions may resolve uncertainty in decision-making1, but the precise mechanisms are unknown. Here we identify two distinct mediodorsal projections to the prefrontal cortex that have complementary mechanistic roles in decision-making under uncertainty. Specifically, we found that a dopamine receptor (D2)-expressing projection amplifies prefrontal signals when task inputs are sparse and a kainate receptor (GRIK4) expressing-projection suppresses prefrontal noise when task inputs are dense but conflicting. Collectively, our data suggest that there are distinct brain mechanisms for handling uncertainty due to low signals versus uncertainty due to high noise, and provide a mechanistic entry point for correcting decision-making abnormalities in disorders that have a prominent prefrontal component2-6.


Asunto(s)
Vías Nerviosas , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Tálamo/citología , Tálamo/fisiología , Animales , Toma de Decisiones , Femenino , Humanos , Interneuronas/fisiología , Masculino , Núcleo Talámico Mediodorsal/citología , Núcleo Talámico Mediodorsal/fisiología , Ratones , Receptores Dopaminérgicos/metabolismo , Receptores de Ácido Kaínico/metabolismo , Incertidumbre
9.
Cell Rep ; 37(3): 109837, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686328

RESUMEN

The selection of goal-directed behaviors is supported by neural circuits located within the frontal cortex. Frontal cortical afferents arise from multiple brain areas, yet the cell-type-specific targeting of these inputs is unclear. Here, we use monosynaptic retrograde rabies mapping to examine the distribution of afferent neurons targeting distinct classes of local inhibitory interneurons and excitatory projection neurons in mouse infralimbic frontal cortex. Interneurons expressing parvalbumin, somatostatin, or vasoactive intestinal peptide receive a large proportion of inputs from the hippocampus, while interneurons expressing neuron-derived neurotrophic factor receive a large proportion of inputs from thalamic regions. A similar dichotomy is present among the four different excitatory projection neurons. These results show a prominent bias among long-range hippocampal and thalamic afferent systems in their targeting to specific sets of frontal cortical neurons. Moreover, they suggest the presence of two distinct local microcircuits that control how different inputs govern frontal cortical information processing.


Asunto(s)
Lóbulo Frontal/fisiología , Hipocampo/fisiología , Interneuronas/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Animales , Conducta Animal , Lóbulo Frontal/citología , Lóbulo Frontal/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Interneuronas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Inhibición Neural , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas , Parvalbúminas/genética , Parvalbúminas/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Sinapsis/metabolismo , Tálamo/citología , Tálamo/metabolismo , Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/metabolismo
10.
Neuron ; 109(21): 3473-3485.e5, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34478630

RESUMEN

Higher-order projections to sensory cortical areas converge on layer 1 (L1), the primary site for integration of top-down information via the apical dendrites of pyramidal neurons and L1 GABAergic interneurons. Here we investigated the contribution of early thalamic inputs onto L1 interneurons for establishment of top-down connectivity in the primary visual cortex. We find that bottom-up thalamic inputs predominate during L1 development and preferentially target neurogliaform cells. We show that these projections are critical for the subsequent strengthening of top-down inputs from the anterior cingulate cortex onto L1 neurogliaform cells. Sensory deprivation or selective removal of thalamic afferents blocked this phenomenon. Although early activation of the anterior cingulate cortex resulted in premature strengthening of these top-down afferents, this was dependent on thalamic inputs. Our results demonstrate that proper establishment of top-down connectivity in the visual cortex depends critically on bottom-up inputs from the thalamus during postnatal development.


Asunto(s)
Interneuronas , Corteza Visual , Dendritas/fisiología , Interneuronas/fisiología , Células Piramidales , Tálamo , Corteza Visual/fisiología
11.
Neuron ; 109(17): 2682-2690.e5, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34314698

RESUMEN

Slow-wave sleep is characterized by near-synchronous alternation of active Up states and quiescent Down states in the neocortex. Although the cortex itself can maintain these oscillations, the full expression of Up-Down states requires intact thalamocortical circuits. Sensory thalamic input can drive the cortex into an Up state. Here we show that midline thalamic neurons terminate Up states synchronously across cortical areas. Combining local field potential, single-unit, and patch-clamp recordings in conjunction with optogenetic stimulation and silencing in mice in vivo, we report that thalamic input mediates Down transition via activation of layer 1 neurogliaform inhibitory neurons acting on GABAB receptors. These results strengthen the evidence that thalamocortical interactions are essential for the full expression of slow-wave sleep, show that Down transition is an active process mediated by cortical GABAB receptors, and demonstrate that thalamus synchronizes Down transitions across cortical areas during natural slow-wave sleep.


Asunto(s)
Interneuronas/fisiología , Neocórtex/fisiología , Receptores de GABA-B/metabolismo , Sueño de Onda Lenta/fisiología , Tálamo/fisiología , Animales , Potenciales Evocados , Femenino , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neocórtex/citología , Neocórtex/metabolismo , Tálamo/citología , Tálamo/metabolismo
12.
Neurobiol Dis ; 157: 105447, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34274461

RESUMEN

Huntington's disease (HD) is a progressive, fatal neurodegenerative disorder characterized by motor, cognitive, and psychiatric disturbances. There is no known cure for HD, but its progressive nature allows for early therapeutic intervention. Currently, much of the research has focused on the striatum, however, there is evidence suggesting that disruption of thalamocortical circuits could underlie some of the early symptoms of HD. Loss of both cortical pyramidal neurons (CPNs) and thalamic neurons occurs in HD patients, and cognitive, somatosensory, and attention deficits precede motor abnormalities. However, the role of thalamocortical pathways in HD progression has been understudied. Here, we measured single unit activity and local field potentials (LFPs) from electrode arrays implanted in the thalamus and primary motor cortex of 4-5 month-old male and female Q175 mice. We assessed neuronal activity under baseline conditions as well as during presentation of rewards delivered via actuation of an audible solenoid valve. HD mice showed a significantly delayed licking response to the reward stimulus. At the same time, neuronal activation to the reward was delayed in thalamic neurons, CPNs and fast-spiking cortical interneurons (FSIs) of HD mice. In addition, thalamocortical coherence increased at lower frequencies in HD relative to wildtype mice. Together, these data provide evidence that impaired cortical and thalamic responses to reward stimuli, and impaired thalamocortical coherence, may play an important early role in motor, cognitive, and learning deficits in HD patients.


Asunto(s)
Enfermedad de Huntington/fisiopatología , Corteza Motora/fisiopatología , Tálamo/fisiopatología , Animales , Corteza Cerebral/fisiopatología , Cognición , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Técnicas de Sustitución del Gen , Interneuronas/fisiología , Ratones , Actividad Motora , Vías Nerviosas/fisiopatología , Técnicas de Placa-Clamp , Células Piramidales/fisiología
13.
Nat Commun ; 12(1): 3916, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168153

RESUMEN

Integration of information across the senses is critical for perception and is a common property of neurons in the cerebral cortex, where it is thought to arise primarily from corticocortical connections. Much less is known about the role of subcortical circuits in shaping the multisensory properties of cortical neurons. We show that stimulation of the whiskers causes widespread suppression of sound-evoked activity in mouse primary auditory cortex (A1). This suppression depends on the primary somatosensory cortex (S1), and is implemented through a descending circuit that links S1, via the auditory midbrain, with thalamic neurons that project to A1. Furthermore, a direct pathway from S1 has a facilitatory effect on auditory responses in higher-order thalamic nuclei that project to other brain areas. Crossmodal corticofugal projections to the auditory midbrain and thalamus therefore play a pivotal role in integrating multisensory signals and in enabling communication between different sensory cortical areas.


Asunto(s)
Corteza Auditiva/fisiología , Vías Nerviosas/fisiología , Corteza Somatosensorial/fisiología , Estimulación Acústica , Animales , Electrofisiología/métodos , Femenino , Neuronas GABAérgicas/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interneuronas/fisiología , Masculino , Mesencéfalo/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Células Receptoras Sensoriales/fisiología , Corteza Somatosensorial/citología , Tálamo/citología , Tálamo/fisiología
14.
Nat Commun ; 12(1): 3151, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035240

RESUMEN

Computational modeling and human studies suggest that transcranial alternating current stimulation (tACS) modulates alpha oscillations by entrainment. Yet, a direct examination of how tACS interacts with neuronal spiking activity that gives rise to the alpha oscillation in the thalamo-cortical system has been lacking. Here, we demonstrate how tACS entrains endogenous alpha oscillations in head-fixed awake ferrets. We first show that endogenous alpha oscillations in the posterior parietal cortex drive the primary visual cortex and the higher-order visual thalamus. Spike-field coherence is largest for the alpha frequency band, and presumed fast-spiking inhibitory interneurons exhibit strongest coupling to this oscillation. We then apply alpha-tACS that results in a field strength comparable to what is commonly used in humans (<0.5 mV/mm). Both in these ferret experiments and in a computational model of the thalamo-cortical system, tACS entrains alpha oscillations by following the theoretically predicted Arnold tongue. Intriguingly, the fast-spiking inhibitory interneurons exhibit a stronger entrainment response to tACS in both the ferret experiments and the computational model, likely due to their stronger endogenous coupling to the alpha oscillation. Our findings demonstrate the in vivo mechanism of action for the modulation of the alpha oscillation by tACS.


Asunto(s)
Ritmo alfa/fisiología , Tálamo/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Corteza Visual/fisiología , Animales , Simulación por Computador , Electrodos Implantados , Electroencefalografía , Femenino , Hurones , Interneuronas/fisiología , Imagen por Resonancia Magnética , Masculino , Microelectrodos , Modelos Animales , Modelos Neurológicos , Red Nerviosa/fisiología , Optogenética , Tálamo/citología , Tálamo/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Estimulación Transcraneal de Corriente Directa/instrumentación , Corteza Visual/citología , Corteza Visual/diagnóstico por imagen
15.
Physiol Res ; 70(3): 447-460, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33982575

RESUMEN

We used two-photon calcium imaging with single-cell and cell-type resolution. Fear conditioning induced heterogeneous tuning shifts at single-cell level in the auditory cortex, with shifts both to CS+ frequency and to the control CS- stimulus frequency. We thus extend the view of simple expansion of CS+ tuned regions. Instead of conventional freezing reactions only, we observe selective orienting responses towards the conditioned stimuli. The orienting responses were often followed by escape behavior.


Asunto(s)
Corteza Auditiva/fisiología , Condicionamiento Clásico/fisiología , Miedo/psicología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Estimulación Acústica , Animales , Conducta Animal , Electrochoque , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Cell Rep ; 34(11): 108867, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730568

RESUMEN

The firing activity of dorso-medial-striatal-cholinergic interneurons (dmCINs) is a neural correlate of classical conditioning. Tonically active, they pause in response to salient stimuli, mediating acquisition of predictive cues/outcome associations. Cortical and thalamic inputs are typical of the rather limited knowledge about underlying circuitry contributing to this function. Here, we dissect the midbrain GABA and glutamate-to-dmCIN pathways and evaluate how they influence conditioned behavior. We report that midbrain neurons discriminate auditory cues and encode the association of a predictive stimulus with a footshock. Furthermore, GABA and glutamate cells form selective monosynaptic contacts onto dmCINs and di-synaptic ones via the parafascicular thalamus. Pathway-specific inhibition of each sub-circuit produces differential impairments of fear-conditioned learning. Finally, Vglut2-expressing cells discriminate between CSs although Vgat-positive neurons associate the predictive cue with the outcome. Overall, these data suggest that each component of the network carries information pertinent to sub-domains of the behavioral strategy.


Asunto(s)
Condicionamiento Clásico , Neuronas GABAérgicas/fisiología , Glutamatos/metabolismo , Aprendizaje , Área Tegmental Ventral/fisiología , Estimulación Acústica , Animales , Colina/metabolismo , Señales (Psicología) , Aprendizaje Discriminativo , Electrochoque , Miedo , Femenino , Interneuronas/fisiología , Masculino , Ratones Endogámicos C57BL , Sinapsis/fisiología , Tálamo/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
17.
Brain Struct Funct ; 225(9): 2857-2869, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33145610

RESUMEN

During the development of the central nervous system, the immature neurons suffer different migration processes. It is well known that Nkx2.1-positive ventricular layer give rise to critical tangential migrations into different regions of the developing forebrain. Our aim was to study this phenomenon in the hypothalamic region. With this purpose, we used a transgenic mouse line that expresses the tdTomato reporter driven by the promotor of Nkx2.1. Analysing the Nkx2.1-positive derivatives at E18.5, we found neural contributions to the prethalamic region, mainly in the zona incerta and in the mes-diencephalic tegmental region. We studied the developing hypothalamus along the embryonic period. From E10.5 we detected that the Nkx2.1 expression domain was narrower than the reporter distribution. Therefore, the Nkx2.1 expression fades in a great number of the early-born neurons from the Nkx2.1-positive territory. At the most caudal positive part, we detected a thin stream of positive neurons migrating caudally into the mes-diencephalic tegmental region using time-lapse experiments on open neural tube explants. Late in development, we found a second migratory stream into the prethalamic territory. All these tangentially migrated neurons developed a gabaergic phenotype. In summary, we have described the contribution of interneurons from the Nkx2.1-positive hypothalamic territory into two different rostrocaudal territories: the mes-diencephalic reticular formation through a caudal tangential migration and the prethalamic zona incerta complex through a dorsocaudal tangential migration.


Asunto(s)
Movimiento Celular , Hipotálamo/crecimiento & desarrollo , Neuronas/fisiología , Factor Nuclear Tiroideo 1/fisiología , Animales , Femenino , Interneuronas/fisiología , Masculino , Ratones Transgénicos , Vías Nerviosas/fisiología , Neurogénesis , Zona Incerta/crecimiento & desarrollo
18.
PLoS Comput Biol ; 16(10): e1008333, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33052899

RESUMEN

A biophysically detailed description of the mechanisms of the primary vision is still being developed. We have incorporated a simplified, filter-based description of retino-thalamic visual signal processing into the detailed, conductance-based refractory density description of the neuronal population activity of the primary visual cortex. We compared four mechanisms of the direction selectivity (DS), three of them being based on asymmetrical projections of different types of thalamic neurons to the cortex, distinguishing between (i) lagged and nonlagged, (ii) transient and sustained, and (iii) On and Off neurons. The fourth mechanism implies a lack of subcortical bias and is an epiphenomenon of intracortical interactions between orientation columns. The simulations of the cortical response to moving gratings have verified that first three mechanisms provide DS to an extent compared with experimental data and that the biophysical model realistically reproduces characteristics of the visual cortex activity, such as membrane potential, firing rate, and synaptic conductances. The proposed model reveals the difference between the mechanisms of both the intact and the silenced cortex, favoring the second mechanism. In the fourth case, DS is weaker but significant; it completely vanishes in the silenced cortex.DS in the On-Off mechanism derives from the nonlinear interactions within the orientation map. Results of simulations can help to identify a prevailing mechanism of DS in V1. This is a step towards a comprehensive biophysical modeling of the primary visual system in the frameworks of the population rate coding concept.


Asunto(s)
Interneuronas/fisiología , Modelos Neurológicos , Percepción de Movimiento/fisiología , Tálamo , Corteza Visual , Animales , Biología Computacional , Tálamo/citología , Tálamo/fisiología , Corteza Visual/citología , Corteza Visual/fisiología
19.
Neuroimage ; 221: 117189, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711064

RESUMEN

Cortical recordings of task-induced oscillations following subanaesthetic ketamine administration demonstrate alterations in amplitude, including increases at high-frequencies (gamma) and reductions at low frequencies (theta, alpha). To investigate the population-level interactions underlying these changes, we implemented a thalamo-cortical model (TCM) capable of recapitulating broadband spectral responses. Compared with an existing cortex-only 4-population model, Bayesian Model Selection preferred the TCM. The model was able to accurately and significantly recapitulate ketamine-induced reductions in alpha amplitude and increases in gamma amplitude. Parameter analysis revealed no change in receptor time-constants but significant increases in select synaptic connectivity with ketamine. Significantly increased connections included both AMPA and NMDA mediated connections from layer 2/3 superficial pyramidal cells to inhibitory interneurons and both GABAA and NMDA mediated within-population gain control of layer 5 pyramidal cells. These results support the use of extended generative models for explaining oscillatory data and provide in silico support for ketamine's ability to alter local coupling mediated by NMDA, AMPA and GABA-A.


Asunto(s)
Ondas Encefálicas , Corteza Cerebral , Antagonistas de Aminoácidos Excitadores/farmacología , Interneuronas , Ketamina/farmacología , Magnetoencefalografía , Modelos Biológicos , Células Piramidales , Tálamo , Adolescente , Adulto , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Humanos , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reconocimiento Visual de Modelos/efectos de los fármacos , Reconocimiento Visual de Modelos/fisiología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Tálamo/efectos de los fármacos , Tálamo/fisiología , Adulto Joven
20.
PLoS Comput Biol ; 16(7): e1008016, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32716912

RESUMEN

The mammalian sensory cortex is composed of multiple types of inhibitory and excitatory neurons, which form sophisticated microcircuits for processing and transmitting sensory information. Despite rapid progress in understanding the function of distinct neuronal populations, the parameters of connectivity that are required for the function of these microcircuits remain unknown. Recent studies found that two most common inhibitory interneurons, parvalbumin- (PV) and somatostatin-(SST) positive interneurons control sound-evoked responses, temporal adaptation and network dynamics in the auditory cortex (AC). These studies can inform our understanding of parameters for the connectivity of excitatory-inhibitory cortical circuits. Specifically, we asked whether a common microcircuit can account for the disparate effects found in studies by different groups. By starting with a cortical rate model, we find that a simple current-compensating mechanism accounts for the experimental findings from multiple groups. They key mechanisms are two-fold. First, PVs compensate for reduced SST activity when thalamic inputs are strong with less compensation when thalamic inputs are weak. Second, SSTs are generally disinhibited by reduced PV activity regardless of thalamic input strength. These roles are augmented by plastic synapses. These roles reproduce the differential effects of PVs and SSTs in stimulus-specific adaptation, forward suppression and tuning-curve adaptation, as well as the influence of PVs on feedforward functional connectivity in the circuit. This circuit exhibits a balance of inhibitory and excitatory currents that persists on stimulation. This approach brings together multiple findings from different laboratories and identifies a circuit that can be used in future studies of upstream and downstream sensory processing.


Asunto(s)
Corteza Auditiva/fisiología , Biología Computacional , Interneuronas/fisiología , Modelos Neurológicos , Optogenética , Algoritmos , Animales , Simulación por Computador , Humanos , Interneuronas/clasificación , Sinapsis/fisiología , Tálamo/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA