Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 716
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6869, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898638

RESUMEN

Learning of adaptive behaviors requires the refinement of coordinated activity across multiple brain regions. However, how neural communications develop during learning remains poorly understood. Here, using two-photon calcium imaging, we simultaneously recorded the activity of layer 2/3 excitatory neurons in eight regions of the mouse dorsal cortex during learning of a delayed-response task. Across learning, while global functional connectivity became sparser, there emerged a subnetwork comprising of neurons in the anterior lateral motor cortex (ALM) and posterior parietal cortex (PPC). Neurons in this subnetwork shared a similar choice code during action preparation and formed recurrent functional connectivity across learning. Suppression of PPC activity disrupted choice selectivity in ALM and impaired task performance. Recurrent neural networks reconstructed from ALM activity revealed that PPC-ALM interactions rendered choice-related attractor dynamics more stable. Thus, learning constructs cortical network motifs by recruiting specific inter-areal communication channels to promote efficient and robust sensorimotor transformation.


Asunto(s)
Memoria a Corto Plazo , Corteza Motora , Ratones , Animales , Memoria a Corto Plazo/fisiología , Lóbulo Parietal/fisiología , Neuronas/fisiología , Corteza Motora/fisiología , Redes Neurales de la Computación
2.
J Comp Neurol ; 531(17): 1752-1771, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37702312

RESUMEN

In this study, thalamic connections of the caudal part of the posterior parietal cortex (PPCc) are described and compared to connections of the rostral part of PPC (PPCr) in strepsirrhine galagos. PPC of galagos is divided into two parts, PPCr and PPCc, based on the responsiveness to electrical stimulation. Stimulation of PPC with long trains of electrical pulses evokes different types of ethologically relevant movements from different subregions ("domains") of PPCr, while it fails to evoke any movements from PPCc. Anatomical tracers were placed in both dorsal and ventral divisions of PPCc to reveal thalamic origins and targets of PPCc connections. We found major thalamic connections of PPCc with the lateral posterior and lateral pulvinar nuclei, distinct from those of PPCr that were mainly with the ventral lateral, anterior pulvinar, and posterior nuclei. The anterior, medial, and inferior pulvinar, ventral anterior, ventral lateral, and intralaminar nuclei had fewer connections with PPCc. Dominant connections of PPCc with lateral posterior and lateral pulvinar nuclei provide evidence that unlike the sensorimotor-orientated PPCr, PPCc is more involved in visual-related functions.


Asunto(s)
Galago , Lóbulo Parietal , Animales , Galago/fisiología , Vías Nerviosas/fisiología , Lóbulo Parietal/fisiología , Tálamo/fisiología , Movimiento/fisiología , Núcleos Talámicos
3.
J Cogn Neurosci ; 35(9): 1394-1409, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37315333

RESUMEN

Hypnosis has been shown to be of clinical utility; however, its underlying neural mechanisms remain unclear. This study aims to investigate altered brain dynamics during the non-ordinary state of consciousness induced by hypnosis. We studied high-density EEG in 9 healthy participants during eyes-closed wakefulness and during hypnosis, induced by a muscle relaxation and eyes fixation procedure. Using hypotheses based on internal and external awareness brain networks, we assessed region-wise brain connectivity between six ROIs (right and left frontal, right and left parietal, upper and lower midline regions) at the scalp level and compared across conditions. Data-driven, graph-theory analyses were also carried out to characterize brain network topology in terms of brain network segregation and integration. During hypnosis, we observed (1) increased delta connectivity between left and right frontal, as well as between right frontal and parietal regions; (2) decreased connectivity for alpha (between right frontal and parietal and between upper and lower midline regions) and beta-2 bands (between upper midline and right frontal, frontal and parietal, also between upper and lower midline regions); and (3) increased network segregation (short-range connections) in delta and alpha bands, and increased integration (long-range connections) in beta-2 band. This higher network integration and segregation was measured bilaterally in frontal and right parietal electrodes, which were identified as central hub regions during hypnosis. This modified connectivity and increased network integration-segregation properties suggest a modification of the internal and external awareness brain networks that may reflect efficient cognitive-processing and lower incidences of mind-wandering during hypnosis.


Asunto(s)
Estado de Conciencia , Hipnosis , Humanos , Estado de Conciencia/fisiología , Encéfalo/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Vigilia , Mapeo Encefálico
4.
Anat Sci Int ; 98(4): 473-481, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37340095

RESUMEN

Recent evidence has shown that the precuneus plays a role in the pathogenesis of schizophrenia. The precuneus is a structure of the parietal lobe's medial and posterior cortex, representing a central hub involved in multimodal integration processes. Although neglected for several years, the precuneus is highly complex and crucial for multimodal integration. It has extensive connections with different cerebral areas and is an interface between external stimuli and internal representations. In human evolution, the precuneus has increased in size and complexity, allowing the development of higher cognitive functions, such as visual-spatial ability, mental imagery, episodic memory, and other tasks involved in emotional processing and mentalization. This paper reviews the functions of the precuneus and discusses them concerning the psychopathological aspects of schizophrenia. The different neuronal circuits, such as the default mode network (DMN), in which the precuneus is involved and its alterations in the structure (grey matter) and the disconnection of pathways (white matter) are described.


Asunto(s)
Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Mapeo Encefálico , Esquizofrenia/patología , Lóbulo Parietal/patología , Lóbulo Parietal/fisiología , Corteza Cerebral , Vías Nerviosas/fisiología
5.
eNeuro ; 10(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37221090

RESUMEN

The imagination of tactile stimulation has been shown to activate primary somatosensory cortex (S1) with a somatotopic specificity akin to that seen during the perception of tactile stimuli. Using fMRI and multivariate pattern analysis, we investigate whether this recruitment of sensory regions also reflects content-specific activation (i.e., whether the activation in S1 is specific to the mental content participants imagined). To this end, healthy volunteers (n = 21) either perceived or imagined three types of vibrotactile stimuli (mental content) while fMRI data were acquired. Independent of the content, during tactile mental imagery we found activation of frontoparietal regions, supplemented with activation in the contralateral BA2 subregion of S1, replicating previous reports. While the imagery of the three different stimuli did not reveal univariate activation differences, using multivariate pattern classification, we were able to decode the imagined stimulus type from BA2. Moreover, cross-classification revealed that tactile imagery elicits activation patterns similar to those evoked by the perception of the respective stimuli. These findings promote the idea that mental tactile imagery involves the recruitment of content-specific activation patterns in sensory cortices, namely in S1.


Asunto(s)
Mapeo Encefálico , Corteza Somatosensorial , Humanos , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/fisiología , Lóbulo Parietal/fisiología , Tacto , Imaginación/fisiología , Imagen por Resonancia Magnética
6.
Cereb Cortex ; 33(11): 6742-6760, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36757182

RESUMEN

Auditory gating (AG) is an adaptive mechanism for filtering out redundant acoustic stimuli to protect the brain against information overload. AG deficits have been found in many mental illnesses, including schizophrenia (SZ). However, the neural correlates of AG remain poorly understood. Here, we found that the posterior parietal cortex (PPC) shows an intermediate level of AG in auditory thalamocortical circuits, with a laminar profile in which the strongest AG is in the granular layer. Furthermore, AG of the PPC was decreased and increased by optogenetic inactivation of the medial dorsal thalamic nucleus (MD) and auditory cortex (AC), respectively. Optogenetically activating the axons from the MD and AC drove neural activities in the PPC without an obvious AG. These results indicated that AG in the PPC is determined by the integrated signal streams from the MD and AC in a bottom-up manner. We also found that a mouse model of SZ (postnatal administration of noncompetitive N-methyl-d-aspartate receptor antagonist) presented an AG deficit in the PPC, which may be inherited from the dysfunction of MD. Together, our findings reveal a neural circuit underlying the generation of AG in the PPC and its involvement in the AG deficit of SZ.


Asunto(s)
Corteza Auditiva , Vigilia , Ratones , Animales , Lóbulo Parietal/fisiología , Tálamo , Núcleo Talámico Mediodorsal , Encéfalo , Corteza Auditiva/fisiología
7.
J Comp Neurol ; 531(1): 25-47, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36117273

RESUMEN

In prosimian galagos, the posterior parietal cortex (PPC) is subdivided into a number of functional domains where long-train intracortical microstimulation evoked different types of complex movements. Here, we placed anatomical tracers in multiple locations of PPC to reveal the origins and targets of thalamic connections of four PPC domains for different types of hindlimb, forelimb, or face movements. Thalamic connections of all four domains included nuclei of the motor thalamus, ventral anterior and ventral lateral nuclei, as well as parts of the sensory thalamus, the anterior pulvinar, posterior and ventral posterior superior nuclei, consistent with the sensorimotor functions of PPC domains. PPC domains also projected to the thalamic reticular nucleus in a somatotopic pattern. Quantitative differences in the distributions of labeled neurons in thalamic nuclei suggested that connectional patterns of these domains differed from each other.


Asunto(s)
Galago , Lóbulo Parietal , Animales , Galago/fisiología , Vías Nerviosas/fisiología , Lóbulo Parietal/fisiología , Tálamo/fisiología , Núcleos Talámicos
8.
Physiother Theory Pract ; 39(10): 2241-2250, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-35436161

RESUMEN

INTRODUCTION: This report examines the effects of a multimodal rehabilitation program which includes cognitive, physical, and somatosensory rehabilitation after right temporo-parietal tumor resection on cognitive, motor, somatosensory, and electrophysiological parameters. CASE DESCRIPTION: A 22-year-old patient presented with sensory loss in the dominant left hand and reduced writing ability after right temporo-parietal lobe resection. Cognitive, motor, and sensory evaluations were carried out pre and post-treatment. The patient's spontaneous electroencephalo-gram (EEG) and an EEG during application of transcutaneous electrical nerve stimulation (TENS) (TENS EEG) were recorded. As a reference for the patient's electrophysiological values, EEGs of 4 healthy individuals were also taken. Over a period of 1 year, the patient received multimodal rehabilitation which includes cognitive, physical, and somato-sensory rehabilitation on 2 days each week. OUTCOMES: An improvement of the patient's cognitive capacities, motor strength, superficial, deep and cortical sensations was achieved. After rehabilitation, an increase in parietal and occipital alpha activity as well as in frontal and parietal beta activity was seen both in spontaneous EEG and in TENS EEG. With increasing TENS intensity, alpha and beta power increased as well. CONCLUSION: Our findings suggest that a multimodal rehabilitation program may improve cognitive, sensory, and motor effects after resection due to tumor surgery.


Asunto(s)
Neoplasias , Estimulación Eléctrica Transcutánea del Nervio , Humanos , Adulto Joven , Adulto , Lóbulo Parietal/cirugía , Lóbulo Parietal/fisiología , Mano , Electroencefalografía , Cognición
9.
Cereb Cortex ; 32(9): 1787-1803, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-34546356

RESUMEN

The posterior parietal cortex (PPC) is important for visuospatial attention. The primate PPC shows functional differentiation such that dorsal areas are implicated in top-down, controlled attention, and ventral areas are implicated in bottom-up, stimulus-driven attention. Whether the rat PPC also shows such functional differentiation is unknown. Here, we address this open question using functional neuroanatomy and in vivo electrophysiology. Using conventional tract-tracing methods, we examined connectivity with other structures implicated in visuospatial attention including the lateral posterior nucleus of the thalamus (LPn) and the postrhinal cortex (POR). We showed that the LPn projects to the entire PPC, preferentially targeting more ventral areas. All parts of the PPC and POR are reciprocally connected with the strongest connections evident between ventral PPC and caudal POR. Next, we simultaneously recorded neuronal activity in dorsal and ventral PPC as rats performed a visuospatial attention (VSA ) task that engages in both bottom-up and top-down attention. Previously, we provided evidence that the dorsal PPC is engaged in multiple cognitive process including controlled attention (Yang et al. 2017). Here, we further showed that ventral PPC cells respond to stimulus onset more rapidly than dorsal PPC cells, providing evidence for a role in stimulus-driven, bottom-up attention.


Asunto(s)
Lóbulo Parietal , Tálamo , Animales , Corteza Cerebral/fisiología , Neuronas/fisiología , Lóbulo Parietal/fisiología , Ratas , Tálamo/anatomía & histología
10.
Neuroimage ; 245: 118733, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800664

RESUMEN

Neurofeedback (NF) aptitude, which refers to an individual's ability to change brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical applications to screen patients suitable for NF treatment. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude, independent of NF-targeting brain regions. We combined the data from fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the multiple regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Subsequently, the reproducibility of the prediction model was validated using independent test data from another site. The identified FC model revealed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting that NF aptitude may be involved in the attentional mode-orientation modulation system's characteristics in task-free resting-state brain activity.


Asunto(s)
Trastorno Depresivo Mayor/terapia , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiología , Imagen por Resonancia Magnética , Neurorretroalimentación , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Adulto , Conectoma , Conjuntos de Datos como Asunto , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Descanso
11.
J Neurosci ; 41(43): 8917-8927, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34497152

RESUMEN

Previous studies have shown that self-generated stimuli in auditory, visual, and somatosensory domains are attenuated, producing decreased behavioral and neural responses compared with the same stimuli that are externally generated. Yet, whether such attenuation also occurs for higher-level cognitive functions beyond sensorimotor processing remains unknown. In this study, we assessed whether cognitive functions such as numerosity estimations are subject to attenuation in 56 healthy participants (32 women). We designed a task allowing the controlled comparison of numerosity estimations for self-generated (active condition) and externally generated (passive condition) words. Our behavioral results showed a larger underestimation of self-generated compared with externally generated words, suggesting that numerosity estimations for self-generated words are attenuated. Moreover, the linear relationship between the reported and actual number of words was stronger for self-generated words, although the ability to track errors about numerosity estimations was similar across conditions. Neuroimaging results revealed that numerosity underestimation involved increased functional connectivity between the right intraparietal sulcus and an extended network (bilateral supplementary motor area, left inferior parietal lobule, and left superior temporal gyrus) when estimating the number of self-generated versus externally generated words. We interpret our results in light of two models of attenuation and discuss their perceptual versus cognitive origins.SIGNIFICANCE STATEMENT We perceive sensory events as less intense when they are self-generated compared with when they are externally generated. This phenomenon, called attenuation, enables us to distinguish sensory events from self and external origins. Here, we designed a novel fMRI paradigm to assess whether cognitive processes such as numerosity estimations are also subject to attenuation. When asking participants to estimate the number of words they had generated or passively heard, we found bigger underestimation in the former case, providing behavioral evidence of attenuation. Attenuation was associated with increased functional connectivity of the intraparietal sulcus, a region involved in numerosity processing. Together, our results indicate that the attenuation of self-generated stimuli is not limited to sensory consequences but is also impact cognitive processes such as numerosity estimations.


Asunto(s)
Estimulación Acústica/métodos , Cognición/fisiología , Red Nerviosa/fisiología , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiología , Habla/fisiología , Adolescente , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Proyectos Piloto , Adulto Joven
12.
J Integr Neurosci ; 20(1): 157-171, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33834704

RESUMEN

The superior parietal lobule of the macaque monkey occupies the postero-medial part of the parietal lobe and plays a crucial role in the integration of different sources of information (from visual, motor and somatosensory brain regions) for the purpose of high-level cognitive functions, as perception for action. This region encompasses the intraparietal sulcus and the parieto-occipital sulcus and includes also the precuneate cortex in the mesial surface of the hemisphere. It hosts several areas extensively studied in the macaque: PE, PEip, PEci anteriorly and PEc, MIP, PGm and V6A posteriorly. Recently studies based on functional MRI have suggested putative human homologue of some of the areas of the macaque superior parietal lobule. Here we review the anatomical subdivision, the cortico-cortical and thalamo-cortical connections of the macaque superior parietal lobule compared with their functional properties and the homology with human organization in physiological and lesioned situations. The knowledge of this part of the macaque brain could help in understanding pathological conditions that in humans affect the normal behaviour of arm-reaching actions and can inspire brain computer interfaces performing in more accurate ways the sensorimotor transformations needed to interact with the surrounding environment.


Asunto(s)
Corteza Cerebral , Procesos Mentales , Actividad Motora , Red Nerviosa , Lóbulo Parietal , Tálamo , Animales , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Humanos , Macaca , Procesos Mentales/fisiología , Actividad Motora/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Lóbulo Parietal/anatomía & histología , Lóbulo Parietal/fisiología , Tálamo/anatomía & histología , Tálamo/fisiología
13.
Sci Rep ; 11(1): 7454, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33811223

RESUMEN

Prospective judgments about one's capability to perform an action are assumed to involve mental simulation of the action. Previous studies of motor imagery suggest this simulation is supported by a large fronto-parietal network including the motor system. Experiment 1 used fMRI to assess the contribution of this fronto-parietal network to judgments about one's capacity to grasp objects of different sizes between index and thumb. The neural network underlying prospective graspability judgments overlapped the fronto-parietal network involved in explicit motor imagery of grasping. However, shared areas were located in the right hemisphere, outside the motor cortex, and were also activated during perceptual length judgments, suggesting a contribution to object size estimate rather than motor simulation. Experiment 2 used TMS over the motor cortex to probe transient excitability changes undetected with fMRI. Results show that graspability judgments elicited a selective increase of excitability in the thumb and index muscles, which was maximal before the object display and intermediate during the judgment. Together, these findings suggest that prospective action judgments do not rely on the motor system to simulate the action per se but to refresh the memory of one's maximal grip aperture and facilitate its comparison with object size in right fronto-parietal areas.


Asunto(s)
Lóbulo Frontal/fisiología , Juicio , Actividad Motora/fisiología , Lóbulo Parietal/fisiología , Encéfalo/fisiología , Mapeo Encefálico , Potenciales Evocados Motores/fisiología , Femenino , Fuerza de la Mano/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Factores de Tiempo , Estimulación Magnética Transcraneal , Adulto Joven
14.
Neuroimage ; 235: 118016, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33819609

RESUMEN

When primates (both human and non-human) learn to categorize simple visual or acoustic stimuli by means of non-verbal matching tasks, two types of changes occur in their brain: early sensory cortices increase the precision with which they encode sensory information, and parietal and lateral prefrontal cortices develop a categorical response to the stimuli. Contrary to non-human animals, however, our species mostly constructs categories using linguistic labels. Moreover, we naturally tend to define categories by means of multiple sensory features of the stimuli. Here we trained adult subjects to parse a novel audiovisual stimulus space into 4 orthogonal categories, by associating each category to a specific symbol. We then used multi-voxel pattern analysis (MVPA) to show that during a cross-format category repetition detection task three neural representational changes were detectable. First, visual and acoustic cortices increased both precision and selectivity to their preferred sensory feature, displaying increased sensory segregation. Second, a frontoparietal network developed a multisensory object-specific response. Third, the right hippocampus and, at least to some extent, the left angular gyrus, developed a shared representational code common to symbols and objects. In particular, the right hippocampus displayed the highest level of abstraction and generalization from a format to the other, and also predicted symbolic categorization performance outside the scanner. Taken together, these results indicate that when humans categorize multisensory objects by means of language the set of changes occurring in the brain only partially overlaps with that described by classical models of non-verbal unisensory categorization in primates.


Asunto(s)
Percepción Auditiva/fisiología , Encéfalo/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Adulto , Mapeo Encefálico , Corteza Cerebral/fisiología , Femenino , Hipocampo/fisiología , Humanos , Lenguaje , Imagen por Resonancia Magnética , Masculino , Lóbulo Parietal/fisiología , Estimulación Luminosa , Corteza Prefrontal/fisiología , Lóbulo Temporal/fisiología
15.
Cell Syst ; 12(4): 363-373.e11, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33730543

RESUMEN

The neural substrates of consciousness remain elusive. Competing theories that attempt to explain consciousness disagree on the contribution of frontal versus posterior cortex and omit subcortical influences. This lack of understanding impedes the ability to monitor consciousness, which can lead to adverse clinical consequences. To test substrates and measures of consciousness, we recorded simultaneously from frontal cortex, parietal cortex, and subcortical structures, the striatum and thalamus, in awake, sleeping, and anesthetized macaques. We manipulated consciousness on a finer scale using thalamic stimulation, rousing macaques from continuously administered anesthesia. Our results show that, unlike measures targeting complexity, a measure additionally capturing neural integration (Φ∗) robustly correlated with changes in consciousness. Machine learning approaches show parietal cortex, striatum, and thalamus contributed more than frontal cortex to decoding differences in consciousness. These findings highlight the importance of integration between parietal and subcortical structures and challenge a key role for frontal cortex in consciousness.


Asunto(s)
Estado de Conciencia/fisiología , Cuerpo Estriado/fisiología , Lóbulo Parietal/fisiología , Tálamo/fisiología , Femenino , Humanos , Masculino
16.
Neurobiol Aging ; 103: 12-21, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33774574

RESUMEN

The occurrence of a very infrequent and unattended auditory stimulus is highly salient and may result in an interruption of the frontoparietal network controlling processing priorities. Research has suggested that older adults may be unable to compute the level of salience of unattended stimulus inputs. A multi-channel EEG was recorded in 20 younger adults and 20 older adults. In different conditions, a single 80 dB SPL auditory stimulus was presented relatively rapidly, every 1.5 s or very slowly, every 12.0 s. Participants ignored the auditory stimuli while watching a silent video. When the stimuli were presented rapidly, group differences were not observed for the amplitudes of N1 and P2, which peaked at 100 and 180 ms respectively. When stimuli were presented very slowly, their amplitudes were much enhanced for younger adults, but did not increase for older adults. The failure to observe a large increase in the amplitude of N1 and P2 in older adults for very slowly presented auditory stimuli provides strong evidence of a dysfunction of the salience network in this group.


Asunto(s)
Estimulación Acústica , Envejecimiento/fisiología , Potenciales Evocados/fisiología , Lóbulo Frontal/fisiología , Red Nerviosa/fisiología , Lóbulo Parietal/fisiología , Adolescente , Anciano , Electroencefalografía , Femenino , Humanos , Masculino , Factores de Tiempo , Adulto Joven
17.
Behav Brain Res ; 404: 113157, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33592200

RESUMEN

Neural populations in the supramarginal gyrus (SMG) of the right hemisphere have been shown to be involved in processing the subjective experience of time, particularly because of their selectivity to specific temporal durations. To directly investigate this relationship, we applied high-frequency transcranial Random Noise Stimulation (hf-tRNS) on the right SMG during a duration judgment task: 24 participants were required to judge the duration of a test visual stimulus (350, 450, 550, 650 ms) as shorter or longer than the duration of a reference auditory stimulus (500 ms). In half of the trials this procedure was preceded by a visual adaptation paradigm, used as a tool to manipulate the subjective experience of time: for 12 participants the adaptor was shorter than the test (250 ms), and for 12 participants it was longer than the test (750 ms). All participants performed an online hf-tRNS session and a sham control session. For each participant and for each condition, the Point of Subjective Equality (PSE) was calculated and results revealed an expected negative aftereffect in the group exposed to a longer adaptor. Moreover, hf-tRNS modulated participants' performance with respect to sham, confirming the involvement of the right SMG in temporal experience. Importantly, only in the group exposed to the longer adaptor, PSE values were higher during stimulation than during sham, only after the adaptation procedure (no difference emerged in trials without adaptation). This pattern of results confirms recent neuroimaging findings, and adds a direct evidence of the causal role of this area in subjective time experience.


Asunto(s)
Lóbulo Parietal/fisiología , Percepción del Tiempo/fisiología , Estimulación Transcraneal de Corriente Directa , Estimulación Acústica , Adulto , Femenino , Humanos , Masculino , Estimulación Luminosa , Estimulación Transcraneal de Corriente Directa/métodos
18.
Neuroimage ; 224: 117414, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33011420

RESUMEN

Functional magnetic resonance imaging (fMRI) of awake and unrestrained dogs (Canis familiaris) has been established as a novel opportunity for comparative neuroimaging, promising important insights into the evolutionary roots of human brain function and cognition. However, data processing and analysis pipelines are often derivatives of methodological standards developed for human neuroimaging, which may be problematic due to profound neurophysiological and anatomical differences between humans and dogs. Here, we explore whether dog fMRI studies would benefit from a tailored dog haemodynamic response function (HRF). In two independent experiments, dogs were presented with different visual stimuli. BOLD signal changes in the visual cortex during these experiments were used for (a) the identification and estimation of a tailored dog HRF, and (b) the independent validation of the resulting dog HRF estimate. Time course analyses revealed that the BOLD signal in the primary visual cortex peaked significantly earlier in dogs compared to humans, while being comparable in shape. Deriving a tailored dog HRF significantly improved the model fit in both experiments, compared to the canonical HRF used in human fMRI. Using the dog HRF yielded significantly increased activation during visual stimulation, extending from the occipital lobe to the caudal parietal cortex, the bilateral temporal cortex, into bilateral hippocampal and thalamic regions. In sum, our findings provide robust evidence for an earlier onset of the dog HRF in two visual stimulation paradigms, and suggest that using such an HRF will be important to increase fMRI detection power in canine neuroimaging. By providing the parameters of the tailored dog HRF and related code, we encourage and enable other researchers to validate whether our findings generalize to other sensory modalities and experimental paradigms.


Asunto(s)
Neuroimagen Funcional/métodos , Imagen por Resonancia Magnética/métodos , Acoplamiento Neurovascular/fisiología , Corteza Visual/diagnóstico por imagen , Animales , Perros , Femenino , Hipocampo/diagnóstico por imagen , Hipocampo/fisiología , Procesamiento de Imagen Asistido por Computador , Masculino , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Mascotas , Estimulación Luminosa , Reproducibilidad de los Resultados , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Tálamo/diagnóstico por imagen , Tálamo/fisiología , Corteza Visual/fisiología , Vigilia
19.
J Neurosci ; 41(5): 1068-1079, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273069

RESUMEN

Our senses often receive conflicting multisensory information, which our brain reconciles by adaptive recalibration. A classic example is the ventriloquism aftereffect, which emerges following both cumulative (long-term) and trial-wise exposure to spatially discrepant multisensory stimuli. Despite the importance of such adaptive mechanisms for interacting with environments that change over multiple timescales, it remains debated whether the ventriloquism aftereffects observed following trial-wise and cumulative exposure arise from the same neurophysiological substrate. We address this question by probing electroencephalography recordings from healthy humans (both sexes) for processes predictive of the aftereffect biases following the exposure to spatially offset audiovisual stimuli. Our results support the hypothesis that discrepant multisensory evidence shapes aftereffects on distinct timescales via common neurophysiological processes reflecting sensory inference and memory in parietal-occipital regions, while the cumulative exposure to consistent discrepancies additionally recruits prefrontal processes. During the subsequent unisensory trial, both trial-wise and cumulative exposure bias the encoding of the acoustic information, but do so distinctly. Our results posit a central role of parietal regions in shaping multisensory spatial recalibration, suggest that frontal regions consolidate the behavioral bias for persistent multisensory discrepancies, but also show that the trial-wise and cumulative exposure bias sound position encoding via distinct neurophysiological processes.SIGNIFICANCE STATEMENT Our brain easily reconciles conflicting multisensory information, such as seeing an actress on screen while hearing her voice over headphones. These adaptive mechanisms exert a persistent influence on the perception of subsequent unisensory stimuli, known as the ventriloquism aftereffect. While this aftereffect emerges following trial-wise or cumulative exposure to multisensory discrepancies, it remained unclear whether both arise from a common neural substrate. We here rephrase this hypothesis using human electroencephalography recordings. Our data suggest that parietal regions involved in multisensory and spatial memory mediate the aftereffect following both trial-wise and cumulative adaptation, but also show that additional and distinct processes are involved in consolidating and implementing the aftereffect following prolonged exposure.


Asunto(s)
Estimulación Acústica/métodos , Lóbulo Parietal/fisiología , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología , Localización de Sonidos/fisiología , Percepción Visual/fisiología , Adulto , Percepción Auditiva/fisiología , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Adulto Joven
20.
Hum Brain Mapp ; 42(4): 922-940, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33169903

RESUMEN

Rumination, repetitively thinking about the causes, consequences, and one's negative affect, has been considered as an important factor of depression. The intrusion of ruminative thoughts is not easily controlled, and it may be useful to visualize one's neural activity related to rumination and to use that information to facilitate one's self-control. Real-time fMRI neurofeedback (rtfMRI-nf) enables one to see and regulate the fMRI signal from their own brain. This proof-of concept study utilized connectivity-based rtfMRI-nf (cnf) to normalize brain functional connectivity (FC) associated with rumination. Healthy participants were instructed to brake or decrease FC between the precuneus and the right temporoparietal junction (rTPJ), associated with high levels of rumination, while engaging in a self-referential task. The cnf group (n = 14) showed a linear decrease in the precuneus-rTPJ FC across neurofeedback training (trend [112] = -0.180, 95% confidence interval [CI] -0.330 to -0.031, while the sham group (n = 14) showed a linear increase in the target FC (trend [112] = 0.151, 95% CI 0.017 to 0.299). Although the cnf group showed a greater reduction in state-rumination compared to the sham group after neurofeedback training (p < .05), decoupled precuneus-rTPJ FC did not predict attenuated state-rumination. We did not find any significant aversive effects of rtfMRI-nf in all study participants. These results suggest that cnf has the capacity to influence FC among precuneus and rTPJ of a ruminative brain circuit. This approach can be applied to mood and anxiety patients to determine the clinical benefits of reduction in maladaptive rumination.


Asunto(s)
Conectoma , Red Nerviosa/fisiología , Neurorretroalimentación/métodos , Lóbulo Parietal/fisiología , Rumiación Cognitiva/fisiología , Lóbulo Temporal/fisiología , Adolescente , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Neurorretroalimentación/fisiología , Lóbulo Parietal/diagnóstico por imagen , Prueba de Estudio Conceptual , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA