RESUMEN
Lactoperoxidase (LPO) is a heme containing oxido-reductase enzyme. It is secreted from mammary, salivary, lachrymal and mucosal glands. It catalyses the conversion of thiocyanate into hypothiocyanate and halides into hypohalides. LPO belongs to the superfamily of mammalian heme peroxidases which also includes myeloperoxidase (MPO), eosinophil peroxidase (EPO) and thyroid peroxidase (TPO). The heme prosthetic group is covalently linked in LPO through two ester bonds involving conserved residues Glu258 and Asp108. It was isolated from colostrum of yak (Bos grunniens), purified to homogeneity and crystallized using ammonium iodide as a precipitating agent. The crystals belonged to monoclinic space group P21 with cell dimensions of a = 53.91 Å, b = 78.98 Å, c = 67.82 Å and ß = 92.96°. The structure was determined at 1.55 Å resolution. This is the first structure of LPO from yak. Also, this is the highest resolution structure of LPO determined so far from any source. The structure determination revealed that three segments (Ser1-Cys15), (Thr117-Asn138) and (Cys167-Leu175) were disordered and formed one surface of LPO structure. In the substrate binding site, the iodide ions were observed in three subsites which are formed by (1) heme moiety and residues, Gln105, Asp108, His109, Phe113, Arg255, Glu258, Phe380 and Phe381, (2) residues, Asn230, Lys232, Pro236, Cys248, Phe254, Phe381 and Pro424 and (3) residues, Ser198, Leu199 and Arg202. The structure determination also revealed that the side chain of Phe254 was disordered. It was observed to adopt two conformations in the structures of LPO.
Asunto(s)
Aminoácidos/química , Compuestos de Amonio/química , Hemo/química , Peróxido de Hidrógeno/química , Lactoperoxidasa/química , Aminoácidos/metabolismo , Compuestos de Amonio/metabolismo , Animales , Sitios de Unión , Bovinos , Calostro/química , Cristalización , Cristalografía por Rayos X , Femenino , Expresión Génica , Hemo/metabolismo , Peróxido de Hidrógeno/metabolismo , Lactoperoxidasa/genética , Lactoperoxidasa/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Especificidad por SustratoRESUMEN
PURPOSE: To evaluate the effect of hyperbaric oxygenation (HBO) on the expression of the genes antioxidant glutathione peroxidase 4 (Gpx4) and lactoperoxidase (Lpo) in the lung of mice subjected to intestinal ischemia and reperfusion (IIR). METHODS: Control group (CG) in which were subjected to anesthesia, laparotomy and observation for 120 minutes; an ischemia and reperfusion group (IRG) subjected to anesthesia, laparotomy, small bowel ischemia for 60 minutes and reperfusion for 60 minutes; and three groups treated with HBO during ischemia (HBOG + I), during reperfusion (HBOG + R) and during ischemia and reperfusion (HBOG + IR). Studied 84 genes of oxidative stress by the method (RT-qPCR). Genes with expression levels three times below or above the threshold cycle were considered significantly hypoexpressed or hyperexpressed, respectively (Student's t-test p<0.05). RESULTS: Gpx4 and Lpo were hiperexpressed on IRG, showing a correlation with these genes with lung oxidative stress. Treated with HBO, there was a significant reduction on genic expression on HBOG+I. CONCLUSION: Hyperbaric oxygenation showed to be associated with decreased expression of these antioxidant genes, suggesting a beneficial effect on the mechanism of pulmonary oxidative stress whenever applied during the ischemia.
Asunto(s)
Glutatión Peroxidasa/metabolismo , Oxigenoterapia Hiperbárica/métodos , Lactoperoxidasa/genética , Pulmón/metabolismo , Estrés Oxidativo/genética , Daño por Reperfusión/metabolismo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Intestinos/irrigación sanguínea , Isquemia/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión PeroxidasaRESUMEN
Abstract Purpose: To evaluate the effect of hyperbaric oxygenation (HBO) on the expression of the genes antioxidant glutathione peroxidase 4 (Gpx4) and lactoperoxidase (Lpo) in the lung of mice subjected to intestinal ischemia and reperfusion (IIR). Methods: Control group (CG) in which were subjected to anesthesia, laparotomy and observation for 120 minutes; an ischemia and reperfusion group (IRG) subjected to anesthesia, laparotomy, small bowel ischemia for 60 minutes and reperfusion for 60 minutes; and three groups treated with HBO during ischemia (HBOG + I), during reperfusion (HBOG + R) and during ischemia and reperfusion (HBOG + IR). Studied 84 genes of oxidative stress by the method (RT-qPCR). Genes with expression levels three times below or above the threshold cycle were considered significantly hypoexpressed or hyperexpressed, respectively (Student's t-test p<0.05). Results: Gpx4 and Lpo were hiperexpressed on IRG, showing a correlation with these genes with lung oxidative stress. Treated with HBO, there was a significant reduction on genic expression on HBOG+I. Conclusion: Hyperbaric oxygenation showed to be associated with decreased expression of these antioxidant genes, suggesting a beneficial effect on the mechanism of pulmonary oxidative stress whenever applied during the ischemia.