Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 206: 111184, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32861009

RESUMEN

The potential toxicity of Cr to plants poses a severe threat to human health. Biochar and Se can reduce the absorption of Cr and its phytotoxicity in plants, but the associated mechanisms at subcellular levels have not been addressed in depth. A study was designed to investigate the effects of biochar, foliar application of Se, and their combination on the physicochemical and biological properties of the soil, Cr availability, Cr absorption, and Cr subcellular distribution in each part of the plant, and biomass and quality of two water spinach (Ipomoea aquatica) genotypes. The results showed that biochar, Se, and their combination increased the organic matter content and available NPK nutrients in the soil and improved the urease, phosphatase, catalase, and sucrase activities in the soil. Furthermore, they also increased the number of bacteria, actinomycetes, and fungi in the soil, were conducive to dry matter accumulation in I. aquatica, and increased the contents of soluble sugar and soluble protein in its leaves. The Cr contents in the roots and shoots of I. aquatica under different treatments were reduced compared with those in the control group. The content of Cr(VI) in the root-soil of I. aquatica with low Cr accumulation and the contents of Cr in various parts of I. aquatica were lower than those in I. aquatica with high Cr accumulation, and the absorbed Cr was mainly accumulated in the roots. Cr was mainly distributed in the cell walls and soluble fractions of the roots, stems, and leaves of I. aquatica and was less distributed in the organelles. Biochar and Se helped to increase the proportion of Cr in the cell walls of the roots and soluble fractions of the leaves of I. aquatica. The effects of improving the soil properties, passivating and inhibiting Cr absorption by I. aquatica, and reducing the Cr proportion in the organelles of biochar were superior to those of Se application. The foliar application of Se and biochar had no synergistic effect on inhibiting Cr absorption by I. aquatica. Based on these findings, the application of biochar in Cr-contaminated soil or foliar application of Se with low Cr-accumulating plants may be effective means of reducing the Cr absorption by plants and its toxicity to ensure the safe production of agricultural products in Cr-contaminated regions.


Asunto(s)
Carbón Orgánico/química , Cromo/análisis , Ipomoea/efectos de los fármacos , Selenio/farmacología , Contaminantes del Suelo/análisis , Transporte Biológico , Biomasa , Cromo/metabolismo , Ipomoea/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Selenio/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismo
2.
Chem Biodivers ; 17(3): e1900694, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32022474

RESUMEN

Studies of the phytotoxic effects between plants can be a crucial tool in the discovery of innovative compounds with herbicide potential. In this sense, we can highlight ruzigrass (Urochloa ruziziensis), which is traditionally used in the crop rotation system in order to reduce weed emergence. The aim of this work was to characterize the secondary metabolites of ruzigrass and to evaluate its phytotoxic effects. In total, eight compounds were isolated: friedelin, oleanolic acid, α-amyrin, 1-dehydrodiosgenone, sitosterol and stigmasterol glycosides, tricin and p-coumaric acid. Phytotoxic effects of the crude methanolic extract and fractions of ruzigrass were assessed using germination rate, initial seedling growth, and biomass of Bidens pilosa, Euphorbia heterophylla and Ipomoea grandifolia. Chemometric analysis discriminated the weed species into three groups, and B. pilosa was the most affected by fractions of ruzigrass. The phytotoxic activities of 1-dehydrodiosgenone, tricin, and p-coumaric acid are also reported, and p-coumaric acid and 1-dehydrodiosgenone were active against B. pilosa.


Asunto(s)
Bidens/efectos de los fármacos , Euphorbia/efectos de los fármacos , Ipomoea/efectos de los fármacos , Componentes Aéreos de las Plantas/química , Extractos Vegetales/farmacología , Poaceae/química , Bidens/crecimiento & desarrollo , Euphorbia/crecimiento & desarrollo , Ipomoea/crecimiento & desarrollo , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
3.
Environ Sci Pollut Res Int ; 25(24): 24125-24134, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29948691

RESUMEN

Arsenic (As) accumulation in agricultural soils is prone to crop uptake, posing risk to human health. Passivation shows potential to inactivate soil labile As and lower crop As uptake but often contributes little to improving the microbiota in As-contaminated soils. Here, the combined addition of ferrihydrite and Trichoderma asperellum SM-12F1 as a potential future application for remediation of As-contaminated soil was studied via pot experiments. The results indicated that, compared with the control treatment, the combined addition of ferrihydrite and T. asperellum SM-12F1 significantly increased water spinach shoot and root biomass by 134 and 138%, respectively, and lowered As content in shoot and root by 37 and 34%, respectively. Soil available As decreased by 40% after the combined addition. The variances in soil pH and As fractionation and speciation were responsible for the changes in soil As availability. Importantly, the combined addition greatly increased the total phospholipid fatty acids (PLFAs) and gram-positive (G+), gram-negative (G-), actinobacterial, bacterial, fungal PLFAs by 114, 68, 276, 292, 133, and 626%, respectively, compared with the control treatment. Correspondingly, the soil enzyme activities closely associated with carbon, nitrogen, and phosphorus mineralization and antioxidant activity were improved. The combination of ferrihydrite and T. asperellum SM-12F1 in soils did not reduce their independent effects.


Asunto(s)
Arsénico/farmacocinética , Restauración y Remediación Ambiental/métodos , Compuestos Férricos , Microbiología del Suelo , Contaminantes del Suelo/farmacocinética , Carbono/metabolismo , Enzimas/metabolismo , Ácidos Grasos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ipomoea/efectos de los fármacos , Ipomoea/crecimiento & desarrollo , Nitrógeno/metabolismo , Fósforo/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Suelo/química , Trichoderma/fisiología
4.
J Agric Food Chem ; 66(8): 2027-2039, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29278495

RESUMEN

Glyphosate-tolerant Ipomoea lacunosa is emerging as a problematic weed in the southeastern United States. Metabolomic profiling was conducted to examine the innate physiology and the glyphosate induced perturbations in two biotypes of I. lacunosa (WAS and QUI) that had contrasting glyphosate tolerance. Compared to the less tolerant QUI-biotype, the innate metabolism of the more tolerant WAS-biotype was characterized by a higher abundance of amino acids, and pyruvate; whereas the sugar profile of the QUI biotype was dominated by the transport sugar sucrose. Glyphosate application (80 g ae/ha) caused similar shikimate accumulation in both biotypes. Compared to QUI, in WAS, the content of aromatic amino acids was less affected by glyphosate treatment, and the content of Ala, Val, Ile, and Pro increased. However, the total sugars decreased by ∼75% in WAS, compared to ∼50% decrease in QUI. The innate, higher proportional abundance, of the transport-sugar sucrose in QUI coud partly explain the higher translocation and greater sensitivity of this biotype to glyphosate. The decrease in sugars, accompanied by an increase in amino acids could delay feedback regulation of upstream enzymes of the shikimate acid pathway in WAS, which could contribute to a greater glyphosate tolerance. Our study, through a metabolomics approach, provides complementary data that elucidates the cellular physiology of herbicide tolerance in Ipomoea lacunosa biotypes.


Asunto(s)
Glicina/análogos & derivados , Herbicidas/farmacología , Ipomoea/química , Ipomoea/efectos de los fármacos , Aminoácidos/análisis , Aminoácidos/metabolismo , Glicina/farmacología , Resistencia a los Herbicidas , Ipomoea/clasificación , Ipomoea/metabolismo , Metabolómica , Glifosato
5.
Environ Toxicol Chem ; 35(3): 695-701, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26329124

RESUMEN

To elucidate the physiological and morphological responses generated by vanadium (V) in plants, hydroponic culture experiments were performed with swamp morning glory (Ipomoea aquatica Forsk) exposed to 0 mg L(-1) to 2.50 mg L(-1) pentavalent V [V(V)] in Hoagland nutrient solutions. The concentration of chlorophyll a, chlorophyll b, and carotene peaked at a V(V) concentration of 0.05 mg L(-1) and gradually decreased at higher V(V) concentrations. Similarly, the plant biomass was stimulated at low levels of V(V) and was inhibited when V(V) concentrations exceeded 0.1 mg L(-1). Pentavalent V had negative effects on the uptake of phosphorus (P) by roots, shoots, and leaves. The biological absorption coefficients of V of the roots were higher than those of the aerial parts. Under low concentrations of V(V) exposure, the predominant species of V in the aerial parts was tetravalent V [V(IV)], whereas V(V) became more prevalent when concentrations of V(V) in the solution was higher than 0.50 mg L(-1). In the roots, however, the concentrations of V(V) were always higher than those of the V(IV), except in the control group. Organelles in the V(V)-treated leaves were distorted, and the periplasmic space became wider. These results indicate V(V) has concentration-dependent effects on the physiological properties of swamp morning glory, whereas the plant has the ability to develop self-protective function to adapt to the toxicity of V(V).


Asunto(s)
Ipomoea/efectos de los fármacos , Vanadio/toxicidad , Biomasa , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A , Hidroponía , Ipomoea/crecimiento & desarrollo , Ipomoea/metabolismo , Fósforo/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Brotes de la Planta/química , Brotes de la Planta/metabolismo , Vanadio/metabolismo
6.
Planta ; 219(4): 619-25, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15085432

RESUMEN

Ergoline alkaloids are constituents of Clavicipitaceous fungi living on Poaceae plants. Ergoline alkaloids as well as volatile oil are also present in Ipomoea asarifolia Roem. & Schult (Convolvulaceae). Treatment of this plant with two fungicides (Folicur, Pronto Plus) eliminates the ergoline alkaloids but not the volatile oil. Elimination of ergoline alkaloids occurs concomitantly with loss of fungal hyphae associated with secretory glands on the upper leaf surface of the Ipomoea plant. Our observations suggest that accumulation of ergoline alkaloids in the Convolvulaceae may depend on the presence of a plant-associated fungus.


Asunto(s)
Ergolinas/análisis , Fungicidas Industriales/farmacología , Ipomoea/efectos de los fármacos , Ergolinas/química , Ipomoea/química , Modelos Químicos , Aceites Volátiles/análisis , Aceites Volátiles/química , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA