Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.752
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Int J Pharm ; 656: 124086, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38580074

RESUMEN

Chronic myeloid leukemia is a life-threatening blood-cancer prevalent among children and adolescents. Research for innovative therapeutics combine drug-repurposing, phytotherapeutics and nanodrug-delivery. Ivermectin (Ivn) is a potent anthelmintic, repurposed for antileukemic-activity. However, Ivn exerts off-target toxicity. Methyl-dihydrojasmonate (MJ) is a phytochemical of known antileukemic potential. Herein, we developed for the first-time Ivn/MJ-coloaded nanostructured-lipid-carrier (Ivn@MJ-NLC) for leveraging the antileukemic-activity of the novel Ivn/MJ-combination while ameliorating possible adverse-effects. The developed Ivn@MJ-NLC possessed optimum-nanosize (97 ± 12.70 nm), PDI (0.33 ± 0.02), entrapment for Ivn (97.48 ± 1.48 %) and MJ (99.48 ± 0.57 %) and controlled-release of Ivn (83 % after 140 h) and MJ (80.98 ± 2.45 % after 48 h). In-vitro K562 studies verified Ivn@MJ-NLC prominent cytotoxicity (IC50 = 35.01 ± 2.23 µg/mL) with pronounced Ivn/MJ-synergism (combination-index = 0.59) at low-concentrations (5-10 µg/mL Ivn). Superior Ivn@MJ-NLC cytocompatibility was established on oral-epithelial-cells (OEC) with high OEC/K562 viability-ratio (1.49-1.85). The innovative Ivn@MJ-NLC enhanced K562-nuclear-fragmentation and afforded upregulation of caspase-3 and BAX (1.71 ± 0.07 and 1.45 ± 0.07-fold-increase, respectively) compared to control. Ex-vivo hemocompatibility and in-vivo-biocompatibility of parenteral-Ivn@MJ-NLC, compared to Ivn-solution, was verified via biochemical-blood analysis, histological and histomorphometric studies of liver and kidney tissues. Our findings highlight Ivn@MJ-NLC as an Ivn/MJ synergistic antileukemic platform, ameliorating possible adverse-effects.


Asunto(s)
Portadores de Fármacos , Ivermectina , Lípidos , Nanoestructuras , Humanos , Ivermectina/administración & dosificación , Ivermectina/química , Ivermectina/farmacocinética , Ivermectina/farmacología , Animales , Portadores de Fármacos/química , Lípidos/química , Células K562 , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Sinergismo Farmacológico , Liberación de Fármacos , Supervivencia Celular/efectos de los fármacos , Masculino , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Limoninas/administración & dosificación , Limoninas/farmacología , Limoninas/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Ratas
2.
Sci Rep ; 14(1): 8259, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38589560

RESUMEN

Microalgae are widely exploited for numerous biotechnology applications, including biofuels. In this context, Chlamydomonas debaryana and Chlorococcum sp. were isolated from Fez freshwater (Morocco), and their growth and lipid and carbohydrate production were assessed at different concentrations of NaCl, NaNO3, and K2HPO4. The results indicate a small positive variation in growth parameters linked to nutrient enrichment, with no considerable variation in carbohydrate and lipid levels in both algae. Moreover, a negative variation was recorded at increased salinity and nutrient limitation, accompanied by lipid and carbohydrate accumulation. Chlorococcum sp. showed better adaptation to salt stress below 200 mM NaCl. Furthermore, its growth and biomass productivity were strongly reduced by nitrogen depletion, and its lipid production reached 47.64% DW at 3.52 mM NaNO3. As for Chlamydomonas debaryana, a substantial reduction in growth was induced by nutrient depletion, a maximal carbohydrate level was produced at less than 8.82 mM NaNO3 (40.59% DW). The effect of phosphorus was less significant. However, a concentration of 0.115 mM K2HPO4 increased lipid and carbohydrate content without compromising biomass productivity. The results suggest that growing the two Chlorophyceae under these conditions seems interesting for biofuel production, but the loss of biomass requires a more efficient strategy to maximize lipid and carbohydrate accumulation without loss of productivity.


Asunto(s)
Chlorophyceae , Microalgas , Fósforo , Lípidos/química , Salinidad , Nitrógeno , Marruecos , Cloruro de Sodio , Carbohidratos , Agua Dulce , Biomasa , Biocombustibles
3.
Colloids Surf B Biointerfaces ; 237: 113858, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547797

RESUMEN

Herein, lipid-polymer core-shell hybrid nanoparticles composed of poly(D,L-lactic-co-glycolic acid) (PLGA)/lecithin (PLNs) were synthesized through lipid-based surface engineering. Lipids were absorbed onto the surface of the PLGA core to enhance the advantages of polymeric nanoparticles and liposomes. The amounts of lipids and encapsulation of the drug nicardipine hydrochloride (NCH) in the PLNs were studied. NCH-loaded PLNs (NCH-PLNs) were produced in high yield (66%) with a high encapsulation efficiency (92%) and a size of 176 nm. The mass of phosphorus (P) on the NCH-PLN surface was qualitatively and quantitatively investigated using X-ray fluorescence spectroscopy, and lecithin addition increased the P mass percentage due to the phosphate group (PO43-) in its structure. These data confirmed the lipid-based surface engineering of NCH-PLNs. The zeta potential of NCH-PLN exceeded -30 mV, ensuring colloidal stability, and preventing precipitation through electrostatic stabilization. In vitro, NCH was continuously and slowly released from NCH-PLNs over 16 days. Furthermore, PSVK1 cells exhibited high viability after treatment with NCH-PLNs, indicating favorable cytocompatibility. After comparing various mathematical equations of drug release kinetics, the data best fit the Korsmeyer-Peppas model with R2 values of 0.989, 0.990, and 0.982 for 1.0, 3.0, and 5.0 mg/mL lecithin, respectively. The release exponents obtained ranged from 0.480 to 0.505, suggesting anomalous transport release. Thus, NCH-PLNs have potential as a robust drug delivery platform for the controlled administration of NCH, particularly for vasodilation during neurosurgery.


Asunto(s)
Liposomas , Nanopartículas , Polímeros/química , Lecitinas/química , Lípidos/química , Ácido Láctico/química , Liberación de Fármacos , Nanopartículas/química , Portadores de Fármacos/química , Tamaño de la Partícula
4.
Int J Nanomedicine ; 19: 2149-2177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482519

RESUMEN

Background: Rheumatoid arthritis (RA) is a common acute inflammatory autoimmune connective tissue arthropathy. The genetic studies, tissue analyses, experimental animal models, and clinical investigations have confirmed that stromal tissue damage and pathology driven by RA mounts the chronic inflammation and dysregulated immune events. Methods: We developed methotrexate (MTX)-loaded lipid-polymer hybrid nanoparticles (MTX-LPHNPs) and aceclofenac (ACE)-loaded nanostructured lipid carriers (ACE-NLCs) for the efficient co-delivery of MTX and ACE via intravenous and transdermal routes, respectively. Bio-assays were performed using ex-vivo skin permeation and transport, macrophage model of inflammation (MMI) (LPS-stimulated THP-1 macrophages), Wistar rats with experimental RA (induction of arthritis with Complete Freund's adjuvant; CFA and BCG), and programmed death of RA affected cells. In addition, gene transcription profiling and serum estimation of inflammatory, signaling, and cell death markers were performed on the blood samples collected from patients with RA. Results: Higher permeation of ACE-NLCs/CE across skin layers confirming the greater "therapeutic index" of ACE. The systemic delivery of MTX-loaded LPHNPs via the parenteral (intravenous) route is shown to modulate the RA-induced inflammation and other immune events. The regulated immunological and signaling pathway(s) influence the immunological axis to program the death of inflamed cells in the MMI and the animals with the experimental RA. Our data suggested the CD40-mediated and Akt1 controlled cell death along with the inhibited autophagy in vitro. Moreover, the ex vivo gene transcription profiling in drug-treated PBMCs and serum analysis of immune/signalling markers confirmed the therapeutic role co-delivery of drug nanoparticles to treat RA. The animals with experimental RA receiving drug treatment were shown to regain the structure of paw bones and joints similar to the control and were comparable with the market formulations. Conclusion: Our findings confirmed the use of co-delivery of drug nanoformulations as the "combination drug regimen" to treat RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Diclofenaco/análogos & derivados , Nanopartículas , Humanos , Ratas , Animales , Metotrexato , Ratas Wistar , Artritis Reumatoide/patología , Nanopartículas/química , Inflamación/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Lípidos/química
5.
Food Res Int ; 176: 113821, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163721

RESUMEN

The use of lipids from conventional oils and fats to produce solid lipid nanoparticles (SLN) attracting interest from the food industry, since due their varying compositions directly affects crystallization behavior, stability, and particle sizes (PS) of SLN. Thus, this study aimed evaluate the potential of fully hydrogenated oils (hardfats) with different hydrocarbon chain lengths to produce SLN using different emulsifiers. For that, fully hydrogenated palm kern (FHPkO), palm (FHPO), soybean (FHSO), microalgae (FHMO) and crambe (FHCO) oils were used. Span 60 (S60), soybean lecithin (SL), and whey protein isolate (WPI) were used as emulsifiers. The physicochemical characteristics and crystallization properties of SLN were evaluated during 60 days. Results indicates that the crystallization properties were more influenced by the hardfat used. SLN formulated with FHPkO was more unstable than the others, and hardfats FHPO, FHSO, FHMO, and FHCO exhibited the appropriate characteristics for use to produce SLN. Concerning emulsifiers, S60- based SLN showed high instability, despite the hardfat used. SL-based and WPI-based SLN formulations, showed a great stability, with crystallinity properties suitable for food incorporation.


Asunto(s)
Lípidos , Nanopartículas , Lípidos/química , Aceites , Nanopartículas/química , Liposomas , Lecitinas , Emulsionantes
6.
Food Chem ; 439: 138149, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064825

RESUMEN

Solid lipid nanoparticles can be compatible with several bioactive compounds and confer a differentiated crystalline structure. This study aimed to produce α-tocopherol loaded solid lipid nanoparticles with fully hydrogenated oils and fats from palm oil, soybean oil, and crambe oil, by high-pressure homogenization, using lecithin as an emulsifier. After recrystallization of solid lipid nanoparticles, dispersions were evaluated until 60 days of storage for particle size, polydispersity index, zeta potential, microstructure, dispersion stability and α-tocopherol quantification. α-tocopherol loaded solid lipid nanoparticles showed particle sizes and zeta potential values considered adequate for this type of particle. Presence of α-tocopherol altered thermal behavior of the particles, leading to increased crystallinity, with no changes in polymorphism, when compared to the unloaded solid lipid nanoparticles. All α-tocopherol loaded solid lipid nanoparticles dispersions showed stability with no losses of α-tocopherol, indicating their potential as a carrier for this compound in fortified foods.


Asunto(s)
Lípidos , Nanopartículas , Lípidos/química , alfa-Tocoferol , Nanopartículas/química , Tamaño de la Partícula , Aceite de Palma
7.
Meat Sci ; 209: 109401, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38061305

RESUMEN

The study investigated the antioxidant effect on lipid and protein oxidation, microbial count and other physicochemical attributes of meat patties packaged in flaxseed gum (FSG) based films added with betel leaf extract (BLE) during refrigerated storage (4 ± 1 °C) of 30 days. FSG films were developed after incorporating 0, 2.5, 5, 7.5 and 10% of BLE (BLE0, BLE1, BLE2, BLE3 and BLE4) respectively. The patties showed no change in pH due to composite films however, a remarkable effect in retarding the weight loss and color change along with an improvement in sensory score and microbial quality. TBARS of the patties packed in treated films ranged from 0.10 to 0.99 (mg MDA/kg), lower than that of the control 0.34-1.33 (mg MDA/kg). The BLE4 (packed in FSG film with 10% BLE) had the lowest metmyoglobin content of 31.71% compared to the control sample (69.02%) on 30th day of refrigerated storage. Further, a significant reduction in moisture and color change was observed in meat patties packed in FSG-BLE composite films compared to the control patties. Hence, this study concluded that the FSG-BLE composite films improves the storage stability by impeding the rate of lipid oxidation indicating the developed film's promising potential as a sustainable material in active packaging for the shelf life extension of high-fat meat products and other perishable food products.


Asunto(s)
Lino , Carne/análisis , Estrés Oxidativo , Extractos Vegetales , Lípidos/química
8.
Drug Deliv Transl Res ; 14(2): 400-417, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37598133

RESUMEN

Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder associated with increased oxidative stress, the underlying vital process contributing to cell death. Tanshinone IIA (TAN) is a phytomedicine with a documented activity in treating many CNS disorders, particularly PD owing to its unique anti-inflammatory and antioxidant effect. However, its clinical utility is limited by its poor aqueous solubility, short half-life, and hence low concentration reaching targeted cells. This work aimed to develop a biocompatible chitosan-coated nanostructured lipid carriers (CS-NLCs) for effective brain delivery of TAN for PD management. The proposed nanosystem was successfully prepared using a simple melt-emulsification ultra-sonication method, optimized and characterized both in vitro and in vivo in a rotenone-induced PD rat model. The developed TAN-loaded CS-NLCs (CS-TAN-NLCs) showed good colloidal properties (size ≤ 200 nm, PDI ≤ 0.2, and ζ-potential + 20 mV) and high drug entrapment efficiency (> 97%) with sustained release profile for 24 h. Following intranasal administration, CS-TAN-NLCs succeeded to achieve a remarkable antiparkinsonian and antidepressant effect in diseased animals compared to both the uncoated TAN-NLCs and free TAN suspension as evidenced by the conducted behavioral tests and improved histopathological findings. Furthermore, biochemical evaluation of oxidative stress along with inflammatory markers, nuclear factor-kabba ß (NF-Kß) and cathepsin B further confirmed the potential of the CS-TAN-NLCs in enhancing brain delivery and hence the therapeutic effect of TAN of treatment of PD. Accordingly, CS-TAN-NLCs could be addressed as a promising nano-platform for the effective management of PD.


Asunto(s)
Quitosano , Nanoestructuras , Enfermedad de Parkinson , Animales , Ratas , Encéfalo/metabolismo , Catepsina B/metabolismo , Quitosano/química , Portadores de Fármacos/química , Lípidos/química , Nanoestructuras/química , FN-kappa B/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Tamaño de la Partícula , Subunidad p50 de NF-kappa B/metabolismo
9.
Molecules ; 28(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37959818

RESUMEN

The objective of the present study was to develop PTF-loaded solid lipid nanoparticles (PTF-SLNs) and investigate their efficacy in treating lung cancer. The PTF-SLNs were prepared by the thin film hydration method and verified by FTIR and TEM. Their physicochemical properties were characterized by particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE), drug loading (DL), etc. Then, the pharmacodynamic studies of PTF-SLNs were performed on Lewis lung cancer cells and tumor-bearing mice. Finally, the safety studies were assessed by organ index, serum biochemical indicators, and histopathological changes. The PTF-SLNs were characterized by around 50 nm sphere nanoparticles, sustained ideal stability, and controlled drug release effects. The pharmacodynamic evaluation results showed that PTF-SLNs had stronger anti-tumor efficacy than PTF. An in vitro study revealed a more obvious cytotoxicity and apoptosis effect. The IC 50 values of PTF and PTF-SLNs were 67.43 µg/mL and 20.74 µg/mL, respectively. An in vivo study showed that the tumor inhibition rates of 2 g/kg PTF and 0.4 g/kg PTF-SLNs were 59.97% and 64.55%, respectively. The safety preliminary study indicated that PTF-SLNs improve the damage of PTF to normal organs to a certain extent. This study provides a nanoparticle delivery system with phenolic herbal extract to improve anti-tumor efficacy in lung cancer.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Ratones , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Lípidos/química , Taninos , Liposomas , Nanopartículas/química , Tamaño de la Partícula , Portadores de Fármacos/química
10.
Curr Pharm Des ; 29(38): 3050-3059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37961862

RESUMEN

BACKGROUND: Berberine (BBR), an Eastern traditional medicine, has expressed novel therapeutic activities, especially for chronic diseases like diabetes, hyperlipemia, hypertension, and Alzheimer's disease. However, the low oral bioavailability of BBR has limited the applications of these treatments. Hence, BBRloaded solid lipid nanoparticles (BBR-SLNs) were prepared to improve BBR absorption into systemic circulations via this route. METHODS: BBR-loaded solid lipid nanoparticles (BBR-SLNs) were prepared by ultrasonication and then transformed into solid form via spray drying technique. The size morphology of BBR-SLNs was evaluated by dynamic light scattering (DLS) and scanning electron microscope (SEM). Crystallinity of BBR and interaction of BBR with other excipients were checked by spectroscopic methods. Entrapment efficiency of BBR-SLNs as well as BBR release in gastrointestinal conditions were also taken into account. Lastly, SLN's cytotoxicity for loading BBR was determined with human embryonic kidney cells (HEK293). RESULTS: Stearic acid (SA), glyceryl monostearate (GMS), and poloxamer 407 (P407) were selected for BBRSLNs fabrication. BBR-SLNs had homogenous particle sizes of less than 200 nm, high encapsulation efficiency of nearly 90% and loading capacity of above 12%. BBR-SLN powder could be redispersed without significant changes in physicochemical properties and was stable for 30 days. Spray-dried BBR-SLNs showed a better sustained in vitro release profile than BBR-SLNs suspension and BBR during the initial period, followed by complete dissolution of BBR over 24 hours. Notably, cell viability on HEK293 even increased up to 150% compared to the control sample at 100 µg/mL BBR-unloaded SLNs. CONCLUSION: Hence, SLNs may reveal a promising drug delivery system to broaden BBR treatment for oral administration.


Asunto(s)
Berberina , Nanopartículas , Humanos , Lípidos/química , Berberina/química , Disponibilidad Biológica , Células HEK293 , Nanopartículas/química , Administración Oral , Tamaño de la Partícula , Portadores de Fármacos/química
11.
Pharm Dev Technol ; 28(9): 877-883, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37828716

RESUMEN

The present study aimed to develop solid lipid nanoparticles of lutein (SLN/LT) with improved dissolution behavior and oral absorption. SLN/LT were prepared by a flash nanoprecipitation method using a multi-inlet vortex mixer, and their physicochemical, photochemical, and pharmacokinetic properties were evaluated. The mean particle size of SLN/LT re-dispersed in water was 237 nm, and small spherical particles with no significant aggregation were observed. LT significantly generated singlet oxygen upon exposure to pseudo-sunlight (250 W/m2, 1 h), suggesting its high photoreactivity. The remaining LT in LT solution, crystalline LT, and SLN/LT after irradiation with pseudo-sunlight (250 W/m2, 2 h) were 56.3, 86.7, and 101%, respectively. SLN/LT showed improved dissolution behavior of LT in simulated intestinal fluid, and the dissolved amounts of LT at 2 h were at least 50 times higher than that of crystalline LT. Orally administered SLN/LT (100 mg-LT/kg) exhibited enhanced oral absorption of LT, as evidenced by a relative bioavailability of 3.7 to crystalline LT in rats. SLN/LT may be a promising dosage form for orally available LT supplements, possibly leading to enhanced nutritional functions of LT.


Asunto(s)
Luteína , Nanopartículas , Ratas , Animales , Lípidos/química , Nanopartículas/química , Fenómenos Químicos , Tamaño de la Partícula , Administración Oral , Disponibilidad Biológica
12.
Int J Pharm ; 642: 123163, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37353100

RESUMEN

Breast cancer remains the leading cause of cancer-associated mortality in women. Research investigating novel therapeutic approaches is thus crucial, including phytotherapeutics. Pterostilbene (PTS) is a phytochemical agent with promising efficacy against breast cancer. Poor solubility, low bioavailability and chemical instability are major drawbacks compromising PTS functionality. Herein, novel PTS-loaded solid lipid nanoparticles (PTS-SLNs) were fabricated using the ultrasonication technique. Dual-functionalization with lactoferrin (Lf) and chondroitin-sulfate (CS; CS/Lf/PTS-SLNs) was adopted as active-targeting approach. CS/Lf/PTS-SLNs demonstrated nanoparticle-size (223.42 ± 18.71 nm), low PDI (0.33 ± 0.017), acceptable zeta potential (-11.85 ± 0.07 mV) and controlled release (72.93 ± 2.93% after 24 h). In vitro studies on triple-negative MDA-MB-231 revealed prominent cytotoxicity of CS/Lf/PTS-SLNs (2.63-fold IC50 reduction), higher anti-migratory effect and cellular uptake relative to PTS-solution. The in vivo anti-tumor efficacy in an orthotopic cancer model verified the superiority of CS/Lf/PTS-SLNs; achieving 2.4-fold decrease in tumor growth compared to PTS-solution. On the molecular level, CS/Lf/PTS-SLNs enhanced suppression of VEGF, down-regulated cyclin D1 and upregulated caspase-3 and BAX, compared to PTS-solution. Also, immunohistochemical assay confirmed the higher anti-tumorigenic effect of CS/Lf/PTS-SLNs (5.87-fold decrease in Bcl-2 expression) compared to PTS-solution. Our findings highlight CS/Lf/PTS-SLNs as a promising nanoplatform for phytotherapeutic targeted-breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Lactoferrina/química , Condroitín/uso terapéutico , Lípidos/química , Nanopartículas/química , Portadores de Fármacos/uso terapéutico , Tamaño de la Partícula
13.
Meat Sci ; 200: 109157, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36913796

RESUMEN

The antioxidant effect of betel leaf extract (BLE) on lipid and protein oxidation, microbial count and physicochemical attributes was investigated in meat sausages during refrigerated storage at 4 ± 1 °C. Buffalo meat sausages were developed after incorporating 0, 250, 500 and 750 mg kg-1 of BLE (BLE0, BLE1, BLE2 and BLE3) respectively. The sausages showed no changes in proximate composition due to BLE inclusion, but there was an improvement in microbial quality, color score, textural properties and lipid and protein oxidative stability. Further, higher sensory scores were observed for the BLE-incorporated samples. The images from scanning electron microscopy (SEM) revealed a reduction in surface roughness and unevenness showing microstructure modification in BLE treated sausages compared to the control sausages. Hence, to improve the storage stability and impede the rate of lipid oxidation in sausages, BLE incorporation proved to be an effective strategy.


Asunto(s)
Antiinfecciosos , Búfalos , Animales , Carne/análisis , Lípidos/química , Extractos Vegetales , Estrés Oxidativo , Fitoquímicos
14.
Food Chem ; 414: 135718, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36827783

RESUMEN

Although protein-polysaccharide complexes have shown tremendous potential in stabilizing high internal phase Pickering emulsions (HIPPEs), it is unclear whether coacervates have the same potential to be used as effective Pickering stabilizers. In this study, HIPPEs were prepared by ovalbumin (OVA)-pectin (PE) coacervates during the transition from coacervates to complexes. The results showed that enhanced OVA-PE interactions significantly affected the wettability and surface-tension reduction ability of the OVA-PE coacervates. At pH 2, the coacervate-stabilized HIPPEs exhibited smaller oil droplet sizes (21.3±2.3 µm), tighter droplet packing, and finer solid-like structures through the bridging of droplets and the generation of stronger gel-like network structures to prevent coalescence and lipid oxidation. The gastrointestinal digestion results proved that the OVA-PE coacervates promoted lipid hydrolysis and improved the bioaccessibility (from 19.7±0.7% to 36.5±2%) of curcumin-loaded HIPPEs. Our work provides new ideas for the development of biopolymer particles as effective Pickering stabilizers in the food industry.


Asunto(s)
Alimentos , Pectinas , Emulsiones/química , Tamaño de la Partícula , Lípidos/química , Digestión
15.
Nanoscale ; 15(6): 2602-2613, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36484313

RESUMEN

We previously established a nanoparticle-based drug delivery system (DDS) for high-dose ascorbic acid therapy by self-assembly of a lipid-modified ascorbic acid derivative, L-ascorbyl 2,6-dipalmitate (ASC-DP). The particles' morphology should be modified for effective DDSs. Here, we modulated the morphology of self-assembled ASC-DP nanoparticles using two different PEGylated lipids, distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) and cholesterol-polyethylene glycol (Chol-PEG), with various PEG molecular weights. At the preparation molar ratio of 10 : 1 (ASC-DP/PEGylated lipid), rod-like nanoparticles emerged in the ASC-DP/DSPE-PEG system, whereas the ASC-DP/Chol-PEG system yielded tube-like nanoparticles. The internal structures of both rod-like ASC-DP/DSPE-PEG and tube-like ASC-DP/Chol-PEG nanoparticles were similar to that of repeated ASC-DP bilayers. The particles' surfaces featured PEGylated lipids, which stabilized the structure and dispersion of the nanoparticles. For both systems, the particle size increased slightly with increasing the PEGylated lipid's PEG molecular weight. Increasing the PEG molecular weight decreased the inner tunnel size of tube-like ASC-DP/Chol-PEG nanoparticles. A mechanism has been proposed for the rod-to-tube transformation. Surface-layer free-energy changes owing to the mixing of multiple lipids and PEG chain repulsion are thought to underlie the inner tunnels' formation. The rod-to-tube morphology of self-assembled ASC-DP nanoparticles can be modulated by controlling the PEGylated lipids' structure, including the lipid species and the PEG chain length.


Asunto(s)
Nanopartículas , Polietilenglicoles , Polietilenglicoles/química , Nanopartículas/química , Ácido Ascórbico/química , Lípidos/química
16.
Food Chem ; 403: 134465, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36358082

RESUMEN

This study investigated the impacts of individual emulsifiers on the physicochemical stability, antioxidant ability, and in vitro digestion behavior of lutein-loaded nanostructured lipid carriers (NLCs). NLCs particles stabilized by ethyl lauroyl arginate, rhamnolipid, or tea saponin were fabricated by high-pressure microfluidization method. Differential scanning calorimetry and X-ray diffraction results confirmed the regulatory effect of emulsifiers on the crystallization behavior of NLCs. NLCs stabilized by rhamnolipid presented higher encapsulation efficiency (94.73%) for lutein than those stabilized by tea saponin (90.39%) or ethyl lauroyl arginate (88.86%). Meanwhile, the stability of embedded lutein during storage or photothermal treatments was greatly enhanced. Individual emulsifiers, together with lutein, endowed NLCs with excellent antioxidant capacity. During in vitro digestion, rhamnolipid-stabilized NLCs showed the slowest release of free fatty acids (50.87%) and provided an optimal sustained release for lutein with relatively high bioaccessibility (23.01%).


Asunto(s)
Nanoestructuras , Saponinas , Antioxidantes , Portadores de Fármacos/química , Luteína , Lípidos/química , Tamaño de la Partícula , Nanoestructuras/química , Emulsionantes/química ,
17.
Drug Deliv Transl Res ; 13(2): 642-657, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36008703

RESUMEN

Buccal drug administration may be chosen as a medication route to treat various diseases for local or systemic effects. This study proposes the development of a thermosensitive hydrogel containing curcumin-loaded lipid-core nanocapsules coated with chitosan to increase mucoadhesion, circumventing several limitations of this route of administration. Hydroxypropylmethylcellulose and Poloxamer® 407 were incorporated for hydrogel production. Physicochemical characterization parameters, such as particle size distribution, mean diameter, polydispersity index, zeta potential, and morphology, were analyzed. Spherical homogeneous particles were obtained with average diameter, of 173 ± 22 nm for LNCc (curcumin lipid-core nanocapsules) and 179 ± 48 nm for CLNCc (chitosan-curcumin lipid-core nanocapsules). A PDI equal to 0.09 ± 0.02 for LNCc and 0.26 ± 0.01 for CLNCc confirmed homogeneity. Tensile analysis and washability test on porcine buccal mucosa indicated higher mucoadhesion for hydrogels in comparison to the nanocapsules in suspension, remaining on the mucous membrane up to 8 h (10.92 ± 3.95 µg of curcumin washed for H-LNCc and 28.41 ± 24.47 µg for H-CLNCc) versus the latter, which remained washed on the membrane for 90 min only (62.60 ± 4.72 µg for LNCc and 52.08 ± 1.63 µg for CLNCc). The irritant potential (IR) of the formulations was evaluated by the hen's egg chorioallantoic membrane test (HET-CAM), with no irritation phenomena observed. Formulations were tested for their efficacy in an in vitro model against oral squamous cancer cell line, showing a significant reduction in cell viability on all tested groups. These findings demonstrated that the proposed nanosystem is mucoadhesive and has potential to deliver buccal treatments.


Asunto(s)
Carcinoma de Células Escamosas , Quitosano , Curcumina , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Nanocápsulas , Animales , Femenino , Porcinos , Nanocápsulas/química , Hidrogeles , Quitosano/química , Carcinoma de Células Escamosas de Cabeza y Cuello , Pollos , Neoplasias de la Boca/tratamiento farmacológico , Lípidos/química
18.
Molecules ; 27(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557947

RESUMEN

The biological activity of natural plant-oil-based nanostructured lipid carriers (NPO-NLCs) can be enhanced by the encapsulation of bioactive compounds, and they in turn can improve topical delivery of the drugs. Quercetin (QR), a vital plant flavonoid, expresses antibacterial properties, and we recently showed that empty NPO-NLCs also have antimicrobial activity. The main objective of this study was to evaluate the synergetic effect of loading natural plant-oil-based nanostructured lipid carriers with quercetin (QR-NPO-NLCs) as a topical delivery system for the treatment of bacterial skin infections. Five nanostructured lipid carrier systems containing different oils (sunflower, olive, corn, coconut, and castor) were engineered. The particles' stability, structural properties, bioavailability, and antimicrobial activity were studied. NLCs with an average size of <200 nm and Z-potential of −40 mV were developed. Stable QR-NPO-NLCs were obtained with high encapsulation efficiency (>99%). The encapsulation of QR decreased cytotoxicity and increased the antioxidant effect of nanocarriers. An increase in antibacterial activity of the systems containing QR was demonstrated against Staphylococcus aureus. QR-NPO-NLCs could transport QR to an intranuclear location within HaCaT cells, indicating that QR-NPO-NLCs are promising candidates for controlled topical drug delivery.


Asunto(s)
Antiinfecciosos , Nanoestructuras , Portadores de Fármacos/química , Quercetina/farmacología , Lípidos/química , Nanoestructuras/química , Aceites , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Tamaño de la Partícula
19.
J Microencapsul ; 39(7-8): 626-637, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36398605

RESUMEN

Anacardium occidentale (AO) possesses potent anti-diabetic properties, owing to its high phytochemicals content. This study attempted to maximise the efficacy of AO by encapsulating it in a solid lipid microparticle (SLMs) formulation. Leaves of AO were extracted with water and formulated into SLMs using a lipid matrix composed of P90H and Dika fat. Characterisation of the SLMs include morphology, particle size, pH, encapsulation efficiency percentage, in vitro release and anti-diabetic properties. SLMs were spherical with sizes ranging from 16.7 ± 0.8 µm to 40.12 ± 2.34 µm and had a fairly stable pH over time. Highest drug entrapment was 87%. Batch A2 exhibited an even release of 89%, sustained over time, and a mean percentage reduction in glucose of 25.9% at 12 h after oral administration to study animals. Anacardium occidentale-loaded SLMs exhibited a good hypoglycaemic effect and can be used in the management of diabetes.


Asunto(s)
Hipoglucemiantes , Lípidos , Animales , Hipoglucemiantes/uso terapéutico , Lípidos/química , Tamaño de la Partícula , Portadores de Fármacos/química
20.
J Pharm Sci ; 111(12): 3384-3396, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36189477

RESUMEN

Taking into consideration the latest reported beneficial anticolvusant effects of cannabidiol (CBD) and cannabiodiolic acid (CBDA) for clinical applications and the advantages of lipid nano-systems as carriers for targeted brain delivery, the aim of this study was set in direction of in vitro physico-chemical and biopharmaceutical characterization and in vivo evaluation of nanoliposomes and nanostructured lipid carriers loaded with Cannabis sativa extract intended for safe and efficient transport via blood-brain barrier and treatment of epilepsy. These nanoliposomes and nanostructured lipid formulations were characterized with z-average diameter <200 nm, following unimodal particle size distribution, negative values for Z-potential, high drug encapsulation efficiency and prolonged release during 24h (38.84-60.91 %). Prepared formulations showed statistically significant higher antioxidant capacity compared to the extract. The results from in vivo studies of the anticonvulsant activity demonstrated that all formulations significantly elevated the latencies for myoclonic, clonic and tonic seizures and, therefore, could be used in preventing different types of seizures. A distinction in the potential of the nano-systems was noted, which was probably anticipated by the type and the characteristics of the prepared formulations.


Asunto(s)
Cannabis , Epilepsia , Tamaño de la Partícula , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Lípidos/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA