Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.427
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 989-999, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621906

RESUMEN

This study aims to investigate the effect of Naotaifang(NTF) on the proteins associated with microglial polarization and glial scar in the rat model of cerebral ischemia reperfusion injury(CIRI). The CIRI model was established by middle cerebral artery occlusion/reperfusion. The 48 successfully modeled rats were randomized into model 7 d, model 14 d, NTF 7 d, and NTF 14 d groups(n=12). In addition, 12 SD rats were selected as the sham group. The NTF group was administrated with NTF suspension at 27 g·kg~(-1)·d~(-1) by gavage, and the sham, model 7 d, and model 14 d groups were administrated with the same volume of normal saline every day by gavage for 7 and 14 days, respectively. After the intervention, Longa score was evaluated. The infarct volume was measured by 2,3,5-triphenyl-2H-tetrazolium chloride(TTC) staining. Morris water maze and open field tests were carried out to evaluate the spatial learning, memory, cognitive function, and anxiety degree of rats. Hematoxylin-eosin(HE) staining was employed to observe the morphological structure and damage of the brain tissue. The immunofluorescence assay was employed to measure the expression of glial fibrillary acidic protein(GFAP) and glial scar. Western blot was employed to determine the protein levels of GFAP, neurocan, phosphacan, CD206, arginase-1(Arg-1), interleukin(IL)-1ß, IL-6, and IL-4. Compared with the sham, model 7 d and model 14 d groups showed cerebral infarction of different degrees, severe pathological injury of cerebral cortex and hippocampus, neurological impairment, reduced spatial learning and memory, cognitive dysfunction, severe anxiety, astrocyte hyperplasia, thickening penumbra glial scar, and up-regulated protein levels of IL-1ß, IL-6, GFAP, neurocan, phosphacan, CD206, and Arg-1(P<0.01). Compared with the model group, NTF 7 d and NTF 14 d groups improved spatial learning, memory, and cognitive function, reduced anxiety, improved nerve function, reduced cerebral infarction volume, reduced astrocyte hyperplasia, thinned penumbra glial scar, down-regulated the protein levels of GFAP, neurocan, phosphacan, IL-6, and IL-1ß, and up-regulated the protein levels of IL-4, CD206, and Arg-1(P<0.05 or P<0.01). NTF exerts a neuroprotective effect on CIRI by inducing the M2 polarization of microglia, inhibiting inflammatory response, and reducing the formation of glial scar.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Daño por Reperfusión , Ratas , Animales , Microglía/metabolismo , Gliosis/patología , Ratas Sprague-Dawley , Hiperplasia , Interleucina-4 , Interleucina-6 , Neurocano , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Infarto de la Arteria Cerebral Media , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1017-1027, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621909

RESUMEN

Network pharmacology and animal and cell experiments were employed to explore the mechanism of astragaloside Ⅳ(AST Ⅳ) combined with Panax notoginseng saponins(PNS) in regulating angiogenesis to treat cerebral ischemia. The method of network pharmacology was used to predict the possible mechanisms of AST Ⅳ and PNS in treating cerebral ischemia by mediating angiogenesis. In vivo experiment: SD rats were randomized into sham, model, and AST Ⅳ(10 mg·kg~(-1)) + PNS(25 mg·kg~(-1)) groups, and the model of cerebral ischemia was established with middle cerebral artery occlusion(MCAO) method. AST Ⅳ and PNS were administered by gavage twice a day. the Longa method was employed to measure the neurological deficits. The brain tissue was stained with hematoxylin-eosin(HE) to reveal the pathological damage. Immunohistochemical assay was employed to measure the expression of von Willebrand factor(vWF), and immunofluorescence assay to measure the expression of vascular endothelial growth factor A(VEGFA). Western blot was employed to determine the protein levels of vascular endothelial growth factor receptor 2(VEGFR2), VEGFA, phosphorylated phosphatidylinositol 3-kinase(p-PI3K), and phosphorylated protein kinase B(p-AKT) in the brain tissue. In vitro experiment: the primary generation of rat brain microvascular endothelial cells(rBEMCs) was cultured and identified. The third-generation rBMECs were assigned into control, model, AST Ⅳ(50 µmol·L~(-1)) + PNS(30 µmol·L~(-1)), LY294002(PI3K/AKT signaling pathway inhibitor), 740Y-P(PI3K/AKT signaling pathway agonist), AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P groups. Oxygen glucose deprivation/re-oxygenation(OGD/R) was employed to establish the cell model of cerebral ischemia-reperfusion injury. The cell counting kit-8(CCK-8) and scratch assay were employed to examine the survival and migration of rBEMCs, respectively. Matrigel was used to evaluate the tube formation from rBEMCs. The Transwell assay was employed to examine endothelial cell permeability. Western blot was employed to determine the expression of VEGFR2, VEGFA, p-PI3K, and p-AKT in rBEMCs. The results of network pharmacology analysis showed that AST Ⅳ and PNS regulated 21 targets including VEGFA and AKT1 of angiogenesis in cerebral infarction. Most of these 21 targets were involved in the PI3K/AKT signaling pathway. The in vivo experiments showed that compared with the model group, AST Ⅳ + PNS reduced the neurological deficit score(P<0.05) and the cell damage rate in the brain tissue(P<0.05), promoted the expression of vWF and VEGFA(P<0.01) and angiogenesis, and up-regulated the expression of proteins in the PI3K/AKT pathway(P<0.05, P<0.01). The in vitro experiments showed that compared with the model group, the AST Ⅳ + PNS, 740Y-P, AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P improved the survival of rBEMCs after OGD/R, enhanced the migration of rBEMCs, increased the tubes formed by rBEMCs, up-regulated the expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.05, P<0.01). Compared with the LY294002 group, the AST Ⅳ + PNS + LY294002 group showed increased survival rate, migration rate, and number of tubes, up-regulated expression of proteins in the PI3K/AKT pathway, and decreased endothelial cell permeability(P<0.05,P<0.01). Compared with the AST Ⅳ + PNS and 740Y-P groups, the AST Ⅳ + PNS + 740Y-P group presented increased survival rate, migration rate, and number of tubes and up-regulated expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.01). This study indicates that AST Ⅳ and PNS can promote angiogenesis after cerebral ischemia by activating the PI3K/AKT signaling pathway.


Asunto(s)
Isquemia Encefálica , Panax notoginseng , Fragmentos de Péptidos , Receptores del Factor de Crecimiento Derivado de Plaquetas , Saponinas , Triterpenos , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células Endoteliales/metabolismo , Factor de von Willebrand , Angiogénesis , Farmacología en Red , Ratas Sprague-Dawley , Saponinas/farmacología , Isquemia Encefálica/tratamiento farmacológico , Infarto Cerebral
3.
Phytomedicine ; 128: 155543, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657364

RESUMEN

BACKGROUND: Ershiwuwei Zhenzhu pills was originally recorded in the Tibetan medical book Si Bu Yi Dian in the 8th century AD and is now included in the Pharmacopoeia of the People's Republic of China (2020). The pills can calm the nerves and open the mind as well as treat cerebral ischemia reperfusion injury, stroke, hemiplegia. However, its quality standards have not yet been established, and the therapeutic effect on cerebral ischemia by regulating the mitochondrial apoptosis pathway has not been elucidated. STUDY DESIGN AND METHODS: LC-MS was used to establish quality standards for Ershiwuwei Zhenzhu pills. Metabonomics, molecular docking, neuroethology, cerebral infarction ratio, pathological detection of diencephalon, cortex, and hippocampus, and molecular biology techniques were used to reveal the mechanism of the pills in regulating the mitochondrial apoptosis pathway to treat cerebral ischemia. RESULTS: The contents of 20 chemical components in Ershiwuwei Zhenzhu pills from 12 batches and 8 manufacturers was determined for the first time. Eleven differential metabolites and three metabolic pathways, namely, fructose and mannose metabolism, glycerophospholipid metabolism, and purine metabolism, were identified by metabonomics. The pills improved the neuroethology abnormalities of MCAO rats and the pathological damage in the diencephalon and decreased the ratio of cerebral infarction. It also significantly reduced the mRNA expression of AIF, Apaf-1, cleared caspase8, CytC, and P53 mRNA in the brain tissue and the protein expression of Apaf-1 and CYTC and increased the protein expression of NDRG4. CONCLUSION: In vitro quantitative analysis of the in vitro chemical components of Ershiwuwei Zhenzhu pills has laid the foundation for improving its quality control. The potential mechanism of the pills in treating cerebral ischemia may be related to the Apaf-1/CYTC/NDRG4 apoptosis pathway. This work provides guidance for clinical drug use for patients.


Asunto(s)
Factor Apoptótico 1 Activador de Proteasas , Isquemia Encefálica , Medicamentos Herbarios Chinos , Metabolómica , Ratas Sprague-Dawley , Animales , Isquemia Encefálica/tratamiento farmacológico , Masculino , Medicamentos Herbarios Chinos/farmacología , Ratas , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Apoptosis/efectos de los fármacos , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Medicina Tradicional Tibetana , Espectrometría de Masas , Cromatografía Líquida con Espectrometría de Masas
4.
Neurorehabil Neural Repair ; 38(5): 350-363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491852

RESUMEN

BACKGROUND: Yi-Qi-Tong-Luo Granules (YQTLs) is a natural compound of Traditional Chinese Medicine authorized by China Food and Drug Administration (CFDA). These granules are employed in the convalescent stage of cerebral infarction and render notable clinical efficacy. This study aims to uncover the underlying mechanisms of YQTLs on remyelination after cerebral ischemia injury. MATERIALS AND METHODS: We established cerebral ischemia model in rats using microsphere-induced multiple cerebral infarction (MCI). We evaluated the pharmacological effects of YQTLs on MCI rats, through Morri's water maze test, open field test, hematoxylin and eosin staining, and glycine silver immersion. We employed liquid chromatography mass spectrometry metabolomics to identify differential metabolites. Enzyme-linked immunosorbent assay was utilized to measure the release of neurotrophins, while immunofluorescence staining was used to assess oligodendrocyte precursor cells differences and myelin regeneration. We used Western blotting to validate the protein expression of remyelination-associated signaling pathways. RESULTS: YQTLs significantly improves cognitive function following cerebral ischemia injury. Pathological tissue staining revealed that YQTLs administration inhibits neuronal denaturation and neurofibrillary tangles. We identified 141 differential metabolites among the sham, MCI, and YQTLs-treated MCI groups. Among these metabolites, neurotransmitters were identified, and notably, gamma-aminobutyric acid (GABA) showed marked improvement in the YQTLs group. The induction of neurotrophins, such as brain-derived neurotrophic factor (BDNF) and PDGFAA, upregulation of olig2 and MBP expression, and promotion of remyelination were evident in YQTLs-treated MCI groups. Gamma-aminobutyric acid B receptors (GABABR), pERK/extracellular regulated MAP kinase, pAKT/protein kinase B, and pCREB/cAMP response element-binding were upregulated following YQTLs treatment. CONCLUSION: YQTLs enhance the binding of GABA to GABABR, thereby activating the pCREB/BDNF signaling pathway, which in turn increases the expression of downstream myelin-associated proteins and promotes remyelination and cognitive function.


Asunto(s)
Isquemia Encefálica , Factor Neurotrófico Derivado del Encéfalo , Metabolómica , Ratas Sprague-Dawley , Remielinización , Transducción de Señal , Animales , Remielinización/efectos de los fármacos , Remielinización/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Ratas , Masculino , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos
5.
Phytomedicine ; 128: 155406, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520834

RESUMEN

BACKGROUND: Ischemic stroke (IS) is characterized as a detrimental cerebrovascular disease with high mortality and disability. Ferroptosis is a novel mechanism involved in neuronal death. There is a close connection between IS and ferroptosis, and inhibiting ferroptosis may provide an effective strategy for treating IS. Our previous investigations have discovered that kellerin, the active compound of Ferula sinkiangensis K. M. Shen, possesses the capability to shield against cerebral ischemia injury. PURPOSE: Our objective is to clarify the relationship between the neuroprotective properties of kellerin against IS and its ability to modulate ferroptosis, and investigate the underlying regulatory pathway. STUDY DESIGN: We investigated the impact and mechanism of kellerin in C57BL/6 mice underwent middle cerebral artery occlusion/reperfusion (MCAO/R) as well as SH-SY5Y cells exposed to oxygen-glucose deprivation/ re-oxygenation (OGD/R). METHODS: The roles of kellerin on neurological severity, cerebral infarction and edema were investigated in vivo. The regulatory impacts of kellerin on ferroptosis, mitochondrial damage and Akt/Nrf2 pathway were explored. Molecular docking combined with drug affinity responsive target stability assay (DARTS) and cellular thermal shift assay (CETSA) were performed to analyze the potential target proteins for kellerin. RESULTS: Kellerin protected against IS and inhibited ferroptosis in vivo. Meanwhile, kellerin improved the neuronal damage caused by OGD/R and suppressed ferroptosis by inhibiting the production of mitochondrial ROS in vitro. Further we found that kellerin directly interacted with Akt and enhanced its phosphorylation, leading to the increase of Nrf2 nuclear translocation and its downstream antioxidant genes expression. Moreover, kellerin's inhibitory effect on ferroptosis and mitochondrial ROS release was eliminated by inhibiting Akt/Nrf2 pathway. CONCLUSIONS: Our study firstly demonstrates that the neuroprotective properties of kellerin against IS are related to suppressing ferroptosis through inhibiting the production of mitochondrial ROS, in which its modulation on Akt-mediated transcriptional activation of Nrf2 plays an important role. This finding shed light on the potential mechanism that kellerin exerts therapeutic effects in IS.


Asunto(s)
Ferroptosis , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Proteínas Proto-Oncogénicas c-akt , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ferroptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Ratones , Humanos , Fármacos Neuroprotectores/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Activación Transcripcional/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Transducción de Señal/efectos de los fármacos
6.
J Ethnopharmacol ; 327: 118062, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38492790

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ligusticum chuanxiong Hort (LCH), with the accepted name of Ligusticum striatum DC in "The Plant List" database, is a widely used ethnomedicine in treating ischemic stroke, and borneol (BO) is usually prescribed with LCH for better therapy. Our previous study confirmed their synergistic effect on neurogenesis against cerebral ischemia. However, the underlying mechanism is still unclear. AIM OF THE STUDY: More and more evidence indicated that astrocytes (ACs) might be involved in the modulation of neurogenesis via polarization reaction. The study was designed to explore the synergic mechanism between LCH and BO in promoting astrocyte-mediated neurogenesis. MATERIALS AND METHODS: After primary cultures and identifications of ACs and neural stem cells (NSCs), the oxygen-glucose deprivation (OGD) model and the concentrations of LCH and BO were optimized. After the OGD-injured ACs were treated by LCH, BO, and their combination, the conditioned mediums were used to culture the OGD-injured NSCs. The proliferation, migration, and differentiation of NSCs were assessed, and the secretions of BDNF, CNTF, and VEGF from ACs were measured. Then the expressions of C3 and PTX3 were detected. Moreover, the mice were performed a global cerebral ischemia/reperfusion model and treated with LCH and (or) BO. After the assessments of Nissl staining, the expressions of Nestin, DCX, GFAP, C3, PTX3, p65 and p-p65 were probed. RESULTS: The most appropriate duration of OGD for the injury of both NSCs and ACs was 6 h, and the optimized concentrations of LCH and BO were 1.30 µg/mL and 0.03 µg/mL, respectively. The moderate OGD environment induced NSCs proliferation, migration, astrogenesis, and neurogenesis, increased the secretions of CNTF and VEGF from ACs, and upregulated the expressions of C3 and PTX3. For the ACs, LCH further increased the secretions of BDNF and CNTF, enhanced PTX3 expression, and reduced C3 expression. Additionally, the conditioned medium from LCH-treated ACs further enhanced NSC proliferation, migration, and neurogenesis. The in vivo study showed that LCH markedly enhanced the Nissl score and neurogenesis, and decreased astrogenesis which was accompanied by downregulations of C3, p-p65, and p-p65/p65 and upregulation of PTX3. BO not only decreased the expression of C3 in ACs both in vitro and in vivo but also downregulated p-p65 and p-p65/p65 in vivo. Additionally, BO promoted the therapeutic effect of LCH for most indices. CONCLUSION: A certain degree of OGD might induce ACs to stimulate the proliferation, astrogenesis, and neurogenesis of NSCs. LCH and BO exhibited a marked synergy in promoting ACs-mediated neurogenesis and reducing astrogenesis, in which LCH played a dominant role and BO boosted the effect of LCH. The mechanism of LCH might be involved in switching the polarization of ACs from A1 to A2, while BO preferred to inhibit the formation of A1 phenotype via downregulating NF-κB pathway.


Asunto(s)
Isquemia Encefálica , Canfanos , Ligusticum , Ratones , Animales , Astrocitos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/farmacología , Factor Neurotrófico Ciliar/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neurogénesis , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral
7.
Phytomedicine ; 128: 155335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518648

RESUMEN

BACKGROUND: Stroke is a complex physiological process associated with intestinal flora dysbiosis and metabolic disorders. Dan-deng-tong-nao capsule (DDTN) is a traditional Chinese medicine used clinically to treat cerebral ischemia-reperfusion injury (CIRI) for many years. However, little is known about the effects of DDTN in the treatment of CIRI from the perspective of gut microbiota and metabolites. PURPOSE: This study aimed to investigate the regulatory roles of DDTN in endogenous metabolism and gut microbiota in CIRI rats, thus providing a basis for clinical rational drug use and discovering natural products with potential physiological activities in DDTN for the treatment of CIRI. METHODS: The chemical composition of DDTN in vitro and in vivo was investigated using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLCHRMS), followed by target prediction using reverse molecular docking. Secondly, a biological evaluation of DDTN ameliorating neural damage in CIRI was performed at the whole animal level. Then, an integrated omics approach based on UHPLCHRMS and 16S rRNA sequencing was proposed to reveal the anti-CIRI effect and possible mechanism of DDTN. Finally, exploring the intrinsic link between changes in metabolite profiles, changes in the intestinal flora, and targets of components to reveal DDTN for the treatment of CIRI. RESULTS: A total of 112 chemical components of DDTN were identified in vitro and 10 absorbed constituents in vivo. The efficacy of DDTN in the treatment of CIRI was confirmed by alleviating cerebral infarction and neurological deficits. After the DDTN intervention, 21 and 26 metabolites were significantly altered in plasma and fecal, respectively. Based on the fecal microbiome, a total of 36 genera were enriched among the different groups. Finally, the results of the network integration analysis showed that the 10 potential active ingredients of DDTN could mediate the differential expression of 24 metabolites and 6 gut microbes by targeting 25 target proteins. CONCLUSION: This study was the first to outline the landscapes of metabolites as well as gut microbiota regulated by DDTN in CIRI rats using multi-omics data, and comprehensively revealed the systematic relationships among ingredients, targets, metabolites, and gut microbiota, thus providing new perspectives on the mechanism of DDTN in the treatment of CIRI.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Daño por Reperfusión/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratas , Isquemia Encefálica/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Cromatografía Líquida de Alta Presión , ARN Ribosómico 16S , Cápsulas , Multiómica
8.
Neuromolecular Med ; 26(1): 4, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457013

RESUMEN

BACKGROUND: Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae; thus, it has recently attracted a lot of attention in the field of medical study. PURPOSE: The aim of this study was to determine the effect of naringin supplementation on neurogenesis and brain-derived neurotrophic factor (BDNF) levels in the brain in experimental brain ischemia-reperfusion. STUDY DESIGN: The research was carried out on 40 male Wistar-type rats (10-12 weeks old) obtained from the Experimental Animals Research and Application Center of Selçuk University. Experimental groups were as follows: (1) Control group, (2) Sham group, (3) Brain ischemia-reperfusion group, (4) Brain ischemia-reperfusion + vehicle group (administered for 14 days), and (5) Brain ischemia-reperfusion + Naringin group (100 mg/kg/day administered for 14 days). METHODS: In the ischemia-reperfusion groups, global ischemia was performed in the brain by ligation of the right and left carotid arteries for 30 min. Naringin was administered to experimental animals by intragastric route for 14 days following reperfusion. The training phase of the rotarod test was started 4 days before ischemia-reperfusion, and the test phase together with neurological scoring was performed the day before and 1, 7, and 14 days after the operation. At the end of the experiment, animals were sacrificed, and then hippocampus and frontal cortex tissues were taken from the brain. Double cortin marker (DCX), neuronal nuclear antigen marker (NeuN), and BDNF were evaluated in hippocampus and frontal cortex tissues by Real-Time qPCR analysis and immunohistochemistry methods. RESULTS: While ischemia-reperfusion increased the neurological score values, DCX, NeuN, and BDNF levels decreased significantly after ischemia in the hippocampus and frontal cortex tissues. However, naringin supplementation restored the deterioration to a certain extent. CONCLUSION: The results of the study show that 2 weeks of naringin supplementation may have protective effects on impaired neurogenesis and BDNF levels after brain ischemia and reperfusion in rats.


Asunto(s)
Isquemia Encefálica , Factor Neurotrófico Derivado del Encéfalo , Flavanonas , Humanos , Ratas , Masculino , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Ratas Wistar , Isquemia Encefálica/tratamiento farmacológico , Reperfusión , Neurogénesis , Isquemia , Suplementos Dietéticos
9.
Exp Gerontol ; 189: 112407, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522309

RESUMEN

Vascular cognitive impairment (VCI) has become a common disease-causing cognitive deficit in humans, second only to Alzheimer's Disease (AD). Chuanzhitongluo capsule (CZTL) is a Traditional Chinese Medicine (TCM) preparation known for its effective protection against cerebral ischemia. However, its potential to ameliorate VCI remains unclear. This study aimed to investigate the cognitive improvement effects of CZTL in a mouse model of VCI. Chronic cerebral hypoperfusion (CCH) was induced in mice by bilateral common carotid artery stenosis (BCAS) to simulate the pathological changes associated with VCI. Spatial learning and memory abilities were assessed using the Morris Water Maze (MWM). RNA sequencing (RNA-Seq) was employed to identify differentially expressed genes (DEGs) in the hippocampus. Levels of inflammatory factors were measured through enzyme-linked immunosorbent assay (ELISA), while immunofluorescence (IF) determined the expression intensity of target proteins. Western Blot (WB) confirmed the final action pathway. Results indicated that CZTL significantly improved the spatial learning and memory abilities of CCH mice, along with alterations in gene expression profiles in the hippocampus. It also reduced neuroinflammation in the hippocampus and upregulated the choline acetyltransferase (ChAT) and α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR), which are in synaptic plasticity and neuronal development. Moreover, CZTL inhibited the NF-κB signaling pathway. In conclusion, CZTL may alleviate neuroinflammation induced by CCH and improve cognitive impairment in CCH mice by regulating the cholinergic anti-inflammatory pathway (CAIP) involving ChAT/α7nAChR/NF-κB.


Asunto(s)
Isquemia Encefálica , Estenosis Carotídea , Disfunción Cognitiva , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias , Neuroinmunomodulación , Receptor Nicotínico de Acetilcolina alfa 7 , Disfunción Cognitiva/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Estenosis Carotídea/complicaciones , Estenosis Carotídea/tratamiento farmacológico
10.
Phytomedicine ; 128: 155530, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493723

RESUMEN

BACKGROUND: Ischemic stroke (IS) ranks as the second common cause of death worldwide. However, a narrow thrombolysis timeframe and ischemia-reperfusion (I/R) injury limits patient recovery. Moreover, anticoagulation and antithrombotic drugs do not meet the clinical requirements. Studies have demonstrated close communication between the brain and gut microbiota in IS. Notoginsenoside R1 (NG-R1), a significant component of the total saponins from Panax notoginseng, has been demonstrated to be effective against cerebral I/R injury. Total saponins have been used to treat IS in Chinese pharmacopoeia. Furthermore, previous research has indicated that the absorption of NG-R1 was controlled by gut microbiota. STUDY DESIGN: This study aimed to access the impact of NG-R1 treatment on neuroinflammation and investigate the microbiota-related mechanisms. RESULTS: NG-R1 significantly reduced neuronal death and neuroinflammation in middle cerebral artery occlusion/reperfusion (MCAO/R) models. 16S rRNA sequencing revealed that NG-R1 treatment displayed the reversal of microbiota related with MCAO/R models. Additionally, NG-R1 administration attenuated intestinal inflammation, gut barrier destruction, and systemic inflammation. Furthermore, microbiota transplantation from NG-R1 exhibited a similar effect in the MCAO/R models. CONCLUSION: In summary, NG-R1 treatment resulted in the restoration of the structure of the blood-brain barrier (BBB) and reduction in neuroinflammation via suppressing the stimulation of astrocytes and microglia in the cerebral ischemic area. Mechanistic research demonstrated that NG-R1 treatment suppressed the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor kappa B (TLR4/MyD88/NF-κB) signaling pathway in both the ischemic brain and colon. NG-R1 treatment enhanced microbiota dysbiosis by inhibiting the TLR4 signaling pathway to protect MCAO/R models. These findings elucidate the mechanisms by which NG-R1 improve stroke outcomes and provide some basis for Panax notoginseng saponins in clinical treatment.


Asunto(s)
Microbioma Gastrointestinal , Ginsenósidos , Factor 88 de Diferenciación Mieloide , FN-kappa B , Daño por Reperfusión , Transducción de Señal , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Daño por Reperfusión/tratamiento farmacológico , FN-kappa B/metabolismo , Ginsenósidos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Eje Cerebro-Intestino/efectos de los fármacos , Panax notoginseng/química , Ratas , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico
11.
Phytomedicine ; 126: 155254, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342016

RESUMEN

BACKGROUND: The gut-brain axis (GBA) plays a central role in cerebral ischaemia-reperfusion injury (CIRI). Rhubarb, known for its purgative properties, has demonstrated protective effects against CIRI. However, it remains unclear whether this protective effect is achieved through the regulation of the GBA. AIM: This study aims to investigate the mechanism by which rhubarb extract improves CIRI by modulating the GBA pathway. METHODS: We identified the active components of rhubarb extract using LC-MS/MS. The model of middle cerebral artery occlusion (MCAO) was established to evaluate the effect of rhubarb extract. We conducted 16S rDNA sequencing and untargeted metabolomics to analyze intestinal contents. Additionally, we employed HE staining, TUNEL staining, western blot, and ELISA to assess intestinal barrier integrity. We measured the levels of inflammatory cytokines in serum via ELISA. We also examined blood-brain barrier (BBB) integrity using Evans blue (EB) penetration, transmission electron microscopy (TEM), western blot, and ELISA. Neurological function scores and TTC staining were utilized to evaluate neurological outcomes. RESULTS: We identified twenty-six active components in rhubarb. Rhubarb extract enhanced α-diversity, reduced the abundance of Enterobacteriaceae, and partially rectified metabolic disorders in CIRI rats. It also ameliorated pathological changes, increased the expressions of ZO-1, Occludin, and Claudin 1 in the colon, and reduced levels of LPS and d-lac in serum. Furthermore, it lowered the levels of IL-1ß, IL-6, IL-10, IL-17, and TNF-α in serum. Rhubarb extract mitigated BBB dysfunction, as evidenced by reduced EB penetration and improved hippocampal microstructure. It upregulated the expressions of ZO-1, Occludin, Claudin 1, while downregulating the expressions of TLR4, MyD88, and NF-κB. Similarly, rhubarb extract decreased the levels of IL-1ß, IL-6, and TNF-α in the hippocampus. Ultimately, it reduced neurological function scores and cerebral infarct volume. CONCLUSION: Rhubarb effectively treats CIRI, potentially by inhibiting harmful bacteria, correcting metabolic disorders, repairing intestinal barrier function, alleviating BBB dysfunction, and ultimately improving neurological outcomes.


Asunto(s)
Isquemia Encefálica , Enfermedades Metabólicas , Fármacos Neuroprotectores , Daño por Reperfusión , Rheum , Ratas , Animales , Neuroprotección , Rheum/metabolismo , Ocludina/metabolismo , Interleucina-6 , Factor de Necrosis Tumoral alfa/genética , Eje Cerebro-Intestino , Cromatografía Liquida , Claudina-1 , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Espectrometría de Masas en Tándem , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Azul de Evans/uso terapéutico , Daño por Reperfusión/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico
12.
Zhongguo Zhong Yao Za Zhi ; 49(1): 162-174, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403349

RESUMEN

This study aims to investigate whether tetramethylpyrazine(TMP) can stimulate angiogenesis in cerebral microvascular endothelial cells and alleviate cerebral ischemic stroke(CIS) and to explore the underlying mechanisms. In the animal study, adult Sprague-Dawley rats(n=15) were assigned into sham surgery(sham), middle cerebral artery occlusion/reperfusion(MCAO/R), and MCAO/R+TMP(intraperitoneal injection of 20 mg·kg~(-1)) groups. The neurological function was evaluated by the Z-Longa method. The cerebral infarction volume was detected by TTC staining. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the expression of vascular endothelial growth factor(VEGF), angiopoietin(Ang), and platelet-derived growth factor(PDGF). Immunofluorescence staining was employed to detect Ki67 and the expression of vascular endothelial growth factor A(VEGFA) and slient information regulator 1(SIRT1). Western blot was employed to determine the expression levels of VEGFA, SIRT1, angiopoietin-2(Ang-2), and platelet-derived growth factor B(PDGFB). In the cell study, mouse brain-derived endothelial cells(Bend.3) were cultured, and the optimal concentration of TMP was determined. Then, VEGF, Ang, and PDGF were detected by ELISA after the addition of cabozantinib. Western blot was employed to measure the expression of VEGFA, Ang-2, and PDGFB. Immunofluorescence staining was used to detect CD31, CD34, and Ki67, and the proliferation, migration, and tube formation ability of Bend.3 cells were observed in vitro. Western blot and immunofluorescence staining were performed to measure the expression of SIRT1 and VEGFA after addition of the SIRT1-specific inhibitor selisistat(EX-527). The results showed that compared with the sham group, the MCAO/R group had severe neurological function damage, increased infarction volume, up-regulated expression of VEGF, VEGFA, Ang, Ang-2, PDGF, and PDGFB, and down-regulated expression of Ki67 and SIRT1(P<0.01). Compared with the MCAO/R group, the MCAO/R+TMP group presented alleviated neurological function damage, reduced infarction volume, and activated expression of VEGF, VEGFA, Ang, Ang-2, PDGF, PDGFB, Ki67, and SIRT1(P<0.01). The cell experiments showed that compared with the normal group, Bend.3 cells were activated by oxygen glucose deprivation/reoxygenation(OGD/R) treatment(P<0.05, P<0.01). Compared with the OGD/R group, the OGD/R+TMP group upregulated the expression levels of VEGF, VEGFA, Ang, Ang-2, PDGF, PDGFB, SIRT1, Ki67, CD31, and CD34, enhanced the angiogenic ability of Bend.3 cells without being inhibited by BMS or EX-527(P<0.05, P<0.01, P<0.001). The results suggest that TMP can activate the SIRT1/VEGFA signaling pathway to stimulate angiogenesis and alleviate CIS injury.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Pirazinas , Accidente Cerebrovascular , Ratas , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-sis , Sirtuina 1/genética , Sirtuina 1/metabolismo , Angiogénesis , Antígeno Ki-67/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/genética , Transducción de Señal , Infarto de la Arteria Cerebral Media
13.
Am J Chin Med ; 52(1): 231-252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38328828

RESUMEN

Berberine has been demonstrated to alleviate cerebral ischemia/reperfusion injury, but its neuroprotective mechanism has yet to be understood. Studies have indicated that ischemic neuronal damage was frequently driven by autophagic/lysosomal dysfunction, which could be restored by boosting transcription factor EB (TFEB) nuclear translocation. Therefore, this study investigated the pharmacological effects of berberine on TFEB-regulated autophagic/lysosomal signaling in neurons after cerebral stroke. A rat model of ischemic stroke and a neuronal ischemia model in HT22 cells were prepared using middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. Berberine was pre-administered at a dose of 100[Formula: see text]mg/kg/d for three days in rats and 90[Formula: see text][Formula: see text]M in HT22 neurons for 12[Formula: see text]h. 24[Formula: see text]h after MCAO and 2[Formula: see text]h after OGD, the penumbral tissues and OGD neurons were obtained to detect nuclear and cytoplasmic TFEB, and the key proteins in the autophagic/lysosomal pathway were examined using western blot and immunofluorescence, respectively. Meanwhile, neuron survival, infarct volume, and neurological deficits were assessed to evaluate the therapeutic efficacy. The results showed that berberine prominently facilitated TFEB nuclear translocation, as indicated by increased nuclear expression in penumbral neurons as well as in OGD HT22 cells. Consequently, both autophagic activity and lysosomal capacity were simultaneously augmented to alleviate the ischemic injury. However, berberine-conferred neuroprotection could be greatly counteracted by lysosomal inhibitor Bafilomycin A1 (Baf-A1). Meanwhile, autophagy inhibitor 3-Methyladenine (3-MA) also slightly neutralized the pharmacological effect of berberine on ameliorating autophagic/lysosomal dysfunction. Our study suggests that berberine-induced neuroprotection against ischemic stroke is elicited by enhancing autophagic flux via facilitation of TFEB nuclear translocation in neurons.


Asunto(s)
Berberina , Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Ratas , Animales , Berberina/farmacología , Berberina/uso terapéutico , Autofagia , Accidente Cerebrovascular/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/farmacología
14.
Brain Inj ; 38(6): 489-498, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38420951

RESUMEN

BACKGROUND: This experimental study was conducted to investigate the effect of 20% Intralipid Emulsion (ILE) treatment on Cerebral Ischemia Reperfusion Injury (CIRI) after reperfusion in acute ischemic stroke. METHODS: In this experimental study, seven rats without any intervention (control group), seven rats (sham group) for which CIRI was created after the common carotid artery was ligated for 2 hours, and seven rats who were treated with 20% ILE after CIRI (CIRI + ILE group) were sacrificed after 24 hours, and histopathological findings were investigated. RESULTS: In rats that were not treated after CIRI, 52.7% had level-1, 32.7% had level-2. and 14.5% had level-3. histopathological findings. While 72.2% of the rats treated with ILE had level-1 and 27.8% had level-2 findings, no level-3 histopathological findings were detected in any of the rats. While no signs of coagulative necrosis, spongiosis of surrounding tissue and polymorphonuclear leukocytes were observed histopathological in any of the rats given ILE, there was no macrophages finding in 85.6% of the rats. ILE treatment also reduced the histopathological findings of eosinophilic neurons, astrogliosis, neovascularization, vascular thrombosis and mononuclear inflammatory cells. CONCLUSION: This study showed that 20% ILE treatment reduces the histopathological damage seen in cerebral ischemia and CIRI.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Fosfolípidos , Daño por Reperfusión , Aceite de Soja , Ratas , Animales , Ratas Sprague-Dawley , Emulsiones , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Reperfusión
15.
Int Immunopharmacol ; 129: 111592, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38295546

RESUMEN

DL-3-n-butylphthalide (NBP) is isolated from the seeds of Apium graveolens L., and has been recently used as a neuroprotective agent for acute ischemic stroke. The present study aimed to determine the efficacy and safety of the combined use of dual antiplatelet therapy (DAPT) and NBP for treating of acute ischemic stroke in rats and to explore the synergistic mechanism of this treatment strategy in rat middle cerebral artery occlusion models. The efficacy of DAPT combined with NBP was evaluated by determining neurological deficits, infarction status, and histological changes. Changes in body weight, blood glucose level, blood count, and serum biochemical parameters were detected to evaluate the safety. To explore the synergistic pharmacological mechanism, the mRNA expression and protein levels of key proteins in the pyroptosis-inflammatory pathway, and the pyroptosis ratio of microglias were examined. Compared with the administration of NBP or DAPT alone, combination of them significantly improved neurological deficits, reduced infarct area, and repaired tissue injury and inflammation after cerebral ischemia. No hepatorenal toxicity was observed. The mRNA expression and protein levels of key proteins in the pyroptosis-inflammation pathway, and the pyroptosis ratio of microglias were significantly downregulated in the combined administration group than in the monotherapy group. We demonstrated that the combined use of NBP and DAPT exhibits better efficacy and high safety and plays a synergistic role by inhibiting the pyroptosis-inflammation pathway in the brain tissues, particularly in microglial cells.


Asunto(s)
Benzofuranos , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Ratas , Animales , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Inflamación/tratamiento farmacológico , ARN Mensajero , Accidente Cerebrovascular/tratamiento farmacológico
16.
Ann Med ; 56(1): 2308077, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38285889

RESUMEN

BACKGROUND AND OBJECTIVE: Ischaemic encephalopathy is a common cerebrovascular disease caused by insufficient blood supply to the cerebral vessels. The ischaemic encephalopathy is closely associated with the development of many chronic diseases such as obesity, hypertension and diabetes. Neurotrophic therapy has become the main therapeutic strategy for ischaemic encephalopathy. However, neurotrophic drugs only slightly recover the neurological function of patients, and their long-term efficacy is uncertain. Previous reports revealed that the active ingredients of natural medicines play important roles in the treatment of cerebral ischemia. In this study, we reviewed clearing herbs with anti-ischaemic encephalopathy functions using the data from quantitative statistical and network pharmacological exploration methods. We also discussed the different bioactive components and pharmacological effects of these herbs. METHODS: First, we collected Chinese herbal prescriptions against ischaemic encephalopathy in four databases. Then, we statistically analysed the frequency of application of heat-clearing herbs to obtain the commonly used heat-clearing herbs against ischaemic encephalopathy, and classified them according to their efficacy according to the statistical results, to summarize the mechanism of anti-ischaemic effects of different bioactive components; Second, the network database was used to obtain the above components of heat-clearing Chinese medicines and their corresponding targets of action, disease targets of ischaemic stroke; Venny 2.1.0 was used to obtain component-disease target intersections; Cytoscape was used to construct the 'Drug-Active Ingredient-Target Network Graph '; DAVID was used for GO and KEGG enrichment analysis. RESULTS: Literature and database screening involved 149 prescriptions, with a total of 269 flavours of Chinese medicines and 20 flavours of single-flavour heat-clearing Chinese medicines; The top nine in terms of frequency of use were Radix Paeoniae Rubra、Rehmanniae Radix Praeparata、Figwort Root、Cortex Moutan、Scutellariae Radix、Coptidis Rhizoma、Gardeniae Fructus、Cassiae Semen、Lonicerae Japonicae Flos. The common components obtained from network pharmacology were beta-sitosterol, quercetin, and stigmasterol, which mainly act on key targets such as RELA, AKT1, JUN, PRKACA, PTGS2, RAF1 and CHUK; and their active ingredients are mainly involved in signalling pathways such as Calcium, PI3K-Ak, MAPK, cAMP, IL-17, HIF-1, TNF, T-cell receptor, NF-kappa B and JAK-STAT. CONCLUSIONS: Heat-clearing herbs are useful and promising for the protection against and prevention of ischemic encephalopathy. The results of the network pharmacological studies are similar to the mechanisms of anti-ischemic encephalopathy of the active ingredients of the purgative herbs we have listed; Thin either directly protects cerebrovascular tissues by improving vascular permeability and reducing the area of infarcted tissues, or produces protective effects through molecular signaling pathways. It can be seen that the components of heat-clearing Chinese medicines can exert cerebroprotective effects through multiple pathways, which provides us with a reference for further development and study of heat-clearing Chinese medicines in the treatment of ischemic cerebrovascular diseases.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Isquemia Encefálica/tratamiento farmacológico , Calor , Farmacología en Red
17.
Phytomedicine ; 124: 155304, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176274

RESUMEN

BACKGROUND: Oxidative stress is known as a hallmark of cerebral ischaemia‒reperfusion injury and it exacerbates the pathologic progression of ischaemic brain damage. Vialinin A, derived from a Chinese edible mushroom, possesses multiple pharmacological activities in cancer, Kawasaki disease, asthma and pathological scarring. Notably, vialinin A is an inhibitor of ubiquitin-specific peptidase 4 (USP4) that shows anti-inflammatory and antioxidative properties. However, the precise effect of vialinin A in ischaemic stroke, as well as its underlying mechanisms, remains largely unexplored. PURPOSE: The present research focuses on the impacts of vialinin A on oxidative stress and explores the underlying mechanisms involved while also examining its potentiality as a therapeutic candidate for ischaemic stroke. METHODS: Mouse ischaemic stroke was conducted by MCAO surgery. Vialinin A was administered via lateral ventricular injection at a dose of 2 mg/kg after reperfusion. Subsequent experiments were meticulously conducted at the appropriate time points. Stroke outcomes were evaluated by TTC staining, neurological score, Nissl staining and behavioural analysis. Co-IP assays were operated to examine the protein-protein interactions. Immunoblot analysis, qRT-PCR, and luciferase reporter assays were conducted to further investigate its underlying mechanisms. RESULTS: In this study, we initially showed that administration of vialinin A alleviated cerebral ischaemia‒reperfusion injury-induced neurological deficits and neuronal apoptosis. Furthermore, vialinin A, which is an antioxidant, reduced oxidative stress injury, promoted the activation of the Keap1-Nrf2-ARE signaling pathway and increased the protein degradation of Keap1. The substantial neuroprotective effects of vialinin A against ischaemic stroke were compromised by the overexpression of USP4. Mechanistically, vialinin A inhibited the deubiquitinating enzymatic activity of USP4, leading to enhanced ubiquitination of Keap1 and subsequently promoting its degradation. This cascade caused the activation of Nrf2-dependent antioxidant response, culminating in a reduction of neuronal apoptosis and the amelioration of neurological dysfunction following ischaemic stroke. CONCLUSIONS: This study demonstrates that inhibition of USP4 to activate Keap1-Nrf2-ARE signaling pathway may represent a mechanism by which vialinin A conferred protection against cerebral ischaemia‒reperfusion injury and sheds light on its promising prospects as a therapeutic intervention for ischaemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Compuestos de Terfenilo , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Estrés Oxidativo , Daño por Reperfusión/metabolismo
18.
J Tradit Chin Med ; 44(1): 35-43, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38213237

RESUMEN

OBJECTIVE: To explore the functional role of the drug-dependent mesenchymal-epithelial transition (Met)-axiation "π" structural module of neurogenesis after processing by three components of Qingkailing injection in neurogenesis and angiogenesis in cerebral ischemia. METHODS: We used a Glutathione S-transferase (GST)-pull down assay, isothermal titration calorimetry assay, and other related methods to identify the relationships among Met, inositol polyphosphate phosphatase like 1 (Inppl1), and death associated protein kinase 3 (Dapk3) in this allosteric module. The biological effects of the modules of neurons generation composed of Met, Inppl1, and Dapk3 were measured through Western blot, apoptosis analysis, and double immunofluorescence labeling. RESULTS: The GST-pull down assay revealed that proline-serine-threonine rich domain of Met binds to the Src homology domain of Inppl1 to form a protein-protein complex; Dapk3 with a C-terminal domain interacts weakly with the protein kinase C domain of Met in the intracellular region. Thus, we obtained a "π" structuring module considered a neural regeneration module. The biological effects of angiogenesis and neurogenesis modules composed of Met, Inppl1, and Dapk3 were also verified. CONCLUSION: The study suggested that understanding the functional modules that contribute to pharmaceutics might provide novel signatures that can be used as endpoints to define disease processes under stroke or cerebral ischemia conditions.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Accidente Cerebrovascular , Humanos , Angiogénesis , Neurogénesis/fisiología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética
19.
J Ethnopharmacol ; 325: 117766, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38266949

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: A classic stroke formula is Buyang Huanwu Decoction (BYHWD), Glycosides are the pharmacological components found in BYHWD, which are utilized for the prevention and management of cerebral ischemia-reperfusion (CIR), as demonstrated in a previous study. Its neuroprotective properties are closely related to its ability to modulate inflammation, but its mechanism is as yet unclear. AIM OF THE STUDY: A research was undertaken to investigate the impact of glycosides on the inflammation of CIR through the PTEN-induced putative kinase-1 (PINK1)/Parkin mitophagy pathway. MATERIALS AND METHODS: Analyzing glycosides containing serum components was performed with ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Glycosides were applied to rat of Middle cerebral artery occlusion/reperfusion (MCAO/R) model and primary neural cell of Oxygen glucose deprivation/reperfusion (OGD/R) model. The neuroprotective effect and the regulation of mitophagy of glycosides were evaluated through neural damage and PINK1/Parkin mitophagy activation. Moreover, the assessment of the relationship between glycosides regulation of mitophagy and its anti-inflammatory effects subsequent to mitophagy blockade was conducted by examining neural damage, PINK1/Parkin mitophagy activation, and levels of pyroptosis. RESULTS: (1) It was observed that the administration of glycosides resulted in a decrease in neurological function scores, a reduction in cerebral infarction volume, an increase in mitochondrial autophagosome, and the maintenance of a high expression status of light chain 3 (LC3) II/LC3Ⅰ protein. Additionally, there was a significant inhibition of p62 protein expression and an enhancement of PINK1 and Parkin protein expression. Furthermore, it was found that the effect of glycosides at a dosage of 0.128 g · kg-1 was significantly superior to that of glycosides at a dosage of 0.064 g · kg-1. Notably, the neuroprotective effect and inhibition of pyroptosis protein of glycosides at a dosage of 0.128 g · kg-1 were attenuated when mitochondrial autophagy was blocked. (2) Glycosides repaired cellular morphological damage, enhanced cell survival, and reduced Lactate dehydrogenase (LDH) leakage, with glycosides (2.36 µg·mL-1 and 4.72 µg·mL-1) neuronal protection being the strongest. Glycosides (4.72 µg·mL-1) maintained LC3II/LC3Ⅰ protein high expression state, inhibited p62 protein expression, and promoted PINK1 and Parkin protein expression, which was stronger than glycosides (2.36 µg·mL-1). The blockade of mitophagy resulted in a reduction of neuroprotection and inhibition of pyroptosis protein exerted by glycosides. CONCLUSION: Glycosides demonstrate the ability to hinder inflammation through the activation of the PINK1/Parkin mitophagy pathway, thereby leading to subsequent neuroprotective effects on CIR.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Fármacos Neuroprotectores , Ratas , Animales , Mitofagia , Glicósidos/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas Sprague-Dawley , Proteínas Quinasas/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Reperfusión , Inflamación/tratamiento farmacológico
20.
J Ethnopharmacol ; 321: 117400, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952730

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Periplaneta americana (L.) (PA) has been used in traditional Chinese medicine for thousands of years for the effect of invigorating blood circulation and removing blood stasis. Modern pharmacological research shown that PA extract exhibits promising effects in promoting wound healing and regeneration, as well as in brain diseases such as Parkinson's disease (PD). However, whether it is effective for neuroregeneration and neurological function recovery after stroke still unknown. AIM OF THE STUDY: This study aims to investigate the potential effect of PA extract to promote brain remodeling through the activation of endogenous neurogenesis and angiogenesis, in addition, preliminary exploration of its regulatory mechanism. METHODS: Firstly, BrdU proliferation assay and immunofluorescence (IF) staining were used to evaluate the effect of PA extract on the neurogenesis and angiogenesis in vitro and in vivo. Subsequently, the effects of PA extract on brain injury in stroke rats were assessed by TTC and HE. While mNSS score, adhesive removal test, rota-rod test, and morris water maze test were used to assess the impact of PA extract on neurological function in post-stroke rats. Finally, the molecular mechanisms of PA extract regulation were explored by RNA-Seq and western blotting. RESULTS: The number of BrdU+ cells in C17.2 cells, NSCs and BMECs dramatically increased, as well as the expression of astrocyte marker protein GFAP and neuronal marker protein Tuj-1 in C17.2 and NSCs. Moreover, PA extract also increased the number of BrdU+DCX+, BrdU+GFAP+, BrdU+CD31+ cells in the SGZ area of transient middle cerebral artery occlusion model (tMCAO) rats. TTC and HE staining revealed that PA extract significantly reduced the infarction volume and ameliorated the pathological damage. Behavioral tests demonstrated that treatment with PA extract reduced the mNSS score and the time required to remove adhesive tape, while increasing the time spent on the rotarod. Additionally, in the morris water maze test, the frequency of crossing platform and the time spent in the platform quadrant increased. Finally, RNA-Seq and Western blot revealed that PA extract increased the expression of p-ERK, p-CREB and BDNF. Importantly, PA extract mediated proliferation and differentiation of C17.2 and NSCs reversed by the ERK inhibitor SCH772984 and the BDNF inhibitor ANA-12, respectively. CONCLUSION: Our study demonstrated that PA extract promoted neurogenesis and angiogenesis by activating the CREB/ERK signaling pathway and upregulating BDNF expression, thereby recovering neurological dysfunction in post-stroke.


Asunto(s)
Isquemia Encefálica , Periplaneta , Accidente Cerebrovascular , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Periplaneta/metabolismo , Ratas Sprague-Dawley , Bromodesoxiuridina/farmacología , Accidente Cerebrovascular/patología , Neurogénesis , Isquemia Encefálica/tratamiento farmacológico , Regeneración Nerviosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA