Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 87(4): 150-165, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38037686

RESUMEN

Ammi visnaga (A. visnaga) is an annual herb that has been used in traditional medicine to treat various ailments attributed to the presence of its bioactive compounds. The purpose of this study was to identify and examine the phytochemical properties of the hydroalcoholic extract of A. visnaga using in vitro and in vivo models. Our findings demonstrated that the extract contained a variety of beneficial components, including phenols, flavonoids, tannins, coumarins, saponins, khellin, and visnagin. The total polyphenolic content and total flavonoid content were 23.26 mg/GAE/g dry weight and 13.26 mg/GAE/g dry weight, respectively. In vitro tests demonstrated that the extract possessed antioxidant properties as evidenced by the ability to scavenge free radicals, including DPPH, ABTS, nitric oxide (NO), phosphomolybdate, and ferric-reducing antioxidant power (FRAP). Further, the extract was found to inhibit hydrogen peroxide (H2O2)-induced hemolysis. In a 90-d in vivo study, female Wistar rats were administered 1 g/kg of A. visnaga extract orally resulting in a significant increase in total white blood cell count. Although morphological changes were observed in the liver, no marked alterations were noted in kidneys and spleen. In a female Swiss albino mice model of acetic acid-induced vascular permeability, A. visnaga significantly inhibited extravasations of Evans blue at doses of 0.5 or 1 g/kg with inhibition percentages of 51 and 65%, respectively, blocking tissue necrosis. The extract also demonstrated potential immunomodulatory properties in mice by enhancing antibody production in response to antigens. In silico molecular docking studies demonstrated a strong affinity between khellin or visnagin and immunomodulatory proteins, NF-κB, p52, and TNF-α. These findings suggest that A. visnaga may be considered a beneficial antioxidant with immunomodulatory properties and might serve as a therapeutic agent to combat certain diseases.


Asunto(s)
Ammi , Khellin , Ratas , Femenino , Ratones , Animales , Extractos Vegetales/química , Ammi/química , Khellin/química , Khellin/farmacología , Antioxidantes/farmacología , Peróxido de Hidrógeno , Simulación del Acoplamiento Molecular , Ratas Wistar , Flavonoides/farmacología , Antiinflamatorios/farmacología
2.
Nat Prod Res ; 37(1): 164-166, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34569361

RESUMEN

Ammi visnaga and Ammi majus are plants that have long been used in traditional medicine. Nowadays, both herbs are commercially marketed as alternative medicines in different formulations. The main active ingredients of A. visnaga are known as khellin and visnagin. Information on the quantitative amounts of both bioactive substances in the different organs of the plant is lacking. This study aims to determine the amounts of these two active substances in the five organs of both plants from Turkey and provide information to the pharmaceutical industry. For this purpose, a fast and reliable micellar electrokinetic chromatography method was applied. It was found that Ammi visnaga, flowers, seeds, and leaves are good sources of both khellin and visnagin. Ammi majus only contains khellin in its seeds and flowers.


Asunto(s)
Ammi , Khellin , Extractos Vegetales/química , Khellin/análisis , Khellin/química , Ammi/química , Semillas/química
3.
Molecules ; 26(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34946734

RESUMEN

A novel formulation based on nanostructured lipid carriers (NLCs) was developed to increase solubility and intestinal absorption of khellin. K-NLCs were prepared with stearic acid, hempseed oil, Brij S20, and Labrafil M 1944 CS, using the emulsification-ultrasonication method. Developed nanoparticles were chemically and physically characterized by liquid chromatography, light scattering techniques, and electron microscopy. The size, about 200 nm, was optimal for oral delivery, and the polydispersity index (around 0.26), indicated high sample homogeneity. Additionally, K-NLCs showed a spherical morphology without aggregation by microscopic analysis. The encapsulation efficiency of khellin was about 55%. In vitro release studies were carried out in media with different pH to mimic physiological conditions. K-NLCs were found to be physically stable in the simulated gastric and intestinal fluids, and they preserved about 70% of khellin after 6 h incubation. K-NLCs were also successfully lyophilized testing different lyoprotectants, and obtained freeze-dried K-NLCs demonstrated good shelf life over a month. Lastly, permeability studies on Caco-2 cells were performed to predict khellin passive diffusion across the intestinal epithelium, demonstrating that nanoparticles increased khellin permeability by more than two orders of magnitude. Accordingly, developed NLCs loaded with khellin represent a versatile formulation with good biopharmaceutical properties for oral administration, possibly enhancing khellin's bioavailability and therapeutic effects.


Asunto(s)
Cannabis , Khellin , Nanoestructuras/química , Extractos Vegetales , Administración Oral , Células CACO-2 , Cannabis/química , Humanos , Khellin/química , Khellin/farmacocinética , Khellin/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Extractos Vegetales/farmacología , Ácidos Esteáricos/química , Ácidos Esteáricos/farmacocinética , Ácidos Esteáricos/farmacología
4.
Future Med Chem ; 11(7): 659-676, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30958028

RESUMEN

A series of new visnagin and benzofuran scaffold-based molecules was designed and synthesized as anti-inflammatory and analgesic agents. Biological screening of these compounds showed that they exhibit potent anti-inflammatory/analgesic activity with a safer side effect profile in in vivo mouse models. In vitro cyclooxygenase (COX) inhibition assay showed that the compounds elicit their function through selective COX-2 inhibition. Molecular docking study also revealed the ability of the compounds to correctly recognize the active site and achieve noncovalent binding interactions with key residues therein. The best combined profile of anti-inflammatory, analgesic and COX-2 selective inhibition properties in association with low gastrotoxicity was displayed by the analogs 8, 11b and 19d, which can be considered as promising leads for further future optimization.


Asunto(s)
Analgésicos/química , Antiinflamatorios no Esteroideos/química , Benzofuranos/química , Inhibidores de la Ciclooxigenasa 2/química , Khellin/química , Analgésicos/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacología , Benzofuranos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Evaluación Preclínica de Medicamentos , Femenino , Absorción Gástrica , Humanos , Khellin/farmacología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Ratas , Relación Estructura-Actividad
5.
J Agric Food Chem ; 64(50): 9475-9487, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27936681

RESUMEN

Plants constitute a source of novel phytotoxic compounds to be explored in searching for effective and environmentally safe herbicides. From a previous screening of plant extracts for their phytotoxicity, a dichloromethane extract of Ammi visnaga (L.) Lam. was selected for further study. Phytotoxicity-guided fractionation of this extract yielded two furanochromones, khellin and visnagin, for which herbicidal activity had not been described before. Khellin and visnagin were phytotoxic to model species lettuce (Lactuca sativa) and duckweed (Lemna paucicostata), with IC50 values ranging from 110 to 175 µM. These compounds also inhibited the growth and germination of a diverse group of weeds at 0.5 and 1 mM. These weeds included five grasses [ryegrass (Lolium multiflorum), barnyardgrass (Echinocloa crus-galli), crabgrass (Digitaria sanguinalis), foxtail (Setaria italica), and millet (Panicum sp.)] and two broadleaf species [morningglory (Ipomea sp.) and velvetleaf (Abutilon theophrasti)]. During greenhouse studies visnagin was the most active and showed significant contact postemergence herbicidal activity on velvetleaf and crabgrass at 2 kg active ingredient (ai) ha-1. Moreover, its effect at 4 kg ai ha-1 was comparable to the bioherbicide pelargonic acid at the same rate. The mode of action of khellin and visnagin was not a light-dependent process. Both compounds caused membrane destabilization, photosynthetic efficiency reduction, inhibition of cell division, and cell death. These results support the potential of visnagin and, possibly, khellin as bioherbicides or lead molecules for the development of new herbicides.


Asunto(s)
Ammi/química , Cromonas/química , Furanos/química , Herbicidas/química , Khellin/química , Bioensayo , Muerte Celular , Germinación/efectos de los fármacos , Extractos Vegetales/química , Malezas/efectos de los fármacos
6.
Exp Parasitol ; 165: 51-7, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26995534

RESUMEN

Efficacies of the Ammi visnaga seeds extract and a majority of substances on larval Culex quinquefasciatus mortality in various development stages including pupae were studied. The effect of exposure time on larval mortality was also studied. The effect of sublethal concentrations or short exposure times on further larval development and subsequent fecundity in adults were studied as well. Lethal doses of the extract were estimated for the 2nd, 3rd and 4th instar of C. quinquefasciatus (LC50 for 18, 23 and 180 mg L(-1), respectively). The majority of furanochromenes, khellin and visnagin, were identified by analysing the extract. Khellin was significantly more effective compared to visnagin, whose LC50 was estimated at 8, 10 and 41 mg L(-1) for the 2nd, 3rd and 4th instar larvae. Khellin showed very fast efficacy on mortality for the 3rd instar larvae in a concentration of 100 mg L(-1). Fifty percent mortality was determined 30 min after application, a time which was considerably shorter compared to the extract (113 min) or visnagin (169 min). The effect of the application of lethal concentrations on C. quinquefasciatus larval mortality was studied. The least number of adults were hatched after application of the extract and khellin (41.8% and 37.9%, respectively), less than after visnagin application (46.7%) or in the control (94.2%). LC50 application caused lower fecundity in the hatched adults, lower hatchability of the eggs, and also very low natality, more than 77% lower for khellin compared to the control. A short exposure, corresponding to our estimated LT30, caused no significant acute toxicity in the larvae (until 24 h) for the extract or visnagin (4.3% and 11.5%, respectively); however, 18 min of action from khellin caused a 54.3% mortality rate of the larvae within 24 h.


Asunto(s)
Ammi/química , Culex , Insecticidas , Extractos Vegetales , Semillas/química , Animales , Cromatografía Líquida de Alta Presión , Culex/efectos de los fármacos , Femenino , Insecticidas/química , Insecticidas/aislamiento & purificación , Insecticidas/farmacología , Khellin/química , Khellin/aislamiento & purificación , Khellin/farmacología , Larva/efectos de los fármacos , Dosificación Letal Mediana , Masculino , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA