Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Med Oncol ; 41(5): 111, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592504

RESUMEN

The use of doxorubicin (Dox) in the treatment of breast cancer negatively affects the intestines and other tissues. Many studies have proven that probiotics and vitamin D3 have antitumor and intestinal tissue-protecting properties. To achieve effectiveness and minimize side effects, the current study aims to administer Dox together with probiotics (Lactobacillus acidophilus and Lactobacillus casei) and vitamin D3. Forty-two female BALB/c inbred mice were divided into six groups: Group 1 (Control), Group 2 (Dox), Group 3 (Dox and probiotics), Group 4 (Dox and vitamin D3), Group 5 (Dox, probiotics, and vitamin D3), and Group 6 (probiotics and vitamin D3). The 4T1 mouse carcinoma cell line was injected into the mammary fat pad of each mouse. Gene expression was examined using quantitative real-time PCR. The treated groups (except group 6) showed significantly reduced tumor volume and weight compared to the control group (P < 0.05, P < 0.01). Probiotics/vitamin D3 with Dox reduced chemotherapy toxicity and a combination of supplements had a significant protective effect against Dox (P < 0.05, 0.01, 0.001). The treated groups (except 6) had significantly higher expression of Bax/Caspase 3 genes and lower expression of Bcl-2 genes than the control group (P < 0.05, 0.01). Coadministration of Dox with probiotics and vitamin D3 showed promising results in reducing tumor size, protecting intestinal tissue and influencing gene expression, suggesting a strategy to enhance the effectiveness of breast cancer treatment while reducing side effects.


Asunto(s)
Lacticaseibacillus casei , Neoplasias , Probióticos , Femenino , Animales , Ratones , Lactobacillus acidophilus , Doxorrubicina/farmacología , Probióticos/farmacología , Modelos Animales de Enfermedad , Colecalciferol/farmacología , Ratones Endogámicos BALB C
2.
Anim Sci J ; 95(1): e13946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651265

RESUMEN

This study explored the effects of a Bacillus subtilis and Lactobacillus acidophilus mixture containing the co-fermented products of the two probiotics on growth performance, serum immunity and cecal microbiota of Cherry Valley ducks. This study included 480 one-day-old Cherry Valley ducks divided into four feeding groups: basal diet (control group) and basal diet supplemented with 300, 500, or 700 mg/kg of the probiotic powder; the ducks were raised for 42 days. Compared with the control group, body weight on day 42 and the average daily gain on days 15-42 significantly increased (p < 0.05), and the feed conversion rate significantly decreased (p < 0.05) in the experimental groups. Furthermore, the serum immunoglobulin (Ig) A, IgG, IgM, and interleukin (IL)-4 levels increased significantly (p < 0.05), and IL-1ß, IL-2, and tumor necrosis factor-α decreased significantly (p < 0.05) in the experimental groups. Finally, Sellimonas, Prevotellaceae NK3B31 group, Lachnospiraceae NK4A136 group and Butyricoccus played an important role in the cecal microbiota of the experimental group. Thus, the probiotic powder has impacts on the growth performance, serum immunity and cecal microbiota of Cherry Valley Ducks.


Asunto(s)
Bacillus subtilis , Ciego , Patos , Lactobacillus acidophilus , Probióticos , Animales , Probióticos/administración & dosificación , Ciego/microbiología , Patos/crecimiento & desarrollo , Patos/microbiología , Patos/inmunología , Patos/sangre , Microbioma Gastrointestinal , Dieta/veterinaria , Alimentación Animal , Inmunoglobulinas/sangre , Suplementos Dietéticos
3.
Bioorg Chem ; 145: 107165, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367427

RESUMEN

Selenium is an essential trace element for most organisms, protecting cells from oxidative damage caused by free radicals and serving as an adjunctive treatment for non-alcoholic fatty liver disease (NAFLD). In this study, We used the lactic acid bacterium Lactobacillus acidophilus HN23 to reduce tetra-valent sodium selenite into particulate matter, and analyzed it through inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), X-ray diffraction energy dispersive spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR). We found that it consisted of selenium nanoparticles (SeNPs) with a mass composition of 65.8 % zero-valent selenium and some polysaccharide and polypeptide compounds, with particle sizes ranging from 60 to 300 nm. We also detected that SeNPs were much less toxic to cells than selenite. We further used free fatty acids (FFA)-induced WRL68 fatty liver cell model to study the therapeutic effect of SeNPs on NAFLD. The results show that SeNPs are more effective than selenite in reducing lipid deposition, increasing mitochondrial membrane potential (MMP) and antioxidant capacity of WRL68 cells, which is attributed to the chemical valence state of selenium and organic composition in SeNPs. In conclusion, SeNPs produced by probiotics L. acidophilus had the potential to alleviate NAFLD by reducing hepatocyte lipid deposition and oxidative damage. This study may open a new avenue for SeNPs drug development to treat NAFLD.


Asunto(s)
Nanopartículas , Enfermedad del Hígado Graso no Alcohólico , Selenio , Humanos , Selenio/farmacología , Selenio/química , Lactobacillus acidophilus/metabolismo , Nanopartículas/química , Ácido Selenioso/química , Ácido Selenioso/metabolismo , Lípidos
4.
Mol Biol Rep ; 51(1): 122, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227272

RESUMEN

BACKGROUND: Colorectal cancer is the world's third most frequent cancer and the fourth cause of mortality. Probiotics play an important function in preventing metastasis as well as the growth and proliferation of malignant cancer cells. METHODS AND RESULTS: The study investigated the anticancer effect of Lactobacillus acidophilus supernatant and Saccharomyces cerevisiae yeast on colorectal cell lines, including HT29 and SW480 as a colorectal cancer model. The extract from the Lactobacillus acidophilus and Saccharomyces cerevisiae standard probiotics were prepared, and probiotics characterization was confirmed by morphological and Biochemical tests. The viability of HT29 and SW480 colon cancer cell lines on effecting probiotic supernatant was evaluated by measuring the MTT colorimetric method. Comparison of the expression profile of several genes involved in apoptosis, cell cycle, and metastatic pathway in HT29 and SW480 cell lines with the treatment of probiotics extract showed an upregulation in the BAX, CASP3, and CASP9 and down regulation BCl-2, MMP2, and MMP9 genes. Also, a comparison of microRNA expression profiles indicated an increase of miR 34, 135, 25, 16, 195, 27, 98, let7 and a decrease of miR 9, 106b, 17, 21, 155, 221. CONCLUSIONS AND DISCUSSION: The findings of this study indicate that probiotics can effectively suppress the proliferation of colorectal cancer cells and even reverse their development. Additionally, the study of cellular genes and miRNA profiles associated with colorectal cancer have demonstrated that our probiotics play a crucial role in CRC prevention by increasing the expression of tumor suppressor microRNAs and their target genes while decreasing oncogenes.


Asunto(s)
Neoplasias del Colon , MicroARNs , Probióticos , Humanos , Saccharomyces cerevisiae/genética , Lactobacillus acidophilus/genética , Probióticos/farmacología , Línea Celular , MicroARNs/genética , Extractos Vegetales
5.
EBioMedicine ; 100: 104952, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176203

RESUMEN

BACKGROUND: Gut probiotic depletion is associated with non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). Here, we investigated the prophylactic potential of Lactobacillus acidophilus against NAFLD-HCC. METHODS: NAFLD-HCC conventional and germ-free mice were established by diethylnitrosamine (DEN) injection with feeding of high-fat high-cholesterol (HFHC) or choline-deficient high-fat (CDHF) diet. Orthotopic NAFLD-HCC allografts were established by intrahepatic injection of murine HCC cells with HFHC feeding. Metabolomic profiling was performed using liquid chromatography-mass spectrometry. Biological functions of L. acidophilus conditional medium (L.a CM) and metabolites were determined in NAFLD-HCC human cells and mouse organoids. FINDINGS: L. acidophilus supplementation suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice. This was confirmed in orthotopic allografts and germ-free tumourigenesis mice. L.a CM inhibited the growth of NAFLD-HCC human cells and mouse organoids. The protective function of L. acidophilus was attributed to its non-protein small molecules. By metabolomic profiling, valeric acid was the top enriched metabolite in L.a CM and its upregulation was verified in liver and portal vein of L. acidophilus-treated mice. The protective function of valeric acid was demonstrated in NAFLD-HCC human cells and mouse organoids. Valeric acid significantly suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice, accompanied by improved intestinal barrier integrity. This was confirmed in another NAFLD-HCC mouse model induced by CDHF diet and DEN. Mechanistically, valeric acid bound to hepatocytic surface receptor GPR41/43 to inhibit Rho-GTPase pathway, thereby ablating NAFLD-HCC. INTERPRETATION: L. acidophilus exhibits anti-tumourigenic effect in mice by secreting valeric acid. Probiotic supplementation is a potential prophylactic of NAFLD-HCC. FUNDING: Shown in Acknowledgments.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Ácidos Pentanoicos , Probióticos , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/etiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Lactobacillus acidophilus , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/etiología , Hígado/metabolismo , Transformación Celular Neoplásica/metabolismo , Carcinogénesis/patología , Dieta Alta en Grasa , Colina/metabolismo , Probióticos/farmacología , Probióticos/uso terapéutico , Ratones Endogámicos C57BL
6.
Nutrients ; 15(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38140334

RESUMEN

Scientific evidence has increasingly supported the beneficial effects of probiotic-based food supplements on human intestinal health. This ex vivo study investigated the effects on the composition and metabolic activity of the intestinal microbiota of three probiotic-based food supplements, containing, respectively, (1) Bifidobacterium longum ES1, (2) Lactobacillus acidophilus NCFM®, and (3) a combination of L. acidophilus NCFM®, Lactobacillus paracasei Lpc-37™, Bifidobacterium lactis Bi-07™, and Bifidobacterium lactis Bl-04™. This study employed fecal samples from six healthy donors, inoculated in a Colon-on-a-plate® system. After 48 h of exposure or non-exposure to the food supplements, the effects were measured on the overall microbial fermentation (pH), changes in microbial metabolic activity through the production of short-chain and branched-chain fatty acids (SCFAs and BCFAs), ammonium, lactate, and microbial composition. The strongest effect on the fermentation process was observed for the combined formulation probiotics, characterized by the significant stimulation of butyrate production, a significant reduction in BCFAs and ammonium in all donors, and a significant stimulatory effect on bifidobacteria and lactobacilli growth. Our findings suggest that the combined formulation probiotics significantly impact the intestinal microbiome of the healthy individuals, showing changes in metabolic activity and microbial abundance as the health benefit endpoint.


Asunto(s)
Compuestos de Amonio , Microbioma Gastrointestinal , Probióticos , Humanos , Probióticos/farmacología , Suplementos Dietéticos , Lactobacillus acidophilus/fisiología , Ácidos Grasos Volátiles
7.
BMC Psychiatry ; 23(1): 823, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946220

RESUMEN

BACKGROUND: This study was designed to examine the possible efficacy of the probiotic strain Lactobacillus acidophilus LB (Lacteol Fort) on attention-deficit/hyperactivity disorder (ADHD) symptomatology and evaluate its influence on cognition function. METHODS: In this randomized controlled trial, 80 children and adolescents with ADHD diagnosis, aged 6-16 years, were included. The participants were randomly assigned to two groups: one group received probiotics plus atomoxetine, whereas the other group received atomoxetine only. ADHD symptomatology was assessed using the Conners Parent Rating Scale-Revised Long Version (CPRS-R-L) and Child Behavioral Checklist (CBCL/6-18). The participants were evaluated for their vigilance and executive function using Conner's Continuous Performance Test (CPT) and Wisconsin Card Sort Test (WCST). Both groups were assessed at the beginning of the study and the end of the twelve weeks. RESULTS: The probiotic group comprised 36 patients, whereas the control group comprised 40 patients in the final analysis after four patients dropped out of the trial. After 3 months of probiotic supplementation, a significant improvement in the CPRS-R-L and CBCL total T scores was observed compared with those in the control group (p = 0.032, 0.024, respectively). Additionally, the probiotic group demonstrated improved focus attention (target accuracy rate and omission errors;p = 0.02, 0.043, respectively) compared with the control group. An analysis of the Wisconsin Card Sorting Test (WCST) performance demonstrated that the probiotic group had significantly lower perseverative (p = 0.017) and non-perseverative errors (p = 0.044) but no significant differences compared to the control group. CONCLUSION: Lactobacillus acidophilus LB supplementation combined with atomoxetine for 3 months had a beneficial impact on ADHD symptomology and a favorable influence on cognitive performance. As a result, the efficacy of probiotics as an adjunctive treatment for managing ADHD may be promising. TRIAL REGISTRATION: ClinicalTrials.gov (identifier: NCT04167995). Registration date: 19-11-2019.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Probióticos , Humanos , Niño , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Clorhidrato de Atomoxetina/uso terapéutico , Lactobacillus acidophilus , Lactobacillus , Probióticos/uso terapéutico , Suplementos Dietéticos , Resultado del Tratamiento
8.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569261

RESUMEN

Porcine circovirus type 2 (PCV2) has caused huge economic losses to the pig industry across the world. Matrine is a natural compound that has been shown to regulate intestinal flora and has anti-PCV2 activity in mouse models. PCV2 infection can lead to changes in intestinal flora. The intestinal flora has proved to be one of the important pharmacological targets of the active components of Traditional Chinese Medicine. This study aimed to determine whether matrine exerts anti-PCV2 effects by regulating intestinal flora. In this study, fecal microbiota transplantation (FMT) was used to evaluate the effect of matrine on the intestinal flora of PCV2-infected Kunming (KM) mice. The expression of the Cap gene in the liver and the ileum, the relative expression of IL-1ß mRNA, and the Lactobacillus acidophilus (L. acidophilus) gene in the ileum of mice were determined by real-time quantitative polymerase chain reaction (qPCR). ELISA was used to analyze the content of secretory immunoglobulin A (SIgA) in small intestinal fluid. L. acidophilus was isolated and identified from the feces of KM mice in order to study its anti-PCV2 effect in vivo. The expression of the Cap gene in the liver and the ileum and the relative expression of L. acidophilus and IL-1ß mRNA in the ileum were determined by qPCR. The results showed that matrine could reduce the relative expression of IL-1ß mRNA by regulating intestinal flora, and that its pharmacological anti-PCV2 and effect may be related to L. acidophilus. L. acidophilus was successfully isolated and identified from the feces of KM mice. The in vivo experiment revealed that administration of L. acidophilus also reduced the relative expression of IL-1ß mRNA, and that it had anti-PCV2 effects in PCV2-infected mice. It was found that matrine could regulate the abundance of L. acidophilus in the gut of mice to exert an anti-PCV2 effect and inhibit PCV2-induced inflammatory response.


Asunto(s)
Circovirus , Enfermedades de los Porcinos , Ratones , Porcinos , Animales , Matrinas , Lactobacillus acidophilus , ARN Mensajero/genética
9.
Braz J Microbiol ; 54(3): 1589-1601, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37515666

RESUMEN

One of the famous traditional confectionery products is Tahini halva. The aim of this study was the production of probiotic halva using free Lactobacillus acidophilus (FLA) and microencapsulated Lactobacillus acidophilus (MLA) with sodium alginate and galbanum gum as the second layer. The survival rate of MLA and FLA during heat stress, storage time, and simulation gastrointestinal condition in Tahini halva was assessed. The survival rates of MLA and FLA under heat stress were 50.13% and 34.6% respectively. During storage in Tahini halva, the cell viability loss was 3.25 Log CFU g-1 and 6.94 Log CFU g-1 for MLA and FLA, separately. Around 3.58 and 4.77 Log CFU g-1 bacteria were reduced after 6 h of exposure in simulated gastrointestinal conditions, for MLA and FLA respectively. These results suggest that the use of alginate and galbanum gum is a promising approach to protecting L. acidophilus against harsh environmental conditions.


Asunto(s)
Ferula , Probióticos , Lactobacillus acidophilus , Lactobacillus , Alginatos , Microesferas , Viabilidad Microbiana
10.
Future Microbiol ; 18: 581-593, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37424511

RESUMEN

Aims: To investigate the involvement of serotonin transporter (SERT) in colonic epithelial cells in the anti-osteoporosis role of Lactobacillus acidophilus (LA) supernatant (LAS). Methods: The abundance of fecal LA and bone mineral density (BMD) in patients with osteoporosis (OP) or severe osteoporosis were assessed. The protective role of LA in osteoporosis and the expression of SERT and relative signaling were evaluated. Results: Abundance of fecal LA was decreased in patients with severe OP and was positively correlated with BMD. Supplementing LAS to mice alleviated senile osteoporosis. In vitro, NOD2/RIP2/NF-κB signaling was inhibited by LAS due to increased SERT expression. Conclusion: LAS alleviates OP in mice by producing protective metabolites and upregulating SERT expression and represents a promising therapeutic agent.


Asunto(s)
Osteoporosis , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Ratones , Animales , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Lactobacillus acidophilus , Células Epiteliales/metabolismo , Colon , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo
11.
Sci Rep ; 13(1): 11158, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429933

RESUMEN

The aim of this study was to investigate the impact of jackfruit inner skin fibre (JS) incorporated with whey protein isolate (WPI) and soybean oil (SO) as a wall material for probiotic encapsulation to improve probiotic stability against freeze-drying and gastrointestinal (GI) tract conditions. Bifidobacterium bifidum TISTR2129, Bifidobacterium breve TISTR2130, and Lactobacillus acidophilus TISTR1338 were studied in terms of SCFA production and the antibiotic-resistant profile and in an antagonistic assay to select suitable strains for preparing a probiotic cocktail, which was then encapsulated. The results revealed that B. breve and L. acidophilus can be used effectively as core materials. JS showed the most influential effect on protecting probiotics from freeze-drying. WPI:SO:JS at a ratio of 3.9:2.4:3.7 was the optimized wall material, which provided an ideal formulation with 83.1 ± 6.1% encapsulation efficiency. This formulation presented > 50% probiotic survival after exposure to gastro-intestinal tract conditions. Up to 77.8 ± 0.1% of the encapsulated probiotics survived after 8 weeks of storage at refrigeration temperature. This study highlights a process and formulation to encapsulate probiotics for use as food supplements that could provide benefits to human health as well as an alternative approach to reduce agricultural waste by increasing the value of jackfruit inner skin.


Asunto(s)
Artocarpus , Probióticos , Humanos , Suplementos Dietéticos , Piel , Agricultura , Lactobacillus acidophilus , Aceite de Soja
12.
BMC Microbiol ; 23(1): 173, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391715

RESUMEN

BACKGROUND: The emergence of different viral infections calls for the development of new, effective, and safe antiviral drugs. Glycyrrhiza glabra is a well-known herbal remedy possessing antiviral properties. OBJECTIVE: The objective of our research was to evaluate the effectiveness of a newly developed combination of the probiotics Lactobacillus acidophilus and G. glabra root extract against two viral models, namely the DNA virus Herpes simplex virus-1 (HSV-1) and the RNA virus Vesicular Stomatitis Virus (VSV), with regards to their antiviral properties. METHODOLOGY: To examine the antiviral impacts of various treatments, we employed the MTT assay and real-time PCR methodology. RESULTS: The findings of our study indicate that the co-administration of L. acidophilus and G. glabra resulted in a significant improvement in the survival rate of Vero cells, while also leading to a reduction in the titers of Herpes Simplex Virus Type 1 (HSV-1) and Vesicular Stomatitis Virus (VSV) in comparison to cells that were not treated. Additionally, an investigation was conducted on glycyrrhizin, the primary constituent of G. glabra extract, utilizing molecular docking techniques. The results indicated that glycyrrhizin exhibited a greater binding energy score for HSV-1 polymerase (- 22.45 kcal/mol) and VSV nucleocapsid (- 19.77 kcal/mol) in comparison to the cocrystallized ligand (- 13.31 and - 11.44 kcal/mol, respectively). CONCLUSIONS: The combination of L. acidophilus and G. glabra extract can be used to develop a new, natural antiviral agent that is safe and effective.


Asunto(s)
Glycyrrhiza , Herpes Simple , Herpesvirus Humano 1 , Probióticos , Estomatitis Vesicular , Chlorocebus aethiops , Animales , Lactobacillus acidophilus , Antivirales/farmacología , Ácido Glicirrínico , Simulación del Acoplamiento Molecular , Células Vero , Extractos Vegetales/farmacología
13.
Arch Microbiol ; 205(7): 265, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37322321

RESUMEN

To date, the coffee industry has the second highest market value in the world and consumer behavior has transitioned from drinking coffee just for its caffeine content to reduce sleepiness into an overall experience. Instant cold brew coffee in powder form can preserve the taste of coffee well; moreover, it is easy to transport. Several consumers have increasing interests in implementing lactic acid bacteria in healthy food due to their growing awareness of the probiotic's role. Several scholars have presented stress adaptation characteristics of single probiotic strains; however, comparisons of the stress-tolerant capacities of different probiotic strains are incomplete. Five lactic acid strains are tested for adaptation under four sublethal conditions. Lactobacillus casei is the most resilient probiotic in terms of heat and cold adaptation, while Lactobacillus acidophilus is more tolerant to low acid and bile salt; Then, these probiotics are subjected to a stress challenge that stimulates drying temperature, including a heat and cold stress challenge. The results show that acid adaptation can improve Lactobacillus acidophilus TISTR 1338 tolerance to harsh drying temperatures. In addition, encapsulation using prebiotic extracts from rice bran, with pectin and resistant starch combined through crosslinking and treated by freeze-drying, provides the highest encapsulation efficiency. In summary, acid-adapted L. acidophilus TISTR 1388 at the sublethal level can be applied to high and low temperature processing techniques. Additionally, the amount of viable probiotic after in vitro digestion remains at 5 log CFU/g, which is suitable for application in the production of synbiotic cold brew coffee.


Asunto(s)
Oryza , Probióticos , Simbióticos , Café , Lactobacillus acidophilus
14.
Mol Med Rep ; 27(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37144488

RESUMEN

The gut microbiota plays a key role in maintaining health and regulating the host's immune response. The use of probiotics and concomitant vitamins can increase mucus secretion by improving the intestinal microbial population and prevent the breakdown of tight junction proteins by reducing lipopolysaccharide concentration. Changes in the intestinal microbiome mass affect multiple metabolic and physiological functions. Studies on how this microbiome mass and the regulation in the gastrointestinal tract are affected by probiotic supplements and vitamin combinations have attracted attention. The current study evaluated vitamins K and E and probiotic combinations effects on Escherichia coli and Staphylococcus aureus. Minimal inhibition concentrations of vitamins and probiotics were determined. In addition, inhibition zone diameters, antioxidant activities and immunohistochemical evaluation of the cell for DNA damage were performed to evaluate the effects of vitamins and probiotics. At the specified dose intervals, L. acidophilus and vitamin combinations inhibit the growth of Escherichia coli and Staphylococcus aureus. It could thus contribute positively to biological functions by exerting immune system­strengthening activities.


Asunto(s)
Probióticos , Infecciones Estafilocócicas , Humanos , Lactobacillus acidophilus/fisiología , Escherichia coli , Staphylococcus aureus , Vitamina K 3/farmacología , Vitamina E/farmacología , Probióticos/farmacología , Vitaminas/farmacología , Vitamina K
15.
J Trace Elem Med Biol ; 78: 127183, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37120971

RESUMEN

BACKGROUND: Isoflavones and probiotics are two major factors involved in bone health. Osteoporosis and disturbances in iron (Fe) levels are common health problems in aging women. This study aimed to analyze how soybean products, daidzein, genistein, and Lactobacillus acidophilus (LA) affect Fe status and blood morphological parameters in healthy female rats. METHODS: A total of 48 Wistar rats aged 3 months were randomly divided into six groups. The control group (K) received a standard diet (AIN 93 M). The remaining five groups received a standard diet supplemented with the following: tempeh flour (TP); soy flour (RS); daidzein and genistein (DG); Lactobacillus acidophilus DSM20079 (LA); as well as a combination of daidzein, genistein, and L. acidophilus DSM20079 (DGLA). After 8 weeks of intervention, blood samples of the rats were collected for morphological analysis, whereas tissue samples were collected and kept at -80 °C until Fe analysis. Red blood cells, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, platelets (PLTs), red cell distribution width, white blood cells, neutrophils (NEUT), lymphocytes (LYM), monocytes, eosinophils (EOS), and basophils were measured for blood morphological analysis. Fe concentrations were determined using flame atomic spectrometry. For statistical analysis, an ANOVA test for significance at the 5 % level was used. The relationship between tissue Fe levels and blood morphological parameters was determined using Pearson's correlation. RESULTS: Although no significant differences were observed in the Fe content between all diets, the TP group showed significantly higher levels of NEUT and lower levels of LYM than the control group. Compared with the DG and DGLA groups, the TP group showed a dramatically higher PLT level. In addition, the RS group showed significantly higher Fe concentrations in the spleen compared with the standard diet. Compared with the DG, LA, and DGLA groups, the RS group also showed significantly higher Fe concentrations in the liver. Compared with the TP, DG, LA, and DGLA groups, the RS group showed dramatically higher Fe concentrations in the femur. Pearson's correlations between blood morphological parameters and Fe levels in tissues were observed, especially a negative correlation between the Fe level in the femur and the NEUT concentration (-0.465) and a strong positive correlation between the Fe level in the femur and the LYM concentration (0.533). CONCLUSION: Soybean flour was found to increase Fe levels in rats, whereas tempeh may alter anti-inflammatory blood parameters. Isoflavones and probiotics did not affect Fe status in healthy female rats.


Asunto(s)
Isoflavonas , Probióticos , Femenino , Ratas , Animales , Genisteína/farmacología , Lactobacillus acidophilus , Ratas Wistar , Isoflavonas/farmacología , Glycine max/química , Suplementos Dietéticos
16.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615610

RESUMEN

Antimicrobial resistance (AMR) has arisen as a global concern in recent decades. Plant extracts used in combination with antibiotics are promising against AMR, synergistically. The purpose of this study was to evaluate the component of the bitter ginger (Zingiber zerumbet) extract in different solvents using high-performance liquid chromatography (HPLC), in addition to evaluate the antibacterial activity of these extracts, in combination with their antibiotic potential against four multi-drug resistant (MDR) bacterial strains (Lactobacillus acidophilus, Streptococcus mutans, Enterococcus faecalis and Staphylococcus aureus). Ethanol and the aqueous extracts of bitter ginger were prepared using a conventional solvent extraction method and were evaluated for their phytochemistry using HPLC, qualitatively and quantitatively. Moreover, the antibiotic susceptibility of the pathogenic isolates was determined. A disc diffusion assay was used to obtain the antimicrobial potential of the extracts alone and with antibiotics. Eight components were identified from the separation of the bitter ginger extract by HPLC. For AMR bacteria, the combination of the antibiotic solution with the bitter ginger crude extracts could improve its susceptibility of these antibiotics. This study indicates that the combination of an antibiotic solution with the bitter ginger crude extract exhibits potent antibacterial activities against MDR bacterial strains. Therefore, they can be used for the treatment of various diseases against the microbial pathogen and can be incorporated into medication for antibacterial therapy.


Asunto(s)
Antiinfecciosos , Zingiberaceae , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Zingiberaceae/química , Antibacterianos/química , Solventes , Fitoquímicos/farmacología , Lactobacillus acidophilus
17.
Probiotics Antimicrob Proteins ; 15(4): 912-924, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35138584

RESUMEN

We investigated the effects of dietary supplementation with Lactobacillus acidophilus and Bacillus subtilis on the intestinal immune response, intestinal barrier function, cecal microbiota profile, and metabolite profile in late-phase laying hens. Hens were divided into three groups and fed with the basal diet (NC group), basal diet supplementation with 250 mg/kg B. subtilis and L. acidophilus mixture powder (LD group), and basal diet supplementation with 500 mg/kg B. subtilis and L. acidophilus mixture powder (HD group), respectively. The results indicated that the dietary supplementation with L. acidophilus and B. subtilis increased the integrity of the intestinal barrier as evidenced by the significant increase in the number of ileal goblet cells and improve the expression of occludin, claudin-1, and ZO-1 genes in the HD group. Moreover, the levels of IL-6, TNF-α, and IFN-γ were significantly decreased in the LD and HD groups. The levels of immunoglobulin G (IgG) increased in the LD and HD group, and the levels of secretory immunoglobulin A (sIgA) increased with the HD treatment. Furthermore, 16 s rRNA sequencing revealed L. acidophilus in combination with B. subtilis increased the diversity of gut microbiota. The metabolomic analysis revealed beneficial changes in the amino acid metabolism and lipid metabolism (decrease in LysoPC and LysoPE levels). In conclusion, dietary supplementation with L. acidophilus and B. subtilis could improve intestinal barrier function and maintain immune homeostasis. These beneficial effects may be associated with the modulation of the intestinal microbiome and metabolites.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Animales , Femenino , Lactobacillus acidophilus , Bacillus subtilis/fisiología , Inmunidad Mucosa , Pollos/fisiología , Polvos/farmacología , Probióticos/farmacología , Probióticos/análisis , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos/análisis
18.
Arch Physiol Biochem ; 129(6): 1211-1218, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34077686

RESUMEN

This study aimed to determine the effect of Bacillus Coagulans symbiotic supplementation on metabolic factors and inflammation in patients with type-2 diabetes. In this clinical trial, 50 patients with type-2 diabetes were randomly assigned to the symbiotic (containing Bacillus Coagulans + Lactobacillus rhamnosus + Lactobacillus acidophilus and fructooligosaccharide) or placebo groups to receive one sachet daily for 12 weeks. Glycaemic Index, lipid profile, and hs-CRP were measured at the beginning and end of the study. Analysis of covariance demonstrated that fasting blood glucose (FBG), insulin, homeostatic Model Assessment for Insulin Resistance (HOMA-IR), ß-cell function (HOMA-ß) (p <.05) and hs-CRP (p <.05) significantly declined in the treatment group compared with the placebo group. So, the current study indicated that Bacillus Coagulans symbiotic supplementation could improve metabolic factors and inflammation in patients with type-2 diabetes.


Asunto(s)
Bacillus coagulans , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Lacticaseibacillus rhamnosus , Humanos , Lactobacillus acidophilus/metabolismo , Suplementos Dietéticos , Bacillus coagulans/metabolismo , Proteína C-Reactiva/metabolismo , Insulina , Diabetes Mellitus Tipo 2/terapia , Inflamación , Glucemia/metabolismo
19.
Biomed Res Int ; 2023: 8434865, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38169935

RESUMEN

Background: Preparing a healthy and practical substitute for mayonnaise and reducing the complications caused by its consumption are two of the concerns of the producers of this product. Therefore, this study was conducted with the aim of evaluating the possibility of producing synbiotic yogurt sauce prepared with Spirulina platensis microalgae extract (SPAE) as a valuable and alternative product for mayonnaise. Materials and Methods: After preparing yogurt from fresh cow's milk, synbiotic yogurt sauce was prepared according to the formulation, and the effect of SPAE at the rate of 0.5, 1, and 2% on the viability of the probiotic bacteria Lactobacillus acidophilus was evaluated, and chemical, rheological, and sensory tests were carried out in the storage period (35 days). Results: The highest viability rate of L. acidophilus was related to the treatment containing 2% of SPAE with 1.31 log CFU/g reduction (from 9.02 log CFU/g on the first day to 7.71 log CFU/g on the final day) and 1% of SPAE with 2.98 log CFU/g reduction, respectively, which were significantly more effective than other treatments (P < 0.05), and it was found that the viability rate increases with the increase in the percentage of the prebiotic composition. There was also a significant difference between the treatments in the simulating conditions of the digestive system, and the viability of L. acidophilus in the treatment containing the prebiotic composition increased (P < 0.05). According to the results, during storage, in the presence of microalgae, acidity increased, and pH, viscosity, and sensory properties decreased compared to the control group. Upon analyzing the results, it was found that the addition of the prebiotic composition of SPAE, which is known as a functional product, led to a partial improvement in its properties. Therefore, the use of this alga, while benefiting from its medicinal and therapeutic properties, increases the viability rate of probiotic.


Asunto(s)
Microalgas , Probióticos , Simbióticos , Animales , Bovinos , Femenino , Lactobacillus acidophilus , Yogur/microbiología , Probióticos/química , Prebióticos , Extractos Vegetales
20.
Nutrients ; 14(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364738

RESUMEN

Weaning stress induces intestinal barrier dysfunction and immune dysregulation in mammals. Various interventions based on the modulation of intestinal microbiota have been proposed. Our study aims to explore the effects of co-cultures from Lactobacillus acidophilus and Bacillus subtilis (FAM®) on intestinal mucosal barrier from the perspective of metabolic function of gut microbiota. A total of 180 piglets were allocated to three groups, i.e., a control group (C, basal diet), a FAM group (F, basal diet supplemented with 0.1% FAM), and an antibiotic group (A, basal diet supplemented with antibiotic mixtures). Here, we showed FAM supplementation significantly increased body weight and reduced diarrhea incidence, accompanied by attenuated mucosal damage, increased levels of tight junction proteins, serum diamine oxidase (DAO) and antimicrobial peptides. In addition, 16S rRNA sequencing and metabolomic analysis revealed an increase in relative abundance of Clostridiales, Ruminococcaceae, Firmicutes and Muribaculaceae and a significant increase in the total short-chain fatty acids (SCFAs) and butyric acid in FAM-treated piglets. FAM also increased CD4+ T cells and SIgA+ cells in intestinal mucosa and SIgA production in colon contents. Furthermore, FAM upregulated the expression of IL-22, short-chain fatty acid receptors GPR43 and GPR41, aryl hydrocarbon receptor (AhR), and hypoxia-inducible factor 1α (HIF-1α). FAM shows great application prospect in gut health and provides a reference for infant weaning.


Asunto(s)
Microbioma Gastrointestinal , Animales , Porcinos , Lactobacillus acidophilus , Bacillus subtilis , Técnicas de Cocultivo , ARN Ribosómico 16S , Ácidos Grasos Volátiles/metabolismo , Ácido Butírico/metabolismo , Antibacterianos/farmacología , Inmunoglobulina A Secretora , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA