Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.966
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Neuroreport ; 35(4): 269-276, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38305131

RESUMEN

This study explored how the human brain perceives stickiness through tactile and auditory channels, especially when presented with congruent or incongruent intensity cues. In our behavioral and functional MRI (fMRI) experiments, we presented participants with adhesive tape stimuli at two different intensities. The congruent condition involved providing stickiness stimuli with matching intensity cues in both auditory and tactile channels, whereas the incongruent condition involved cues of different intensities. Behavioral results showed that participants were able to distinguish between the congruent and incongruent conditions with high accuracy. Through fMRI searchlight analysis, we tested which brain regions could distinguish between congruent and incongruent conditions, and as a result, we identified the superior temporal gyrus, known primarily for auditory processing. Interestingly, we did not observe any significant activation in regions associated with somatosensory or motor functions. This indicates that the brain dedicates more attention to auditory cues than to tactile cues, possibly due to the unfamiliarity of conveying the sensation of stickiness through sound. Our results could provide new perspectives on the complexities of multisensory integration, highlighting the subtle yet significant role of auditory processing in understanding tactile properties such as stickiness.


Asunto(s)
Percepción Auditiva , Imagen por Resonancia Magnética , Humanos , Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Lóbulo Temporal , Percepción Visual/fisiología
2.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38183184

RESUMEN

Auditory sensory processing is assumed to occur in a hierarchical structure including the primary auditory cortex (A1), superior temporal gyrus, and frontal areas. These areas are postulated to generate predictions for incoming stimuli, creating an internal model of the surrounding environment. Previous studies on mismatch negativity have indicated the involvement of the superior temporal gyrus in this processing, whereas reports have been mixed regarding the contribution of the frontal cortex. We designed a novel auditory paradigm, the "cascade roving" paradigm, which incorporated complex structures (cascade sequences) into a roving paradigm. We analyzed electrocorticography data from six patients with refractory epilepsy who passively listened to this novel auditory paradigm and detected responses to deviants mainly in the superior temporal gyrus and inferior frontal gyrus. Notably, the inferior frontal gyrus exhibited broader distribution and sustained duration of deviant-elicited responses, seemingly differing in spatio-temporal characteristics from the prediction error responses observed in the superior temporal gyrus, compared with conventional oddball paradigms performed on the same participants. Moreover, we observed that the deviant responses were enhanced through stimulus repetition in the high-gamma range mainly in the superior temporal gyrus. These features of the novel paradigm may aid in our understanding of auditory predictive coding.


Asunto(s)
Corteza Auditiva , Electrocorticografía , Humanos , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Corteza Auditiva/fisiología , Lóbulo Temporal/fisiología , Estimulación Acústica , Percepción Auditiva/fisiología
3.
Phys Life Rev ; 48: 113-131, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38217888

RESUMEN

Theories of Visual Mental Imagery (VMI) emphasize the processes of retrieval, modification, and recombination of sensory information from long-term memory. Yet, only few studies have focused on the behavioral mechanisms and neural correlates supporting VMI of stimuli from different semantic domains. Therefore, we currently have a limited understanding of how the brain generates and maintains mental representations of colors, faces, shapes - to name a few. Such an undetermined scenario renders unclear the organizational structure of neural circuits supporting VMI, including the role of the early visual cortex. We aimed to fill this gap by reviewing the scientific literature of five semantic domains: visuospatial, face, colors, shapes, and letters imagery. Linking theory to evidence from over 60 different experimental designs, this review highlights three main points. First, there is no consistent activity in the early visual cortex across all VMI domains, contrary to the prediction of the dominant model. Second, there is consistent activity of the frontoparietal networks and the left hemisphere's fusiform gyrus during voluntary VMI irrespective of the semantic domain investigated. We propose that these structures are part of a domain-general VMI sub-network. Third, domain-specific information engages specific regions of the ventral and dorsal cortical visual pathways. These regions partly overlap with those found in visual perception studies (e.g., fusiform face area for faces imagery; lingual gyrus for color imagery). Altogether, the reviewed evidence suggests the existence of domain-general and domain-specific mechanisms of VMI selectively engaged by stimulus-specific properties (e.g., colors or faces). These mechanisms would be supported by an organizational structure mixing vertical and horizontal connections (heterarchy) between sub-networks for specific stimulus domains. Such a heterarchical organization of VMI makes different predictions from current models of VMI as reversed perception. Our conclusions set the stage for future research, which should aim to characterize the spatiotemporal dynamics and interactions among key regions of this architecture giving rise to visual mental images.


Asunto(s)
Mapeo Encefálico , Encéfalo , Percepción Visual , Lóbulo Temporal , Lóbulo Occipital
4.
Cortex ; 170: 26-31, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37926612

RESUMEN

The famous "Piazza del Duomo" paper, published in Cortex in 1978, inspired a considerable amount of research on visual mental imagery in brain-damaged patients. As a consequence, single-case reports featuring dissociations between perceptual and imagery abilities challenged the prevailing model of visual mental imagery. Here we focus on mental imagery for colors. A case study published in Cortex showed perfectly preserved color imagery in a patient with acquired achromatopsia after bilateral lesions at the borders between the occipital and temporal cortex. Subsequent neuroimaging findings in healthy participants extended and specified this result; color imagery elicited activation in both a domain-general region located in the left fusiform gyrus and the anterior color-biased patch within the ventral temporal cortex, but not in more posterior color-biased patches. Detailed studies of individual neurological patients, as those often published in Cortex, are still critical to inspire and constrain neurocognitive research and its theoretical models.


Asunto(s)
Lesiones Encefálicas , Imaginación , Humanos , Imaginación/fisiología , Lóbulo Temporal/fisiología , Corteza Cerebral , Imágenes en Psicoterapia , Percepción Visual/fisiología
5.
Curr Biol ; 34(1): 46-55.e4, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38096819

RESUMEN

Voices are the most relevant social sounds for humans and therefore have crucial adaptive value in development. Neuroimaging studies in adults have demonstrated the existence of regions in the superior temporal sulcus that respond preferentially to voices. Yet, whether voices represent a functionally specific category in the young infant's mind is largely unknown. We developed a highly sensitive paradigm relying on fast periodic auditory stimulation (FPAS) combined with scalp electroencephalography (EEG) to demonstrate that the infant brain implements a reliable preferential response to voices early in life. Twenty-three 4-month-old infants listened to sequences containing non-vocal sounds from different categories presented at 3.33 Hz, with highly heterogeneous vocal sounds appearing every third stimulus (1.11 Hz). We were able to isolate a voice-selective response over temporal regions, and individual voice-selective responses were found in most infants within only a few minutes of stimulation. This selective response was significantly reduced for the same frequency-scrambled sounds, indicating that voice selectivity is not simply driven by the envelope and the spectral content of the sounds. Such a robust selective response to voices as early as 4 months of age suggests that the infant brain is endowed with the ability to rapidly develop a functional selectivity to this socially relevant category of sounds.


Asunto(s)
Percepción Auditiva , Voz , Adulto , Lactante , Humanos , Percepción Auditiva/fisiología , Encéfalo/fisiología , Lóbulo Temporal/fisiología , Estimulación Acústica , Mapeo Encefálico
6.
Artículo en Inglés | MEDLINE | ID: mdl-38083588

RESUMEN

Brain-computer interface (BCI) based on speech imagery can decode users' verbal intent and help people with motor disabilities communicate naturally. Functional near-infrared spectroscopy (fNIRS) is a commonly used brain signal acquisition method. Asynchronous BCI can response to control commands at any time, which provides great convenience for users. Task state detection, defined as identifying whether user starts or continues covertly articulating, plays an important role in speech imagery BCIs. To better distinguish task state from idle state during speech imagery, this work used fNIRS signals from different brain regions to study the effects of different brain regions on task state detection accuracy. The imagined tonal syllables included four lexical tones and four vowels in Mandarin Chinese. The brain regions that were measured included Broca's area, Wernicke's area, Superior temporal cortex and Motor cortex. Task state detection accuracies of imagining tonal monosyllables with four different tones were analyzed. The average accuracy of four speech imagery tasks based on the whole brain was 0.67 and it was close to 0.69, which was the average accuracy based on Broca's area. The accuracies of Broca's area and the whole brain were significantly higher than those of other brain regions. The findings of this work demonstrated that using a few channels of Broca's area could result in a similar task state detection accuracy to that using all the channels of the brain. Moreover, it was discovered that speech imagery with tone 2/3 tasks yielded higher task state detection accuracy than speech imagery with other tones.


Asunto(s)
Corteza Motora , Habla , Humanos , Habla/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imágenes en Psicoterapia , Lóbulo Temporal , Corteza Motora/fisiología
7.
Elife ; 122023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37987578

RESUMEN

One of the most common distinctions in long-term memory is that between semantic (i.e., general world knowledge) and episodic (i.e., recollection of contextually specific events from one's past). However, emerging cognitive neuroscience data suggest a surprisingly large overlap between the neural correlates of semantic and episodic memory. Moreover, personal semantic memories (i.e., knowledge about the self and one's life) have been studied little and do not easily fit into the standard semantic-episodic dichotomy. Here, we used fMRI to record brain activity while 48 participants verified statements concerning general facts, autobiographical facts, repeated events, and unique events. In multivariate analysis, all four types of memory involved activity within a common network bilaterally (e.g., frontal pole, paracingulate gyrus, medial frontal cortex, middle/superior temporal gyrus, precuneus, posterior cingulate, angular gyrus) and some areas of the medial temporal lobe. Yet the four memory types differentially engaged this network, increasing in activity from general to autobiographical facts, from autobiographical facts to repeated events, and from repeated to unique events. Our data are compatible with a component process model, in which declarative memory types rely on different weightings of the same elementary processes, such as perceptual imagery, spatial features, and self-reflection.


Asunto(s)
Memoria Episódica , Semántica , Humanos , Lóbulo Temporal , Lóbulo Parietal , Imagen por Resonancia Magnética , Mapeo Encefálico , Recuerdo Mental , Encéfalo/diagnóstico por imagen
8.
Schizophr Res ; 261: 60-71, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37708723

RESUMEN

BACKGROUND: Reduced auditory mismatch negativity (MMN) is robustly impaired in schizophrenia. However, mechanisms underlying dysfunctional MMN generation remain incompletely understood. This study aimed to examine the role of evoked spectral power and phase-coherence towards deviance detection and its impairments in schizophrenia. METHODS: Magnetoencephalography data was collected in 16 male schizophrenia patients and 16 male control participants during an auditory MMN paradigm. Analyses of event-related fields (ERF), spectral power and inter-trial phase-coherence (ITPC) focused on Heschl's gyrus, superior temporal gyrus, inferior/medial frontal gyrus and thalamus. RESULTS: MMNm ERF amplitudes were reduced in patients in temporal, frontal and subcortical regions, accompanied by decreased theta-band responses, as well as by a diminished gamma-band response in auditory cortex. At theta/alpha frequencies, ITPC to deviant tones was reduced in patients in frontal cortex and thalamus. Patients were also characterized by aberrant responses to standard tones as indexed by reduced theta-/alpha-band power and ITPC in temporal and frontal regions. Moreover, stimulus-specific adaptation was decreased at theta/alpha frequencies in left temporal regions, which correlated with reduced MMNm spectral power and ERF amplitude. Finally, phase-reset of alpha-oscillations after deviant tones in left thalamus was impaired, which correlated with impaired MMNm generation in auditory cortex. Importantly, both non-rhythmic and rhythmic components of spectral activity contributed to the MMNm response. CONCLUSIONS: Our data indicate that deficits in theta-/alpha- and gamma-band activity in cortical and subcortical regions as well as impaired spectral responses to standard sounds could constitute potential mechanisms for dysfunctional MMN generation in schizophrenia, providing a novel perspective towards MMN deficits in the disorder.


Asunto(s)
Magnetoencefalografía , Esquizofrenia , Humanos , Masculino , Estimulación Acústica , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Lóbulo Frontal , Lóbulo Temporal , Estudios de Casos y Controles
9.
PLoS Biol ; 21(8): e3002176, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37582062

RESUMEN

Music is core to human experience, yet the precise neural dynamics underlying music perception remain unknown. We analyzed a unique intracranial electroencephalography (iEEG) dataset of 29 patients who listened to a Pink Floyd song and applied a stimulus reconstruction approach previously used in the speech domain. We successfully reconstructed a recognizable song from direct neural recordings and quantified the impact of different factors on decoding accuracy. Combining encoding and decoding analyses, we found a right-hemisphere dominance for music perception with a primary role of the superior temporal gyrus (STG), evidenced a new STG subregion tuned to musical rhythm, and defined an anterior-posterior STG organization exhibiting sustained and onset responses to musical elements. Our findings show the feasibility of applying predictive modeling on short datasets acquired in single patients, paving the way for adding musical elements to brain-computer interface (BCI) applications.


Asunto(s)
Corteza Auditiva , Música , Humanos , Corteza Auditiva/fisiología , Mapeo Encefálico , Percepción Auditiva/fisiología , Lóbulo Temporal/fisiología , Estimulación Acústica
10.
Appl Psychophysiol Biofeedback ; 48(4): 439-451, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37405548

RESUMEN

Removal of the mesial temporal lobe (MTL) is an established surgical procedure that leads to seizure freedom in patients with intractable MTL epilepsy; however, it carries the potential risk of memory damage. Neurofeedback (NF), which regulates brain function by converting brain activity into perceptible information and providing feedback, has attracted considerable attention in recent years for its potential as a novel complementary treatment for many neurological disorders. However, no research has attempted to artificially reorganize memory functions by applying NF before resective surgery to preserve memory functions. Thus, this study aimed (1) to construct a memory NF system that used intracranial electrodes to feedback neural activity on the language-dominant side of the MTL during memory encoding and (2) to verify whether neural activity and memory function in the MTL change with NF training. Two intractable epilepsy patients with implanted intracranial electrodes underwent at least five sessions of memory NF training to increase the theta power in the MTL. There was an increase in theta power and a decrease in fast beta and gamma powers in one of the patients in the late stage of memory NF sessions. NF signals were not correlated with memory function. Despite its limitations as a pilot study, to our best knowledge, this study is the first to report that intracranial NF may modulate neural activity in the MTL, which is involved in memory encoding. The findings provide important insights into the future development of NF systems for the artificial reorganization of memory functions.


Asunto(s)
Epilepsia del Lóbulo Temporal , Neurorretroalimentación , Humanos , Proyectos Piloto , Lóbulo Temporal/fisiología , Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/cirugía , Imagen por Resonancia Magnética/métodos , Hipocampo
11.
Brain Topogr ; 36(5): 686-697, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37393418

RESUMEN

BACKGROUND: Functional near-infrared spectroscopy (fNIRS) is a viable non-invasive technique for functional neuroimaging in the cochlear implant (CI) population; however, the effects of acoustic stimulus features on the fNIRS signal have not been thoroughly examined. This study examined the effect of stimulus level on fNIRS responses in adults with normal hearing or bilateral CIs. We hypothesized that fNIRS responses would correlate with both stimulus level and subjective loudness ratings, but that the correlation would be weaker with CIs due to the compression of acoustic input to electric output. METHODS: Thirteen adults with bilateral CIs and 16 with normal hearing (NH) completed the study. Signal-correlated noise, a speech-shaped noise modulated by the temporal envelope of speech stimuli, was used to determine the effect of stimulus level in an unintelligible speech-like stimulus between the range of soft to loud speech. Cortical activity in the left hemisphere was recorded. RESULTS: Results indicated a positive correlation of cortical activation in the left superior temporal gyrus with stimulus level in both NH and CI listeners with an additional correlation between cortical activity and perceived loudness for the CI group. The results are consistent with the literature and our hypothesis. CONCLUSIONS: These results support the potential of fNIRS to examine auditory stimulus level effects at a group level and the importance of controlling for stimulus level and loudness in speech recognition studies. Further research is needed to better understand cortical activation patterns for speech recognition as a function of both stimulus presentation level and perceived loudness.


Asunto(s)
Corteza Auditiva , Implantes Cocleares , Percepción del Habla , Adulto , Humanos , Espectroscopía Infrarroja Corta/métodos , Corteza Auditiva/diagnóstico por imagen , Corteza Auditiva/fisiología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Estimulación Acústica
12.
J Neural Eng ; 20(4)2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37406631

RESUMEN

Objective.Many recent studies investigating the processing of continuous natural speech have employed electroencephalography (EEG) due to its high temporal resolution. However, most of these studies explored the response mechanism limited to the electrode space. In this study, we intend to explore the underlying neural processing in the source space, particularly the dynamic functional interactions among different regions during neural entrainment to speech.Approach.We collected 128-channel EEG data while 22 participants listened to story speech and time-reversed speech using a naturalistic paradigm. We compared three different strategies to determine the best method to estimate the neural tracking responses from the sensor space to the brain source space. After that, we used dynamic graph theory to investigate the source connectivity dynamics among regions that were involved in speech tracking.Main result.By comparing the correlations between the predicted neural response and the original common neural response under the two experimental conditions, we found that estimating the common neural response of participants in the electrode space followed by source localization of neural responses achieved the best performance. Analysis of the distribution of brain sources entrained to story speech envelopes showed that not only auditory regions but also frontoparietal cognitive regions were recruited, indicating a hierarchical processing mechanism of speech. Further analysis of inter-region interactions based on dynamic graph theory found that neural entrainment to speech operates across multiple brain regions along the hierarchical structure, among which the bilateral insula, temporal lobe, and inferior frontal gyrus are key brain regions that control information transmission. All of these information flows result in dynamic fluctuations in functional connection strength and network topology over time, reflecting both bottom-up and top-down processing while orchestrating computations toward understanding.Significance.Our findings have important implications for understanding the neural mechanisms of the brain during processing natural speech stimuli.


Asunto(s)
Percepción del Habla , Habla , Humanos , Habla/fisiología , Percepción del Habla/fisiología , Encéfalo/fisiología , Electroencefalografía , Lóbulo Temporal/fisiología , Estimulación Acústica/métodos
13.
Neuroimage ; 278: 120271, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37442310

RESUMEN

Humans have the unique ability to decode the rapid stream of language elements that constitute speech, even when it is contaminated by noise. Two reliable observations about noisy speech perception are that seeing the face of the talker improves intelligibility and the existence of individual differences in the ability to perceive noisy speech. We introduce a multivariate BOLD fMRI measure that explains both observations. In two independent fMRI studies, clear and noisy speech was presented in visual, auditory and audiovisual formats to thirty-seven participants who rated intelligibility. An event-related design was used to sort noisy speech trials by their intelligibility. Individual-differences multidimensional scaling was applied to fMRI response patterns in superior temporal cortex and the dissimilarity between responses to clear speech and noisy (but intelligible) speech was measured. Neural dissimilarity was less for audiovisual speech than auditory-only speech, corresponding to the greater intelligibility of noisy audiovisual speech. Dissimilarity was less in participants with better noisy speech perception, corresponding to individual differences. These relationships held for both single word and entire sentence stimuli, suggesting that they were driven by intelligibility rather than the specific stimuli tested. A neural measure of perceptual intelligibility may aid in the development of strategies for helping those with impaired speech perception.


Asunto(s)
Percepción del Habla , Habla , Humanos , Imagen por Resonancia Magnética , Individualidad , Percepción Visual/fisiología , Percepción del Habla/fisiología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Inteligibilidad del Habla , Estimulación Acústica/métodos
14.
J Neurosci ; 43(27): 4984-4996, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37197979

RESUMEN

It has been postulated that the brain is organized by "metamodal," sensory-independent cortical modules capable of performing tasks (e.g., word recognition) in both "standard" and novel sensory modalities. Still, this theory has primarily been tested in sensory-deprived individuals, with mixed evidence in neurotypical subjects, thereby limiting its support as a general principle of brain organization. Critically, current theories of metamodal processing do not specify requirements for successful metamodal processing at the level of neural representations. Specification at this level may be particularly important in neurotypical individuals, where novel sensory modalities must interface with existing representations for the standard sense. Here we hypothesized that effective metamodal engagement of a cortical area requires congruence between stimulus representations in the standard and novel sensory modalities in that region. To test this, we first used fMRI to identify bilateral auditory speech representations. We then trained 20 human participants (12 female) to recognize vibrotactile versions of auditory words using one of two auditory-to-vibrotactile algorithms. The vocoded algorithm attempted to match the encoding scheme of auditory speech while the token-based algorithm did not. Crucially, using fMRI, we found that only in the vocoded group did trained-vibrotactile stimuli recruit speech representations in the superior temporal gyrus and lead to increased coupling between them and somatosensory areas. Our results advance our understanding of brain organization by providing new insight into unlocking the metamodal potential of the brain, thereby benefitting the design of novel sensory substitution devices that aim to tap into existing processing streams in the brain.SIGNIFICANCE STATEMENT It has been proposed that the brain is organized by "metamodal," sensory-independent modules specialized for performing certain tasks. This idea has inspired therapeutic applications, such as sensory substitution devices, for example, enabling blind individuals "to see" by transforming visual input into soundscapes. Yet, other studies have failed to demonstrate metamodal engagement. Here, we tested the hypothesis that metamodal engagement in neurotypical individuals requires matching the encoding schemes between stimuli from the novel and standard sensory modalities. We trained two groups of subjects to recognize words generated by one of two auditory-to-vibrotactile transformations. Critically, only vibrotactile stimuli that were matched to the neural encoding of auditory speech engaged auditory speech areas after training. This suggests that matching encoding schemes is critical to unlocking the brain's metamodal potential.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Humanos , Femenino , Habla , Percepción Auditiva , Encéfalo , Lóbulo Temporal , Imagen por Resonancia Magnética/métodos , Estimulación Acústica/métodos
15.
J Neurosci ; 43(20): 3696-3707, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37045604

RESUMEN

During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial EEG in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that, in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial EEG, we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of intracranial EEG responses to sounds: cortical electrodes with fast timescales also show fast- and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses.


Asunto(s)
Corteza Auditiva , Lóbulo Temporal , Humanos , Femenino , Lóbulo Temporal/fisiología , Percepción Auditiva/fisiología , Amígdala del Cerebelo/fisiología , Hipocampo/fisiología , Electrocorticografía , Corteza Auditiva/fisiología , Estimulación Acústica
16.
Neuropsychologia ; 184: 108559, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37040848

RESUMEN

Auditory steady-state responses (ASSR) are induced from the brainstem to the neocortex when humans hear periodic amplitude-modulated tonal signals. ASSRs have been argued to be a key marker of auditory temporal processing and pathological reorganization of ASSR - a biomarker of neurodegenerative disorders. However, most of the earlier studies reporting the neural basis of ASSRs were focused on looking at individual brain regions. Here, we seek to characterize the large-scale directed information flow among cortical sources of ASSR entrained by 40 Hz external signals. Entrained brain rhythms with power peaking at 40 Hz were generated using both monaural and binaural tonal stimulation. First, we confirm the presence of ASSRs and their well-known right hemispheric dominance during binaural and both monaural conditions. Thereafter, reconstruction of source activity employing individual anatomy of the participant and subsequent network analysis revealed that while the sources are common among different stimulation conditions, differential levels of source activation and differential patterns of directed information flow among sources underlie processing of binaurally and monaurally presented tones. Particularly, we show bidirectional interactions involving the right superior temporal gyrus and inferior frontal gyrus underlie right hemispheric dominance of 40 Hz ASSR during both monaural and binaural conditions. On the other hand, for monaural conditions, the strength of inter-hemispheric flow from left primary auditory areas to right superior temporal areas followed a pattern that comply with the generally observed contralateral dominance of sensory signal processing.


Asunto(s)
Corteza Auditiva , Audición , Humanos , Estimulación Acústica , Audición/fisiología , Corteza Auditiva/fisiología , Percepción Auditiva , Lóbulo Temporal , Potenciales Evocados Auditivos/fisiología , Electroencefalografía
17.
Epilepsia ; 64(7): 1925-1938, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37119434

RESUMEN

OBJECTIVE: We aimed to identify corticothalamic areas and electrical stimulation paradigms that optimally enhance breathing. METHODS: Twenty-nine patients with medically intractable epilepsy were prospectively recruited in an epilepsy monitoring unit while undergoing stereoelectroencephalographic evaluation. Direct electrical stimulation in cortical and thalamic regions was carried out using low (<1 Hz) and high (≥10 Hz) frequencies, and low (<5 mA) and high (≥5 mA) current intensities, with pulse width of .1 ms. Electrocardiography, arterial oxygen saturation (SpO2 ), end-tidal carbon dioxide (ETCO2 ), oronasal airflow, and abdominal and thoracic plethysmography were monitored continuously during stimulations. Airflow signal was used to estimate breathing rate, tidal volume, and minute ventilation (MV) changes during stimulation, compared to baseline. RESULTS: Electrical stimulation increased MV in the amygdala, anterior cingulate, anterior insula, temporal pole, and thalamus, with an average increase in MV of 20.8% ± 28.9% (range = 0.2%-165.6%) in 19 patients. MV changes were associated with SpO2 and ETCO2 changes (p < .001). Effects on respiration were parameter and site dependent. Within amygdala, low-frequency stimulation of the medial region produced 78.49% greater MV change (p < .001) compared to high-frequency stimulation. Longer stimulation produced greater MV changes (an increase of 4.47% in MV for every additional 10 s, p = .04). SIGNIFICANCE: Stimulation of amygdala, anterior cingulate gyrus, anterior insula, temporal pole, and thalamus, using certain stimulation paradigms, enhances respiration. Among tested paradigms, low-frequency, low-intensity, long-duration stimulation of the medial amygdala is the most effective breathing enhancement stimulation strategy. Such approaches may pave the way for the future development of neuromodulatory techniques that aid rescue from seizure-related apnea, potentially as a targeted sudden unexpected death in epilepsy prevention method.


Asunto(s)
Electrocorticografía , Epilepsia , Frecuencia Respiratoria , Respiración , Frecuencia Respiratoria/fisiología , Amígdala del Cerebelo , Lóbulo Temporal , Tálamo , Estudios Prospectivos
18.
Cereb Cortex ; 33(12): 7489-7499, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36928162

RESUMEN

There is mounting evidence for predictive coding theory from computational, neuroimaging, and psychological research. However, there remains a lack of research exploring how predictive brain function develops across childhood. To address this gap, we used pediatric magnetoencephalography to record the evoked magnetic fields of 18 younger children (M = 4.1 years) and 19 older children (M = 6.2 years) as they listened to a 12-min auditory oddball paradigm. For each child, we computed a mismatch field "MMF": an electrophysiological component that is widely interpreted as a neural signature of predictive coding. At the sensor level, the older children showed significantly larger MMF amplitudes relative to the younger children. At the source level, the older children showed a significantly larger MMF amplitude in the right inferior frontal gyrus relative to the younger children, P < 0.05. No differences were found in 2 other key regions (right primary auditory cortex and right superior temporal gyrus) thought to be involved in mismatch generation. These findings support the idea that predictive brain function develops during childhood, with increasing involvement of the frontal cortex in response to prediction errors. These findings contribute to a deeper understanding of the brain function underpinning child cognitive development.


Asunto(s)
Corteza Auditiva , Magnetoencefalografía , Humanos , Niño , Adolescente , Magnetoencefalografía/métodos , Percepción Auditiva/fisiología , Lóbulo Temporal , Desarrollo Infantil , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica/métodos
19.
Hum Brain Mapp ; 44(5): 2039-2049, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661404

RESUMEN

Cross-modal plasticity in blind individuals has been reported over the past decades showing that nonvisual information is carried and processed by "visual" brain structures. However, despite multiple efforts, the structural underpinnings of cross-modal plasticity in congenitally blind individuals remain unclear. We mapped thalamocortical connectivity and assessed the integrity of white matter of 10 congenitally blind individuals and 10 sighted controls. We hypothesized an aberrant thalamocortical pattern of connectivity taking place in the absence of visual stimuli from birth as a potential mechanism of cross-modal plasticity. In addition to the impaired microstructure of visual white matter bundles, we observed structural connectivity changes between the thalamus and occipital and temporal cortices. Specifically, the thalamic territory dedicated to connections with the occipital cortex was smaller and displayed weaker connectivity in congenitally blind individuals, whereas those connecting with the temporal cortex showed greater volume and increased connectivity. The abnormal pattern of thalamocortical connectivity included the lateral and medial geniculate nuclei and the pulvinar nucleus. For the first time in humans, a remapping of structural thalamocortical connections involving both unimodal and multimodal thalamic nuclei has been demonstrated, shedding light on the possible mechanisms of cross-modal plasticity in humans. The present findings may help understand the functional adaptations commonly observed in congenitally blind individuals.


Asunto(s)
Ceguera , Lóbulo Occipital , Humanos , Ceguera/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Lóbulo Temporal , Cuerpos Geniculados
20.
Cereb Cortex ; 33(6): 3053-3066, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35858223

RESUMEN

Humans can direct attentional resources to a single sound occurring simultaneously among others to extract the most behaviourally relevant information present. To investigate this cognitive phenomenon in a precise manner, we used frequency-tagging to separate neural auditory steady-state responses (ASSRs) that can be traced back to each auditory stimulus, from the neural mix elicited by multiple simultaneous sounds. Using a mixture of 2 frequency-tagged melody streams, we instructed participants to selectively attend to one stream or the other while following the development of the pitch contour. Bottom-up attention towards either stream was also manipulated with salient changes in pitch. Distributed source analyses of magnetoencephalography measurements showed that the effect of ASSR enhancement from top-down driven attention was strongest at the left frontal cortex, while that of bottom-up driven attention was dominant at the right temporal cortex. Furthermore, the degree of ASSR suppression from simultaneous stimuli varied across cortical lobes and hemisphere. The ASSR source distribution changes from temporal-dominance during single-stream perception, to proportionally more activity in the frontal and centro-parietal cortical regions when listening to simultaneous streams. These findings are a step forward to studying cognition in more complex and naturalistic soundscapes using frequency-tagging.


Asunto(s)
Corteza Auditiva , Percepción Auditiva , Humanos , Estimulación Acústica , Percepción Auditiva/fisiología , Magnetoencefalografía , Lóbulo Temporal/fisiología , Atención/fisiología , Corteza Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA