Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.179
Filtrar
Más filtros

Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38642410

RESUMEN

DangGui-KuShen (DK) is a well-known classic traditional Chinese medicine recipe that improves blood circulation, eliminates moisture, and detoxifies, and is frequently used in the treatment of cardiovascular problems. Some protective effects of DK on cardiovascular disease have previously been identified, but its precise mechanism remains unknown. The goal of this study is to combine metabolomics and network pharmacology to investigate DK's protective mechanism in Ischemic Heart Disease(IHD) rat models. A combination of metabolomics and network pharmacology based on UPLC-Q-TOF/MS technology was used in this study to verify the effect of DK on IHD through enzyme-linked immunosorbent assay, HE staining, and electrocardiogram, and it was determined that DK improves the synergistic mechanism of IHD. In total, 22 serum differential metabolites and 26 urine differential metabolites were discovered, with the majority of them involved in phenylalanine, tyrosine, and tryptophan biosynthesis, glycine, serine, and threonine metabolism, arginine and proline metabolism, aminoacyl-tRNA biosynthesis, purine metabolism, and other metabolic pathways. Furthermore, using network pharmacology, a composite target pathway network of DangGui and KuShen for treating IHD was created, which is primarily associated to the tumor necrosis factor (TNF) signaling pathway, P53 signaling, and HIF-1 signaling pathways. The combined research indicated that the NF-B signaling pathway and the HIF-1 signaling pathway are critical in DK treatment of IHD. This study clearly confirms and expands on current knowledge of the synergistic effects of DG and KS in IHD.


Asunto(s)
Medicamentos Herbarios Chinos , Metaboloma , Metabolómica , Isquemia Miocárdica , Farmacología en Red , Ratas Sprague-Dawley , Animales , Medicamentos Herbarios Chinos/farmacología , Metabolómica/métodos , Ratas , Masculino , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Metaboloma/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Redes y Vías Metabólicas/efectos de los fármacos
2.
Circ Res ; 134(6): 675-694, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484024

RESUMEN

The impact of circadian rhythms on cardiovascular function and disease development is well established, with numerous studies in genetically modified animals emphasizing the circadian molecular clock's significance in the pathogenesis and pathophysiology of myocardial ischemia and heart failure progression. However, translational preclinical studies targeting the heart's circadian biology are just now emerging and are leading to the development of a novel field of medicine termed circadian medicine. In this review, we explore circadian molecular mechanisms and novel therapies, including (1) intense light, (2) small molecules modulating the circadian mechanism, and (3) chronotherapies such as cardiovascular drugs and meal timings. These promise significant clinical translation in circadian medicine for cardiovascular disease. (4) Additionally, we address the differential functioning of the circadian mechanism in males versus females, emphasizing the consideration of biological sex, gender, and aging in circadian therapies for cardiovascular disease.


Asunto(s)
Relojes Circadianos , Insuficiencia Cardíaca , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Masculino , Animales , Daño por Reperfusión Miocárdica/patología , Ritmo Circadiano , Cronoterapia , Insuficiencia Cardíaca/terapia
3.
Int J Pharm ; 655: 124047, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38531434

RESUMEN

In this study, nanoparticles loaded with active components from Polygonum orientale L. (PO), a traditional Chinese herb known for its anti-myocardial ischemic properties, were investigated for cardio-protective properties. Specifically, OVQ-Nanoparticles (OVQ-NPs) with Orientin (Ori), Vitexin (Vit), and Quercetin (Que) was obtained by double emulsion-solvent evaporation method. The OVQ-NPs exhibited a spherical shape, with a uniform size distribution of 136.77 ± 3.88 nm and a stable ζ-potential of -13.40 ± 2.24 mV. Notably, these nanoparticles exhibited a favorable sustained-release characteristic, resulting in an extended circulation time within the living organism. Consequently, the administration of these nanoparticles resulted in significant improvements in electrocardiograms and heart mass index of myocardial ischemic rats induced by isoproterenol, as well as decreased serum levels of CK, LDH, and AST. Furthermore, the results of histopathological examination, such as H&E staining and TUNEL staining, confirmed a reduced level of cardiac tissue pathology and apoptosis. Moreover, the quantification of biochemical indicators (SOD, MDA, GSH, NO, TNF-α, and IL-6) demonstrated that OVQ-NPs effectively mitigated myocardial ischemia by regulating oxidative stress and inflammatory pathways. In conclusion, OVQ-NPs demonstrate promising therapeutic potential as an intervention for myocardial ischemia, providing a new perspective on traditional Chinese medicine treatment in this area.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Polygonum , Ratas , Animales , Isoproterenol/uso terapéutico , Polygonum/química , Isquemia Miocárdica/inducido químicamente , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/prevención & control , Miocardio/patología
4.
Cardiovasc Toxicol ; 24(2): 171-183, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38376772

RESUMEN

Hawthorn leaf has shown therapeutic effects in the patients with myocardial ischemia. Our study combines network pharmacology, molecular docking techniques, and in vitro experiment with the aim of revealing the mechanism of hawthorn leaves in the treatment of myocardial ischemia. The active ingredients and corresponding targets of hawthorn leaf through Traditional Chinese Medicine System Pharmacology and Swiss Target Prediction databases. Targets related to myocardial ischemia were retrieved by Gene Card, Online Mendelian Inheritance in Man, Disgenet, and Therapeutic Targets Database databases. Cytoscape software was used to construct an ingredient-target-organ network and enrichment analysis of common targets was analyzed. Molecular docking verification of the core compound and target interactions was performed using MOE software. In vitro cell experiment was performed to verify the findings from bioinformatics analysis. Six active components and 107 potential therapeutic targets were screened. The protein-protein interaction network analysis indicated that 10 targets, including AKT1 and EGFR, were hub genes. Quercetin, kaempferol and isorhamnetin were taken as core active components. Through pathway enrichment analysis, nearly 455 Gene Ontology entries and 77 Kyoto Encyclopedia of Genes and Genomes pathways were obtained, mainly including PI3K/Akt, estrogen and other signaling pathways. Molecular docking prediction showed that three main active ingredients were firmly combined with the core targets. Cellular experiments showed that quercetin alleviated oxidative damage in cells and regulated the expression of PI3K, P-AKT/AKT and Bax/Bcl-2 proteins. This study identified the potential targets of Hawthorn leaf against myocardial ischemia using network pharmacology and in vitro verification, which provided a new understanding of the pharmacological mechanisms of Hawthorn leaf in treatment of myocardial ischemia.


Asunto(s)
Enfermedad de la Arteria Coronaria , Crataegus , Medicamentos Herbarios Chinos , Isquemia Miocárdica , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Quercetina/farmacología , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/genética , Bases de Datos Genéticas , Medicamentos Herbarios Chinos/farmacología
5.
Phytomedicine ; 126: 155409, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342018

RESUMEN

BACKGROUND: Flavonoids are extensively present in fruits, vegetables, grains, and medicinal plants. Myocardial ischemia and reperfusion (MI/R) comprise a sequence of detrimental incidents following myocardial ischemia. Research indicates that flavonoids have the potential to act as cardioprotective agents against MI/R injuries. Several specific flavonoids, e.g., luteolin, hesperidin, quercetin, kaempferol, and puerarin, have demonstrated cardioprotective activities in animal models. PURPOSE: The objective of this review is to identify the cardioprotective flavonoids, investigate their mechanisms of action, and explore their application in myocardial ischemia. METHODS: A search of PubMed database and Google Scholar was conducted using keywords "myocardial ischemia" and "flavonoids". Studies published within the last 10 years reporting on the cardioprotective effects of natural flavonoids on animal models were analyzed. RESULTS: A total of 55 natural flavonoids were identified and discussed within this review. It can be summarized that flavonoids regulate the following main strategies: antioxidation, anti-inflammation, calcium modulation, mitochondrial protection, ER stress inhibition, anti-apoptosis, ferroptosis inhibition, autophagy modulation, and inhibition of adverse cardiac remodeling. Additionally, the number and position of OH, 3'4'-catechol, C2=C3, and C4=O may play a significant role in the cardioprotective activity of flavonoids. CONCLUSION: This review serves as a reference for designing a daily diet to prevent or reduce damages following ischemia and screening of flavonoids for clinical application.


Asunto(s)
Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Animales , Flavonoides/farmacología , Isquemia Miocárdica/tratamiento farmacológico , Corazón , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Antioxidantes/farmacología
6.
Mol Biol Rep ; 51(1): 261, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302805

RESUMEN

BACKGROUND: The cardioprotective properties of mesenchymal stem cells and the therapeutic potential of curcumin (CUR) have been explored. Combining these approaches may enhance stem cell effectiveness and expedite healing. This study aimed to investigate the synergistic effects of co-treating bone marrow mesenchymal stem cells (BMSCs) with curcumin on vascular endothelial growth factor (VEGF) levels, in a rat model of myocardial ischemia (MI). METHODS AND RESULTS: Sixty-five male rats were divided into four groups: G1 (healthy control), G2 (MI induced by isoproterenol hydrochloride), G3 (treated with BMSCs), and G4 (co-treated with curcumin and BMSCs). Blood and tissue samples were collected at specific time points (day 1, 7, 15 and 21) after MI induction. Serum levels of lactate dehydrogenase (LDH), creatine kinase (CK), cardiac troponin I (cTnI), aspartate aminotransferase (AST), CK-MB and VEGF were measured. VEGF mRNA and protein expression were evaluated using RT-qPCR and Western blot techniques. Histopathological assessments were performed using H&E staining and CD31 immunofluorescence staining. VEGF expression significantly increased on days 7 and 15 in the CUR-BMSCs group, peaking on day 7. Western blot analysis confirmed elevated VEGF protein expression on days 7 and 15 post-MI. ELISA results demonstrated increased serum VEGF levels on days 7 and 15, reaching the highest level on day 7 in CUR-BMSCs-treated animals. Treated groups showed lower levels of LDH, AST, CK, CK-MB and cTnI compared to the untreated MI group. H&E staining revealed improved myocardial structure, increased formation of new capillaries, in both treatment groups compared to the MI group. CONCLUSION: Combining curcumin with BMSCs promotes angiogenesis in the infarcted myocardium after 15 days of MI induction. These findings suggest the potential of this combined therapy approach for enhancing cardiac healing and recovery.


Asunto(s)
Enfermedad de la Arteria Coronaria , Curcumina , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Infarto del Miocardio , Isquemia Miocárdica , Ratas , Masculino , Animales , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Curcumina/farmacología , Curcumina/metabolismo , Médula Ósea/metabolismo , Angiogénesis , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Células Madre Mesenquimatosas/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células de la Médula Ósea
7.
Zhen Ci Yan Jiu ; 49(2): 155-163, 2024 Feb 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38413036

RESUMEN

OBJECTIVES: To investigate the mechanism of electroacupuncture (EA) at "Neiguan" (PC6) in impro-ving myocardial electrical remodeling in rats with acute myocardial infarction (AMI) by enhancing transient outward potassium current. METHODS: A total of 30 male SD rats were randomly divided into control, model and EA groups, with 10 rats in each group. The AMI model was established by subcutaneous injection with isoprenaline (ISO, 85 mg/kg). EA was applied to left PC6 for 20 min, once daily for 5 days. Electrocardiogram (ECG) was recorded after treatment. TTC staining was used to observe myocardial necrosis. HE staining was used to observe the pathological morphology of myocardial tissue and measure the cross-sectional area of myocardium. Potassium ion-related genes in myocardial tissue were detected by RNA sequencing. The mRNA and protein expressions of Kchip2 and Kv4.2 in myocardial tissue were detected by real-time fluorescence quantitative PCR and Western blot, respectively. RESULTS: Compared with the control group, cardiomyocyte cross-sectional area in the model group was significantly increased (P<0.01), the ST segment was significantly elevated (P<0.01), and QT, QTc, QTd and QTcd were all significantly increased (P<0.05, P<0.01). After EA treatment, cardiomyocyte cross-sectional area was significantly decreased (P<0.01), the ST segment was significantly reduced (P<0.01), and the QT, QTc, QTcd and QTd were significantly decreased (P<0.01, P<0.05). RNA sequencing results showed that a total of 20 potassium ion-related genes co-expressed by the 3 groups were identified. Among them, Kchip2 expression was up-regulated most notablely in the EA group. Compared with the control group, the mRNA and protein expressions of Kchip2 and Kv4.2 in the myocardial tissue of the model group were significantly decreased (P<0.01, P<0.05), while those were increased in the EA group (P<0.01, P<0.05). CONCLUSIONS: EA may improve myocardial electrical remodeling in rats with myocardial infarction, which may be related to its functions in up-regulating the expressions of Kchip2 and Kv4.2.


Asunto(s)
Remodelación Atrial , Electroacupuntura , Infarto del Miocardio , Isquemia Miocárdica , Ratas , Masculino , Animales , Isquemia Miocárdica/terapia , Ratas Sprague-Dawley , Puntos de Acupuntura , Miocardio/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Potasio/metabolismo , ARN Mensajero/metabolismo
8.
Phytomedicine ; 125: 155359, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301300

RESUMEN

BACKGROUND: Myocardial ischemia/reperfusion injury (MIRI) poses a formidable challenge to cardiac reperfusion therapy due to the absence of effective clinical interventions. Methylation of N6-methyladenosine (m6A), which is the most common post-transcriptional modifications occurring within mammalian mRNA, is believed to be involved in MIRI by modulating autophagy. MicroRNAs (miRNAs) play a crucial role in regulating gene expression at the post-transcriptional level and have been implicated in the regulation of m6A methylation. Suxiao Jiuxin Pill (SJP) is extensively used in China for the clinical treatment of angina pectoris and confers benefits to patients with acute coronary syndrome who have received percutaneous coronary intervention. However, the precise mechanisms underlying SJP intervention in MIRI remain unclear. PURPOSE: This study aimed to demonstrate, both in vivo and in vitro, that SJP could alleviate autophagy in MIRI by regulating miR-193a-3p to target and upregulate the demethylase ALKBH5. METHODS: An in vitro hypoxia/reoxygenation model was established using H9c2 cells, while an in vivo MIRI model was established using Wistar rats. A lentivirus harboring the precursor sequence of miR-193a-3p was employed for its overexpression. Adeno-associated viruses were used to silence both miR-193a-3p and ALKBH5 expressions. Cardiac function, infarct size, and tissue structure in rats were assessed using echocardiography, triphenyl tetrazolium chloride (TTC) staining, and HE staining, respectively. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) was employed to detect the levels of apoptosis in rat cardiac tissue. m6A methylation levels were assessed using colorimetry. GFP-RFP-LC3B was used to monitor autophagic flux and transmission electron microscopy was used to evaluate the development of autophagosomes. Western Blot and qRT-PCR were respectively employed to assess the levels of autophagy-related proteins and miR-193a-3p. RESULTS: SJP alleviated autophagy, preserved cardiac function, and minimized myocardial damage in the hearts of MIRI rats. SJP attenuated autophagy in H/R H9C2 cells. Elevated levels of miR-193a-3p were observed in the cardiac tissues of MIRI rats and H/R H9C2 cells, whereas SJP downregulated miR-193a-3p levels in these models. ALKBH5, a target gene of miR-193, is negatively regulated by miR-193a-3p. Upon overexpression of miR-193a-3p or silencing of ALKBH5, m6A methylation decreased, and the autophagy-attenuating effects of SJP and its components, senkyunolide A and l-borneol, were lost in H/R H9C2 cells, whereas in MIRI rats, these effects were not abolished but merely weakened. Further investigation indicated that the METTL3 inhibitor STM2475, combined with the silencing of miR-193a-3p, similarly attenuated autophagy in the hearts of MIRI rats. This suggests that a reduction in m6A methylation is involved in autophagy alleviation. CONCLUSION: We demonstrated that SJP mitigates autophagy in MIRI by downregulating miR-193a-3p, enhancing ALKBH5 expression, and reducing m6A methylation, a mechanism potentially attributed to its constituents, senkyunolide A and l-borneol.


Asunto(s)
Canfanos , MicroARNs , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Humanos , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Ratas Wistar , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Autofagia , Reperfusión , Apoptosis , Miocitos Cardíacos/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/farmacología , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-38269030

RESUMEN

Background: COPD coexists with many concurrent comorbidities. Cardiovascular complications are deemed to be major causes of death in COPD. Although inhaler therapy is the main therapeutic intervention in COPD, cardiovascular events accompanying inhaler therapy require further investigation. Therefore, this study aimed to investigate new development of cardiovascular events according to each inhaler therapy and comorbidities. Methods: This study analyzed COPD patients (age ≥ 40 years, N = 199,772) from the Health Insurance Review and Assessment Service (HIRA) database in Korea. The development of cardiovascular events, from the index date to December 31, 2020, was investigated. The cohort was eventually divided into three arms: the LAMA/LABA group (N = 28,322), the ICS/LABA group (N = 11,812), and the triple group (LAMA/ICS/LABA therapy, N = 6174). Results: Multivariable Cox analyses demonstrated that, compared to ICS/LABA therapy, triple therapy was independently associated with the development of ischemic heart disease (HR: 1.22, 95% CI: 1.04-1.43), heart failure (HR: 1.45, 95% CI: 1.14-1.84), arrhythmia (HR: 1.72, 95% CI: 1.41-2.09), and atrial fibrillation/flutter (HR: 2.31, 95% CI: 1.64-3.25), whereas the LAMA/LABA therapy did not show a significant association. Furthermore, emergency room visit during covariate assessment window was independently associated with the development of ischemic heart disease, heart failure, arrhythmia, and atrial fibrillation/flutter (p < 0.05). Conclusion: Our data suggest that cardiovascular risk should be considered in COPD patients receiving triple therapy, despite the confounding bias resulting from disparities in each group.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Isquemia Miocárdica , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Adulto , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/epidemiología , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/epidemiología , Nebulizadores y Vaporizadores
10.
J Tradit Chin Med ; 44(1): 113-121, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38213246

RESUMEN

OBJECTIVE: To observe the effects of electroacupuncture at Neiguan (PC6) at different time points on reperfusion arrhythmia (RA) after myocardial ischemia and reperfusion in rats, and to investigate the correlation of this protective effect with nerve growth factor (NGF), tyrosine kinase A (TrkA), tyrosine hydroxylase (TH), and norepinephrine (NE). METHODS:A total of 72 Sprague-Dawley male rats were randomly divided into six groups (n = 12 rats/group): normal group (Norm), sham operation group (Sham), ischemia reperfusion group (I/R), pre-ischemic electroacupuncture group (EAI), pre-reperfusion electroacupuncture group (EAII), post-reperfusion electroacupuncture group (EAIII). The myocardial ischemia-reperfusion injury (MIRI) model was induced by occlusion of left anterior descending coronary artery for 20 min followed by reperfusion for 40 min in rats. With no intervention in the Norm group and only threading without ligation in the Sham group. Electroacupuncture pre-treatment at 20 min/d for 7 d before ligation in the EAⅠ group, 20 min of electroacupuncture before reperfusion in the EAII group and 20 min of electroacupuncture after reperfusion in the EAIII group. The electrocardiogram (ECG) of each group was recorded throughout the whole process, and the success of the MIRI model was determined based on the changs of J-point and T-wave in the ECG. The arrhythmia score was used to record premature ventricular contractions, ventricular tachycardia and ventricular fibrillation during the reperfusion period to assess the reperfusion induced arrhythmias. The expression levels of NGF, TrkA, TH protein were measured by Western blot. Moreover, the expression levels of plasma and myocardial NE levels were detected by enzyme linked immunosorbent assay. RESULTS: The differences between Norm group and Sham group were not statistically significant in all indexes. Arrhythmia score, myocardial NGF, TrkA, TH, and NE expression were significantly higher in the I/R group compared with the Sham group. Arrhythmia score, myocardial NGF, TrkA, TH, and NE expression were significantly lower in each EA group compared with the I/R group. CONCLUSION: Electroacupuncture at Neiguan (PC6) at different time points can reduce the incidence and severity of reperfusion arrhythmias in rats. This protective effect is related to electroacupuncture regulating NGF, TrkA, TH, NE expression and reducing sympathetic hyperactivation.


Asunto(s)
Electroacupuntura , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Extractos Vegetales , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Daño por Reperfusión Miocárdica/terapia , Factor de Crecimiento Nervioso , Isquemia Miocárdica/terapia , Arritmias Cardíacas/terapia , Puntos de Acupuntura
11.
Phytomedicine ; 123: 155184, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951149

RESUMEN

BACKGROUND: Traditional Chinese medicine, particularly Shuangshen Ningxin Capsule (SSNX), has been studied intensely. SSNX includes total ginseng saponins (from Panax ginseng Meyer), total phenolic acids from Salvia miltiorrhiza Bunge, and total alkaloids from Corydalis yanhusuo W. T. Wang. It has been suggested to protect against myocardial ischemia by a mechanism that has not been fully elucidated. METHODS: The composition and content of SSNX were determined by UHPLC-Q-TOFQ-TOF / MS. Then, a rat model of myocardial ischemia-reperfusion injury was established, and the protective effect of SSNX was measured. The protective mechanism was investigated using spatial metabolomics. RESULTS: We found that SSNX significantly improved left ventricular function and ameliorated pathological damages in rats with myocardial ischemia-reperfusion injury. Using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), the protective mechanism of SSNX was examined by comparing the monomer components of drugs targeted in myocardial tissue with the distribution of myocardial energy metabolism-related molecules and phospholipids. Interestingly, some lipids display inconsistent content distribution in the myocardial ischemia risk and non-risk zones. These discrepancies reflect the degree of myocardial injury in different regions. CONCLUSION: These findings suggest that SSNX protects against myocardial ischemia-reperfusion injury by correcting abnormal myocardial energy metabolism, changing the levels and distribution patterns of phospholipids, and stabilizing the structure of the myocardial cell membrane. MALDI-TOF MS can detect the spatial distribution of small molecule metabolites in the myocardium and can be used in pharmacological research.


Asunto(s)
Medicamentos Herbarios Chinos , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Panax , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Medicamentos Herbarios Chinos/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Fitoterapia ; 172: 105756, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007052

RESUMEN

Ancient Chinese medicine literature and modern pharmacological studies show that Sophora tonkinensis Gagnep. (ST) has a protective effect on the heart. A biolabel research based on omics and bioinformatics and experimental validation were used to explore the application value of ST in the treatment of heart diseases. Therapeutic potential, mechanism of action, and material basis of ST in treating heart diseases were analyzed by proteomics, metabolomics, bioinformatics, and molecular docking. Cardioprotective effects and mechanisms of ST and active compounds were verified by echocardiography, HE and Masson staining, biochemical analysis, and ELISA in the isoproterenol hydrochloride-induced myocardial ischemia (MI) mice model. The biolabel research suggested that the therapeutic potential of ST for MI may be particularly significant among the heart diseases it may treat. In the isoprenaline hydrochloride-induced MI mice model, ST and its five active compounds (caffeic acid, gallic acid, betulinic acid, esculetin, and cinnamic acid) showed significant protective effects against echocardiographic changes and histopathological damages of the ischemic myocardial tissue. Meanwhile, they showed a tendency to correct mitochondrial structure and function damage and the abnormal expression of 12 biolables (DCTN1, DCTN3, and SCARB2, etc.) in the vesicle-mediated transport pathway, inflammatory cytokines (IL-1ß, IL-6, and IL-10, etc.), and low density lipoprotein receptor (LDLR). The biolabel research identifies a new application value of ST in the treatment of heart diseases. ST and its active compounds inhibit mitochondrial impairments, inflammation, and LDLR deficiency through regulating the vesicle-mediated transport pathway, thus achieving the purpose of treating MI.


Asunto(s)
Isquemia Miocárdica , Sophora , Ratones , Animales , Sophora/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Isquemia Miocárdica/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Isoproterenol/uso terapéutico , Receptores de LDL
13.
Pharmacol Res ; 199: 106957, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37820856

RESUMEN

SIRT1 is a highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase. It is involved in the regulation of various pathophysiological processes, including cell proliferation, survival, differentiation, autophagy, and oxidative stress. Therapeutic activation of SIRT1 protects the heart and cardiomyocytes from pathology-related stress, particularly myocardial ischemia/reperfusion (I/R). Autophagy is an important metabolic pathway for cell survival during energy or nutrient deficiency, hypoxia, or oxidative stress. Autophagy is a double-edged sword in myocardial I/R injury. The activation of autophagy during the ischemic phase removes excess metabolic waste and helps ensure cardiomyocyte survival, whereas excessive autophagy during reperfusion depletes the cellular components and leads to autophagic cell death. Increasing research on I/R injury has indicated that SIRT1 is involved in the process of autophagy and regulates myocardial I/R. SIRT1 regulates autophagy through various pathways, such as the deacetylation of FOXOs, ATGs, and LC3. Recent studies have confirmed that SIRT1-mediated autophagy plays different roles at different stages of myocardial I/R injury. By targeting the mechanism of SIRT1-mediated autophagy at different stages of I/R injury, new small-molecule drugs, miRNA activators, or blockers can be developed. For example, resveratrol, sevoflurane, quercetin, and melatonin in the ischemic stage, coptisine, curcumin, berberine, and some miRNAs during reperfusion, were involved in regulating the SIRT1-autophagy axis, exerting a cardioprotective effect. Here, we summarize the possible mechanisms of autophagy regulation by SIRT1 in myocardial I/R injury and the related molecular drug applications to identify strategies for treating myocardial I/R injury.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Reperfusión , Autofagia , Apoptosis
15.
BMC Geriatr ; 23(1): 840, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087197

RESUMEN

BACKGROUND: This study aimed to identify and select age-related diseases (ARDs) in Korea, which is about to have a super-aged society, and to elucidate patterns in their incidence rates. METHODS: The National Health Insurance Service-National Sample Cohort, comprising 1 million health insurance and medical benefit beneficiaries in Korea from 2002 to 2019, was utilized. We selected 14 diseases with high disease burden and prevalence among Koreans from the 92 diseases defined in the Global Burden of Diseases, Injuries, and Risk Factors Study as ARDs. The annual incidence rate represented the number of patients newly diagnosed with an ARD each year from 2006 to 2019, excluding those with a history of ARD diagnosis from 2002 to 2005. The incidence rate by age was categorized into 10-year units based on age as of 2019. The number of patients with ARDs in each age group was used as the numerator, and the incidence rate for each age group was calculated with the age group as the denominator. RESULTS: Regarding the annual incidence rates of ARDs from 2006 to 2019, chronic obstructive pulmonary disease, congestive heart failure, and ischemic heart disease decreased annually, whereas dyslipidemia, chronic kidney disease, cataracts, hearing loss, and Parkinson's disease showed a significant increase. Hypertension, diabetes, cerebrovascular disease, osteoporosis, osteoarthritis, and age-related macular degeneration initially displayed a gradual decrease in incidence but exhibited a tendency to increase after 2015. Concerning age-specific incidence rates of ARDs, two types of curves emerged. The first type, characterized by an exponential increase with age, was exemplified by congestive heart failure. The second type, marked by an exponential increase peaking between ages 60 and 80, followed by stability or decrease, was observed in 13 ARDs, excluding congestive heart failure. However, hypertension, ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, and hearing loss in men belonged to the first type. CONCLUSIONS: From an epidemiological perspective, there are similar characteristics in age-specific ARDs that increase with age, reaching a peak followed by a plateau or decrease in Koreans.


Asunto(s)
Trastornos Cerebrovasculares , Pérdida Auditiva , Insuficiencia Cardíaca , Hipertensión , Isquemia Miocárdica , Enfermedad Pulmonar Obstructiva Crónica , Síndrome de Dificultad Respiratoria , Masculino , Humanos , Anciano , Incidencia , Envejecimiento , Trastornos Cerebrovasculares/diagnóstico , Trastornos Cerebrovasculares/epidemiología , Programas Nacionales de Salud , República de Corea/epidemiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-37956469

RESUMEN

Myocardial ischemia (MI), a condition in which the heart is unable to function due to insufficient blood and oxygen supply, is a major cause of death from coronary heart disease (CHD). Yiqi Tongluo capsule (YTC) is a Chinese patent drug which commonly used for treatment of MI in clinic. However, the related active components of YTC for treatment of MI were still uncovered. This paper is aimed to study the quality markers (Q-markers) of YTC and further optimize the extraction process of YTC based on Q-markers, providing research foundation for the further modern pharmaceutical preparations of YTC. We firstly used UPLC-QTOF-MS to analyze the constituents of YTC absorbed in blood, then isoprenaline (ISO) induced H9c2 cell model was used further screen the active constituents with protective effects on cardiomyocytes. After that, the orthogonal table (L9 (34)) was used to optimize the extraction process with three levels of 4 factors (water addition, immersion time, extraction time and decoction times). Finally, the HPLC fingerprint of 15 batches of optimized YTC was established. In our present study, a total of 33 components were identified in YTC, of which 10 components were absorbed in blood. Among the 10 components, 8 compounds had significant protective effects on ISO stimulated H9c2 cells, including Paeoniflorin, Ferulic acid, Calycosin, Senkyunolide A, N-butylphthalide, Z-ligustilide, LevistilideA, and Astragaloside IV, which were considered as the Q-markers of YTC. The optimized extraction process based on Q-marker as follows: soaking 1 h, then adding 8 times water to extract 3 times by decoction, each extraction lasts 1.5 h. The HPLC fingerprint of optimized YTC was established with 15 batches of YTC samples, and the optimized YTC samples has no significant toxicity to the heart, liver, spleen, lungs, and brain tissues of rats.


Asunto(s)
Medicamentos Herbarios Chinos , Isquemia Miocárdica , Ratas , Animales , Isquemia Miocárdica/tratamiento farmacológico , Agua , Cromatografía Líquida de Alta Presión
17.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(5): 616-626, 2023 Sep 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37916310

RESUMEN

The traditional Chinese medicine Aralia elata (Miq.) Seem., also known as Aralia mandshurica, has the effect of "tonifying Qi and calming the mind, strengthening the essence and tonifying the kidneys, and dispelling wind and invigorating blood circulation". It is used in the treatment of neurasthenia, Yang deficiency and Qi deficiency, kidney Qi deficiency, spleen Yang deficiency, water-dampness stagnation, thirst, and bruises. Aralia elata saponins are the main components for the pharmacological effects. From the perspective of modern pharmacological science, Aralia elata has a wide range of effects, including anti-myocardial ischaemia and alleviation of secondary myocardium ischemic reperfusion injury by regulating ionic homeostasis, anti-tumor activity by inhibiting proliferation, promoting apoptosis and enhancing immunity, hypoglycemia and lipid lowering effects by regulating glucose and lipid metabolism, and hepato-protective, neuroprotective, anti-inflammatory/analgesic effects. The studies on pharmacological mechanisms of Aralia elata will be conducive to its development and application in the future. This article reviews the research progress of Aralia elata domestically and internationally in the last two decades and proposes new directions for further research.


Asunto(s)
Aralia , Isquemia Miocárdica , Saponinas , Deficiencia Yang , Apoptosis , Saponinas/farmacología
18.
Free Radic Biol Med ; 208: 700-707, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37748718

RESUMEN

INTRODUCTION: Calpain overexpression is implicated in mitochondrial damage leading to tissue oxidative stress and myocardial ischemic injury. The aim of this study was to determine the effects of calpain inhibition (CI) on mitochondrial impairment and oxidative stress in a swine model of chronic myocardial ischemia and metabolic syndrome. METHODS: Yorkshire swine were fed a high-fat diet for 4 weeks to induce metabolic syndrome then underwent placement of an ameroid constrictor to the left circumflex artery. Three weeks later, animals received: no drug (control, "CON"; n= 7); a low-dose calpain inhibitor (0.12 mg/kg; "LCI", n= 7); or high-dose calpain inhibitor (0.25 mg/kg; "HCI", n=7). Treatment continued for 5 weeks, followed by tissue harvest. Cardiac tissue was assayed for protein carbonyl content, as well as antioxidant and mitochondrial protein expression. Reactive oxygen species (ROS) and mitochondrial respiration was measured in H9c2 cells following exposure to normoxia or hypoxia (1%) for 24 h with or without CI. RESULTS: In ischemic myocardial tissue, CI was associated with decreased total oxidative stress compared to control. CI was also associated with increased expression of mitochondrial proteins superoxide dismutase 1, SDHA, and pyruvate dehydrogenase compared to control. 100 nM of calpain inhibitor decreased ROS levels and respiration in both normoxic and hypoxic H9c2 cardiomyoblasts. CONCLUSIONS: In the setting of metabolic syndrome, CI improves oxidative stress in chronically ischemic myocardial tissue. Decreased oxidative stress may be via modulation of mitochondrial proteins involved in free radical scavenging and production.


Asunto(s)
Síndrome Metabólico , Isquemia Miocárdica , Porcinos , Animales , Miocardio/metabolismo , Calpaína/genética , Calpaína/metabolismo , Calpaína/farmacología , Síndrome Metabólico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Carbonilación Proteica , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Estrés Oxidativo , Proteínas Mitocondriales/metabolismo , Modelos Animales de Enfermedad
20.
Zhen Ci Yan Jiu ; 48(9): 833-42, 2023 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-37730253

RESUMEN

OBJECTIVE: To investigate the relationship between the sensitization state of acupoints on the surface of the myocardial ischemia (MI) model mice and the changes in the electrophysiological properties of the dorsal root ganglion (DRG) neurons in the corresponding spinal cord segment, and its underlying mechanism. METHODS: Sixty-eight male C57BL/6J mice were randomly divided into control and model groups (34 mice in each group). The model group received an intraperitoneal injection of 160 mg/kg isoproterenol (ISO) to establish the MI model, and the control group received an injection of the same dose of normal saline as the model group. After modeling for about 6 days, MI proportion was measured by HE staining to verify the pathological changes in the heart tissue. Evans blue (EB) dye was injected into the tail vein of mice to reflect the size, location, distribution, and number of exudates on the body surface. Then, whole-cell membrane currents, intrinsic excitability and membrane properties of different types of DRG neurons were evaluated by electrophysiological experiment in vitro. RESULTS: Compared with the control group, the heart size was larger, with pathological outcomes showing enlarged myocardial hypertrophy, destroyed structure of cardiomyocytes, with mononuclear cell infiltration among the cardiomyocytes in the model group. Compared with the control group, the number of EB exudation points was significantly increased (P<0.01), which were mainly concentrated in the epidermis near the T1-T5 segment of the spinal cord, "Feishu" (BL13), "Jueyinshu" (BL14) and "Xinshu" (BL15) in the model group. Compared with the control group, the rheobase and action potential amplitude (APA) of DRG medium-sized neurons were obviously decreased (P<0.01, P<0.05), while the whole-cell membrane currents, the spike numbers, the average instantaneous frequency, and the average discharge frequency were markedly increased (P<0.01). There were no significant alterations in the membrane properties and intrinsic excitability induced by depolarized currents of small-sized neurons between groups. Compared with the control group, the whole-cell membrane currents, spike numbers, and the average instantaneous frequency were significantly increased in the model group(P<0.05, P<0.01) while rheobase was significantly decreased (P<0.05) in DRG medium-sized neurons labeled with biotin and CGRP. CONCLUSION: After the mice were modeled by ISO, the DRG medium-size neurons in the T1-T5 segment of the spinal cord may mediate the sensitization of acupoints on the body surface through their different neuronal membrane properties and intrinsic excitabilities.


Asunto(s)
Puntos de Acupuntura , Isquemia Miocárdica , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Ganglios Espinales , Isquemia Miocárdica/terapia , Azul de Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA