Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Arch Microbiol ; 204(5): 248, 2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397012

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are the hazardous xenobiotic agents of oil production. One of the methods to eliminate hazardous compounds is bioremediation, which is the most efficient and cost-effective method to eliminate the harmful byproducts of crude petroleum processing. In this study, five pure bacterial isolates were isolated from petroleum-contaminated soil, four of which showed a robust growth on the PAH pyrene, as a sole carbon source. Various methods viz mass spectroscopy, biochemical assays, and 16S RNA sequencing employed to identify the isolates ascertained the consistent identification of Klebsiella oxytoca by all three methods. Scanning electron microscopy and Gram staining further demonstrated the characterization of the K. oxytoca. High-performance liquid chromatography of the culture supernatant of K. oxytoca grown in pyrene containing media showed that the cells started utilizing pyrene from the 6th day onwards and by the 12th day of growth, 70% of the pyrene was completely degraded. A genome search for the genes predicted to be involved in pyrene degradation using Kyoto Encyclopedia of Genes and Genomes (KEGG) confirmed their presence in the genome of K. oxytoca. These results suggest that K. oxytoca would be a suitable candidate for removing soil aromatic hydrocarbons.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Bacterias/genética , Biodegradación Ambiental , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Petróleo/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Pirenos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Suelo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
2.
J Appl Microbiol ; 130(4): 1181-1191, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32813930

RESUMEN

AIMS: The major aims of this study are to determine the capability of sulphur oxidizing bacterium (SOB-1) to desulphurize dibenzothiophene (DBT) and crude oil, detection of the reaction kinetics and identify the proposed pathway of DBT desulphurization. METHODS AND RESULTS: The isolate was genetically identified based on 16S rRNA gene sequencing as Klebsiella oxytoca and deposited in the Genebank database under the accession number: MT355440. The HPLC analysis of the remaining DBT concentration revealed that, SOB-1 could desulphurize 90% of DBT (0·25 mmol l-1 ) within 96 h. The maximum production of sulphate ions from the desulphurization of DBT (0·36 mmol l-1 ) and crude oil (0·4 mmol l-1 ) could be quantitatively detected after 48 h of incubation at 30°C. The high values of correlation coefficient (R2 ) obtained at all studied concentrations; suggested that biodesulfurization kinetics of DBT follows the first-order reaction model. The kinetics studies showed that, DBT may have an inhibitory effect on SOB-1 when the initial concentration exceeded 0·75 mmol l-1 . The GC-MS analysis exhibited four main metabolites rather than DBT. The most important ones are 2-hydroxybiphenyl (2-HBP) and methoxybiphenyl n(2-MBP). CONCLUSIONS: Klebsiella oxytoca SOB-1 catalyzes the desulphurization of DBT through 4S pathway and forms four main metabolic products. The release of sulphate ion and formation of 2-HBP indicating the elimination of sulphur group without altering the carbon skeleton of DBT. The bacterial strain could also catalyzes desulphurization of crude oil. The desulphurization kinetics follows the first-order reaction model. SIGNIFICANCE AND IMPACT OF THE STUDY: Klebsiella oxytoca SOB-1 could be used as a promising industrial and environmental biodesulfurizing agent as it is not affecting carbon skeleton of thiophenic compounds and forming less toxic metabolic product (2-MBP).


Asunto(s)
Contaminantes Ambientales/metabolismo , Klebsiella oxytoca/metabolismo , Azufre/metabolismo , Tiofenos/metabolismo , Biodegradación Ambiental , Cinética , Klebsiella oxytoca/clasificación , Klebsiella oxytoca/genética , Klebsiella oxytoca/aislamiento & purificación , Redes y Vías Metabólicas , Petróleo/metabolismo , ARN Ribosómico 16S/genética , Sulfatos/metabolismo
3.
Appl Microbiol Biotechnol ; 104(14): 6325-6336, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32462243

RESUMEN

Silver nanoparticles (Ag-NPs) can be considered as a cost-effective alternative to antibiotics. In the presence of Fe(III)-citrate and Ag+, Klebsiella oxytoca DSM 29614 produces biogenic Ag-NPs embedded in its peculiar exopolysaccharide (EPS). K. oxytoca DSM 29614 was cultivated in a defined growth medium-containing citrate (as sole carbon source) and supplemented with Ag+ and either low or high Fe(III) concentration. As inferred from elemental analysis, transmission and scanning electron microscopy, Fourier transform infrared spectrometry and dynamic light scattering, Ag-EPS NPs were produced in both conditions and contained also Fe. The production yield of high-Fe/Ag-EPS NPs was 12 times higher than the production yield of low-Fe/Ag-EPS NPs, confirming the stimulatory effect of iron. However, relative Ag content and Ag+ ion release were higher in low-Fe/Ag-EPS NPs than in high-Fe/Ag-EPS NPs, as revealed by emission-excitation spectra by luminescent spectrometry using a novel ad hoc established phycoerythrin fluorescence-based assay. Interestingly, high and low-Fe/Ag-EPS NPs showed different and growth medium-dependent minimal inhibitory concentrations against Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 15442. In addition, low-Fe/Ag-EPS NPs exert inhibition of staphylococcal and pseudomonal biofilm formation, while high-Fe/Ag-EPS NPs inhibits staphylococcal biofilm formation only. Altogether, these results, highlighting the different capability of Ag+ release, support the idea that Fe/Ag-EPS NPs produced by K. oxytoca DSM 29614 can be considered as promising candidates in the development of specific antibacterial and anti-biofilm agents.Key points • Klebsiella oxytoca DSM 29614 produces bimetal nanoparticles containing Fe and Ag.• Fe concentration in growth medium affects nanoparticle yield and composition.• Phycoerythrin fluorescence-based assay was developed to determine Ag+release.• Antimicrobial efficacy of bimetal nanoparticle parallels Ag+ions release.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Hierro/química , Nanopartículas del Metal/química , Plata/química , Antibacterianos/química , Antibacterianos/metabolismo , Biopelículas/crecimiento & desarrollo , Medios de Cultivo/química , Hierro/análisis , Hierro/metabolismo , Klebsiella oxytoca/metabolismo , Pruebas de Sensibilidad Microbiana , Ficoeritrina/química , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Plata/metabolismo , Plata/farmacología , Staphylococcus aureus/efectos de los fármacos
4.
Appl Microbiol Biotechnol ; 102(3): 1429-1441, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29189902

RESUMEN

Iron exopolysaccharide nanoparticles were biogenerated during ferric citrate fermentation by Klebsiella oxytoca DSM 29614. Before investigating their effects on Tuber borchii ("bianchetto" truffle) mycelium growth and morphology, they were tested on human K562 cell line and Lentinula edodes pure culture and shown to be non-toxic. Using these nanoparticles as iron supplement, the truffles showed extremely efficient iron uptake of over 300 times that of a commercial product. This avoided morphological changes in T. borchii due to lack of iron during growth and, with optimum nanoparticle dosage, increased growth without cell wall disruption or alteration of protoplasmatic hyphal content, the nuclei, mitochondria, and rough endoplasmic reticula being preserved. No significant modifications in gene expression were observed. These advantages derive from the completely different mechanism of iron delivery to mycelia compared to commercial iron supplements. The present data, in fact, show the nanoparticles attached to the cell wall, then penetrating it non-destructively without damage to cell membrane, mitochondria, chromatin, or ribosome. Low dosage significantly improved mycelium growth, without affecting hyphal morphology. Increases in hyphal diameter and septal distance indicated a healthier state of the mycelia compared to those grown in the absence of iron or with a commercial iron supplement. These positive effects were confirmed by measuring fungal biomass as mycelium dry weight, total protein, and ergosterol content. This "green" method for biogenerating iron exopolysaccharide nanoparticles offers many advantages, including significant economic savings, without toxic effects on the ectomycorrhizal fungus, opening the possibility of using them as iron supplements in truffle plantations.


Asunto(s)
Compuestos Férricos/química , Micorrizas/efectos de los fármacos , Nanopartículas/química , Polisacáridos Bacterianos/biosíntesis , Fermentación , Compuestos Férricos/farmacología , Humanos , Hierro/química , Células K562 , Klebsiella oxytoca/metabolismo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Micorrizas/crecimiento & desarrollo , Polisacáridos Bacterianos/química
5.
PLoS One ; 9(7): e100542, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25057966

RESUMEN

Klebsiella oxytoca is an opportunistic pathogen implicated in various clinical diseases in animals and humans. Studies suggest that in humans K. oxytoca exerts its pathogenicity in part through a cytotoxin. However, cytotoxin production in animal isolates of K. oxytoca and its pathogenic properties have not been characterized. Furthermore, neither the identity of the toxin nor a complete repertoire of genes involved in K. oxytoca pathogenesis have been fully elucidated. Here, we showed that several animal isolates of K. oxytoca, including the clinical isolates, produced secreted products in bacterial culture supernatant that display cytotoxicity on HEp-2 and HeLa cells, indicating the ability to produce cytotoxin. Cytotoxin production appears to be regulated by the environment, and soy based product was found to have a strong toxin induction property. The toxin was identified, by liquid chromatography-mass spectrometry and NMR spectroscopy, as low molecular weight heat labile benzodiazepine, tilivalline, previously shown to cause cytotoxicity in several cell lines, including mouse L1210 leukemic cells. Genome sequencing and analyses of a cytotoxin positive K. oxytoca strain isolated from an abscess of a mouse, identified genes previously shown to promote pathogenesis in other enteric bacterial pathogens including ecotin, several genes encoding for type IV and type VI secretion systems, and proteins that show sequence similarity to known bacterial toxins including cholera toxin. To our knowledge, these results demonstrate for the first time, that animal isolates of K. oxytoca, produces a cytotoxin, and that cytotoxin production is under strict environmental regulation. We also confirmed tilivalline as the cytotoxin present in animal K. oxytoca strains. These findings, along with the discovery of a repertoire of genes with virulence potential, provide important insights into the pathogenesis of K. oxytoca. As a novel diagnostic tool, tilivalline may serve as a biomarker for K oxytoca-induced cytotoxicity in humans and animals through detection in various samples from food to diseased samples using LC-MS/MS. Induction of K. oxytoca cytotoxin by consumption of soy may be in part involved in the pathogenesis of gastrointestinal disease.


Asunto(s)
Toxinas Bacterianas/toxicidad , Benzodiazepinonas/toxicidad , Infecciones por Klebsiella/veterinaria , Klebsiella oxytoca/patogenicidad , Animales , Sistemas de Secreción Bacterianos/genética , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/química , Toxinas Bacterianas/aislamiento & purificación , Benzodiazepinonas/química , Benzodiazepinonas/aislamiento & purificación , Benzodiazepinonas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Haplorrinos , Células HeLa , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella oxytoca/efectos de los fármacos , Klebsiella oxytoca/aislamiento & purificación , Klebsiella oxytoca/metabolismo , Ratones , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Ratas , Glycine max/química , Porcinos
6.
J Basic Microbiol ; 51(6): 580-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22144124

RESUMEN

A facultatively anaerobic, Gram-negative, mesophilic, moderately halotolerant, non-motile, and non-sporulated bacterium, designated strain BSC5 was isolated from an off-shore "Sercina" oil field, located near the Kerkennah island, Tunisia. Yeast extract was not required for growth. Phenotypic characteristics and phylogenetic analysis of the 16S rRNA gene sequence of strain BSC5 revealed that it was related to members of the genus Klebsiella, being most closely related to the type strain of K. oxytoca (99% sequence similarity). Strain BSC5 was capable of using aerobically the crude oil as substrate growth. The growth of strain BSC5 on crude oil was followed by measuring the OD(600 nm) and by enumeration of viable cells at different culture's time. GC-MS analysis showed that strain BSC5 was capable of degrading a wide range of aliphatic hydrocarbons from C(13) to C(30) . The biodegradation rate for n -alkanes reached 44% and 75%, after 20 and 45 days of incubation, respectively. Addition of the synthetic surfactant, Tween 80, accelerated the crude oil degradation. The biodegradation rate for n -alkanes reached 61% and 98%, after 20 and 45 days of incubation, respectively. Moreover, three aromatic compounds, p -hydroxybenzoate, protocatechuate and gentisate, were metabolized completely by strain BSC5 after 24 h, under aerobic conditions.


Asunto(s)
Klebsiella oxytoca/aislamiento & purificación , Klebsiella oxytoca/metabolismo , Yacimiento de Petróleo y Gas/microbiología , Petróleo/metabolismo , Aerobiosis , Anaerobiosis , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , Recuento de Colonia Microbiana , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos/metabolismo , Klebsiella oxytoca/genética , Klebsiella oxytoca/fisiología , Viabilidad Microbiana , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Factores de Tiempo , Túnez
7.
Appl Environ Microbiol ; 77(15): 5184-91, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21666025

RESUMEN

Ethanologenic Escherichia coli strain KO11 was sequentially engineered to contain the Klebsiella oxytoca cellobiose phosphotransferase genes (casAB) as well as a pectate lyase (pelE) from Erwinia chrysanthemi, yielding strains LY40A (casAB) and JP07 (casAB pelE), respectively. To obtain an effective secretion of PelE, the Sec-dependent pathway out genes from E. chrysanthemi were provided on a cosmid to strain JP07 to construct strain JP07C. Finally, oligogalacturonide lyase (ogl) from E. chrysanthemi was added to produce strain JP08C. E. coli strains LY40A, JP07, JP07C, and JP08C possessed significant cellobiase activity in cell lysates, while only strains JP07C and JP08C demonstrated extracellular pectate lyase activity. Fermentations conducted by using a mixture of pure sugars representative of the composition of sugar beet pulp (SBP) showed that strains LY40A, JP07, JP07C, and JP08C were able to ferment cellobiose, resulting in increased ethanol production from 15 to 45% in comparison to that of KO11. Fermentations with SBP at very low fungal enzyme loads during saccharification revealed significantly higher levels of ethanol production for LY40A, JP07C, and JP08C than for KO11. JP07C ethanol yields were not considerably higher than those of LY40A; however, oligogalacturonide polymerization studies showed an increased breakdown of biomass to small-chain (degree of polymerization, ≤6) oligogalacturonides. JP08C achieved a further breakdown of polygalacturonate to monomeric sugars, resulting in a 164% increase in ethanol yields compared to those of KO11. The addition of commercial pectin methylesterase (PME) further increased JP08C ethanol production compared to that of LY40A by demethylating the pectin for enzymatic attack by pectin-degrading enzymes.


Asunto(s)
Biocombustibles , Biomasa , Escherichia coli/metabolismo , Etanol/metabolismo , Lignina/metabolismo , Pectinas/metabolismo , beta-Glucosidasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/farmacología , Cósmidos/genética , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/metabolismo , Escherichia coli/genética , Fermentación , Ingeniería Genética , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo
8.
Proc Natl Acad Sci U S A ; 107(29): 13081-6, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20616068

RESUMEN

Many gram-negative bacteria secrete specific proteins via the type II secretion systems (T2SS). These complex machineries share with the related archaeal flagella and type IV pilus (T4P) biogenesis systems the ability to assemble thin, flexible filaments composed of small, initially inner membrane-localized proteins called "pilins." In the T2SS from Klebsiella oxytoca, periplasmic pseudopili that are essential for pullulanase (PulA) secretion extend beyond the bacterial surface and form pili when the major pilin PulG is overproduced. Here, we describe the detailed, experimentally validated structure of the PulG pilus generated from crystallographic and electron microscopy data by a molecular modeling approach. Two intermolecular salt bridges crucial for function were demonstrated using single and complementary charge inversions. Double-cysteine substitutions in the transmembrane segment of PulG led to position-specific cross-linking of protomers in assembled pili. These biochemical data provided information on residue distances in the filament that were used to derive a refined model of the T2SS pilus at pseudoatomic resolution. PulG is organized as a right-handed helix of subunits, consistent with protomer organization in gonococcal T4P. The conserved character of residues involved in key hydrophobic and electrostatic interactions within the major pseudopilin family supports the general relevance of this model for T2SS pseudopilus structure.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Klebsiella oxytoca/metabolismo , Modelos Moleculares , Sustitución de Aminoácidos/genética , Reactivos de Enlaces Cruzados/metabolismo , Cisteína/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Estructura Secundaria de Proteína , Reproducibilidad de los Resultados , Electricidad Estática
9.
Biotechnol Prog ; 21(5): 1366-72, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16209539

RESUMEN

Fermentation efficiency and nutrient costs are both significant factors in process economics for the microbial conversion of cellulosic biomass to commodity chemicals such as ethanol. In this study, we have developed a more industrial medium (OUM1) composed of 0.5% corn steep liquor (dry weight basis) supplemented with mineral salts (0.2%), urea (0.06%), and glucose (9%). Although the growth of strain P2 was vigorous in this medium, approximately 14% of substrate carbon was diverted into 2,3-butanediol and acetoin under the low pH conditions needed for optimal cellulase activity during simultaneous saccharification. Deleting the central region of the budAB genes encoding alpha-acetolactate synthase and alpha-acetolactate decarboxylase eliminated the butanediol and acetoin coproducts and increased ethanol yields by 12%. In OUM1 medium at pH 5.2, strain BW21 produced over 4% ethanol in 48 h (0.47 g ethanol per g glucose). Average productivity (48 h), ethanol titer, and ethanol yield for BW21 in OUM1 medium (pH 5.2) exceeded that of the parent (strain P2) in rich laboratory medium (Luria broth).


Asunto(s)
Reactores Biológicos/microbiología , Butileno Glicoles/metabolismo , Técnicas de Cultivo de Célula/métodos , Etanol/metabolismo , Microbiología Industrial/métodos , Klebsiella oxytoca/crecimiento & desarrollo , Klebsiella oxytoca/metabolismo , Transducción de Señal/fisiología , Medios de Cultivo/metabolismo , Etanol/aislamiento & purificación , Fermentación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA