Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Biol Interact ; 368: 110248, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343684

RESUMEN

UGT1A1 is the main enzyme that catalyzes the metabolic elimination and detoxification of SN-38, the active form of the drug irinotecan. Milk thistle products have been used widely to protect the liver from injury associated with the use of chemotherapeutic agents. To evaluate whether SN-38 metabolism can be affected by milk thistle products, the inhibitory effects of silybins on UGT1A1*1 and UGT1A1*6 were evaluated in the present investigation. Both silybin A and silybin B potently inhibited SN-38 glucuronidation catalyzed by UGT1A1*1 or UGT1A1*6. It was noteworthy that silybin A and silybin B showed synergistic effect in UGT1A1*1 microsomes at concentration around IC50, while additive effect in UGT1A1*6. According to the predicted AUCi/AUC ratios (the ratio of the area under the plasma concentration-time curve of SN-38 in the presence and absence of silybins), the coadministration of irinotecan and several milk thistle products, including silybin-phosphatidylcholine complex, two Legalon capsules, four Silymarin tablets or four Liverman capsules, may lead to clinically significant herb-drug interactions (HDI) via UGT1A1 inhibition. Meanwhile, Rgut values were much higher than 11 in all the groups, indicating potential HDI due to intestinal UGT1A1 inhibition.


Asunto(s)
Glucuronosiltransferasa , Silybum marianum , Irinotecán/metabolismo , Silibina/metabolismo , Silibina/farmacología , Glucuronosiltransferasa/metabolismo , Microsomas Hepáticos/metabolismo , Catálisis , Camptotecina
2.
J Pharm Pharm Sci ; 21(1): 195-206, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29891024

RESUMEN

PURPOSE: The chemotherapeutic agent irinotecan is hydrolyzed to its active form SN-38 by human carboxyesterases, but SN-38 is converted into the inactive form SN-38G by hepatic UDP-glucuronosyltransferases (UGTs). The aim of the present study was to evaluate the inhibitory effects of two b-glucuronidase-treated Japanese traditional herbal medicines (kampo), Hange-Shashin-To (TJ-14) and Sairei-To (TJ-114) on SN-38 glucuronidation, and the deglycosylation of baicalin (BG) and glycyrrhizic acid (GL) derived from TJ-14 and TJ-114 to form their respective aglycones, baicalein (BA) and glycyrrhetinic acid (GA). METHODS: The inhibitory effects of b-glucuronidase-treated TJ-14 and TJ-114 on SN-38 glucuronidation by human liver microsomes were examined. BA and GA, which were enzymatically converted from BG and GL present in TJ-14 and TJ-114, were examined in the same manner. Furthermore, the enzymatic activities were measured by using recombinant UGT1A1 and UGT1A9 isoforms instead of human liver microsomes. BA, GA, SN-38, and their glycosides/glucuronides were analyzed with an LC-MS system. RESULTS: As regards the linear initial reaction rate, SN-38 glucuronidation by human liver microsomes was significantly inhibited by the addition of b-glucuronidase-untreated TJ-14 and TJ-114, but was more strongly inhibited by the addition of b-glucuronidase-treated TJ-14 and TJ-114. The results of LC-MS analysis and pharmacokinetic studies suggested that BA is the main inhibitor of SN-38 glucuronidation. In the Dixon plot, BA showed competitive inhibition of SN-38 glucuronidation, and the inhibition constant was 8.70 ± 3.24 mM. Previous reports, studies of recombinant UGT isoforms indicated that SN-38 glucuronidation was mainly catalyzed by UGT1A1. CONCLUSIONS: These findings strongly suggested that SN-38 glucuronidation is inhibited by BA. BA could act as a pharmacokinetic regulating factor associated with SN-38 glucuronidation. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Flavanonas/farmacología , Glucurónidos/antagonistas & inhibidores , Irinotecán/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Flavanonas/química , Flavanonas/aislamiento & purificación , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/metabolismo , Glucurónidos/metabolismo , Ácido Glicirrínico/química , Ácido Glicirrínico/aislamiento & purificación , Ácido Glicirrínico/farmacología , Medicina de Hierbas , Humanos , Irinotecán/metabolismo , Japón , Cinética , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA