Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.931
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Vet Parasitol ; 328: 110184, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643645

RESUMEN

This study applied the in vitro rumen exsheathment test (IVRET) to evaluate the exsheathment kinetics of Haemonchus contortus infective larvae (L3) incubated in ruminal liquor (RL) containing acetone:water extracts of Acacia pennatula (AP), Gymnopodium floribundum (GF), Havardia albicans (HA) or Lysiloma latisiliquum (LL). The role of polyphenols in the biological activity of the evaluated extracts was also determined. Larvae were incubated in RL either alone or added with a different plant extract (AP, GF, HA, or LL) at 1200 µg/mL. Polyethylene glycol (PEG) was added to block polyphenols in each treatment (RL+PEG, AP+PEG, GF+PEG, HA+PEG, and LL+PEG). After incubation times of 0, 1, 3, 6, 9, and 24 h, the exsheathment process was stopped to count the number of ensheathed and exsheathed L3. A Log-Logistic model was used to determine the L3 exsheathment kinetics in the different RL treatments. The inflection point of the respective kinetic curves, which indicates the time to reach 50 % exsheathed L3 (T50), was the only parameter that differed when comparing the exsheathment models (99 % probability of difference). The T50 values obtained for GF, HA, and LL treatments (T50 = 7.11 - 7.58 h) were higher in comparison to the T50 of RL (5.72 h) (≥ 70 % probability of difference). The L3 incubated in RL added with GF, HA, and LL extracts delayed their exsheathment at 3 and 6 h of incubation (28.71 - 48.06 % exsheathment reduction) compared to the RL treatment. The T50 value for AP, AP+PEG, GF+PEG, HA+PEG, and LL+PEG were similar to RL and RL+PEG (T50 = 5.34 - 6.97 h). In conclusion, the IVRET can be used to identify plants with the potential to delay the exsheathment of H. contortus L3 in the ruminal liquor. The acetone:water extracts of G. floribundum, H. albicans, and L. latisiliquum delayed the T50 of H. contortus exsheathment, which was evident at 3 and 6 h of incubation in ruminal liquor. The observed exsheathment delay was attributed to the polyphenol content of the extracts.


Asunto(s)
Haemonchus , Larva , Extractos Vegetales , Rumen , Animales , Haemonchus/efectos de los fármacos , Rumen/parasitología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Larva/efectos de los fármacos , Hemoncosis/veterinaria , Hemoncosis/parasitología , Antihelmínticos/farmacología , Antihelmínticos/química
2.
Plant Sci ; 344: 112079, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588981

RESUMEN

The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of ß-pore-forming toxins (ß-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Gossypium , Proteínas Hemolisinas , Larva , Plantas Modificadas Genéticamente , Gorgojos , Gossypium/genética , Gossypium/parasitología , Animales , Gorgojos/genética , Plantas Modificadas Genéticamente/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Larva/efectos de los fármacos , Bacillus thuringiensis/genética , Control Biológico de Vectores
3.
Sci Rep ; 14(1): 9299, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653843

RESUMEN

Phthorimaea absoluta is a global constraint to tomato production and can cause up to 100% yield loss. Farmers heavily rely on synthetic pesticides to manage this pest. However, these pesticides are detrimental to human, animal, and environmental health. Therefore, exploring eco-friendly, sustainable Integrated Pest Management approaches, including biopesticides as potential alternatives, is of paramount importance. In this context, the present study (i) evaluated the efficacy of 10 Bacillus thuringiensis isolates, neem, garlic, and fenugreek; (ii) assessed the interactions between the most potent plant extracts and B. thuringiensis isolates, and (iii) evaluated the gut microbial diversity due to the treatments for the development of novel formulations against P. absoluta. Neem recorded the highest mortality of 93.79 ± 3.12% with an LT50 value of 1.21 ± 0.24 days, Bt HD263 induced 91.3 ± 3.68% mortality with LT50 of 2.63 ± 0.11 days, compared to both Bt 43 and fenugreek that caused < 50% mortality. Larval mortality was further enhanced to 99 ± 1.04% when Bt HD263 and neem were combined. Furthermore, the microbiome analyses showed that Klebsiella, Escherichia and Enterobacter had the highest abundance in all treatments with Klebsiella being the most abundant. In addition, a shift in the abundance of the bacterial genera due to the treatments was observed. Our findings showed that neem, garlic, and Bt HD263 could effectively control P. absoluta and be integrated into IPM programs after validation by field efficacy trials.


Asunto(s)
Bacillus thuringiensis , Extractos Vegetales , Trigonella , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Trigonella/química , Control Biológico de Vectores/métodos , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Larva/efectos de los fármacos , Larva/microbiología , Ajo/química , Microbioma Gastrointestinal/efectos de los fármacos , Solanum lycopersicum/microbiología
4.
Microb Pathog ; 190: 106613, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484919

RESUMEN

This research paper presents a novel approach to the green synthesis of silver nanoparticles (AgNPs) using viticultural waste, allowing to obtain NP dispersions with distinct properties and morphologies (monodisperse and polydisperse AgNPs, referred to as mAgNPs and pAgNPs) and to compare their biological activities. Our synthesis method utilized the ethanolic extract of Vitis vinifera pruning residues, resulting in the production of mAgNPs and pAgNPs with average sizes of 12 ± 5 nm and 19 ± 14 nm, respectively. Both these AgNPs preparations demonstrated an exceptional stability in terms of size distribution, which was maintained for one year. Antimicrobial testing revealed that both types of AgNPs inhibited either the growth of planktonic cells or the metabolic activity of biofilm sessile cells in Gram-negative bacteria and yeasts. No comparable activity was found towards Gram-positives. Overall, pAgNPs exhibited a higher antimicrobial efficacy compared to their monodisperse counterparts, suggesting that their size and shape may provide a broader spectrum of interactions with target cells. Both AgNP preparations showed no cytotoxicity towards a human keratinocyte cell line. Furthermore, in vivo tests using a silkworm animal model indicated the biocompatibility of the phytosynthesized AgNPs, as they had no adverse effects on insect larvae viability. These findings emphasize the potential of targeted AgNPs synthesized from viticultural waste as environmentally friendly antimicrobial agents with minimal impact on higher organisms.


Asunto(s)
Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata , Vitis , Plata/farmacología , Plata/química , Plata/metabolismo , Nanopartículas del Metal/química , Animales , Humanos , Vitis/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Tamaño de la Partícula , Tecnología Química Verde , Bacterias Gramnegativas/efectos de los fármacos , Bombyx , Biopelículas/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Larva/efectos de los fármacos , Levaduras/efectos de los fármacos
5.
Phytomedicine ; 128: 155411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518638

RESUMEN

BACKGROUND: Emodin-8-O-ß-D-glucopyranoside (Em8G) is an active ingredient of traditional Chinese medicine Rhei Radix et Rhizoma and Polygonum multiflorum Thunb.. And it caused hepatotoxicity, while the underlying mechanism was not clear yet. PURPOSE: We aimed to explore the detrimental effects of Em8G on the zebrafish liver through the metabolome and transcriptome integrated analysis. STUDY DESIGN AND METHODS: In this study, zebrafish larvae were used in acute toxicity tests to reveal the hepatotoxicity of Em8G. Adult zebrafish were then used to evaluate the gender differences in hepatotoxicity induced by Em8G. Integration of transcriptomic and metabolomic analysis was used further to explore the molecular mechanisms underlying gender differences in hepatotoxicity. RESULTS: Our results showed that under non-lethal concentration exposure conditions, hepatotoxicity was observed in Em8G-treated zebrafish larvae, including changes in liver transmittance, liver area, hepatocyte apoptosis and hepatocyte vacuolation. Male adult zebrafish displayed a higher Em8G-induced hepatotoxicity than female zebrafish, as demonstrated by the higher mortality and histopathological alterations. The results of transcriptomics combined with metabolomics showed that Em8G mainly affected carbohydrate metabolism (such as TCA cycle) in male zebrafish and amino acid metabolism (such as arginine and proline metabolism) in females, suggesting that the difference of energy metabolism disorder may be the potential mechanism of male and female liver toxicity induced by Em8G. CONCLUSIONS: This study provided the direct evidence for the hepatotoxicity of Em8G to zebrafish models in vivo, and brought a new insight into the molecular mechanisms of Em8G hepatotoxicity, which can guide the rational application of this phytotoxin. In addition, our findings revealed gender differences in the hepatotoxicity of Em8G to zebrafish, which is related to energy metabolism and provided a methodological reference for evaluating hepatotoxic drugs with gender differences.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado , Metabolómica , Pez Cebra , Animales , Masculino , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Transcriptoma/efectos de los fármacos , Glucósidos/toxicidad , Glucósidos/farmacología , Factores Sexuales , Emodina/análogos & derivados , Emodina/toxicidad , Emodina/farmacología , Larva/efectos de los fármacos , Antraquinonas/toxicidad , Pruebas de Toxicidad Aguda , Medicamentos Herbarios Chinos/toxicidad
6.
J. Health Biol. Sci. (Online) ; 10(1): 1-15, 01/jan./2022. tab, ilus
Artículo en Portugués | LILACS | ID: biblio-1411686

RESUMEN

Objetivos: Realizar um levantamento das contribuições científicas produzidas entre 2017 e 2021 acerca do efeito larvicida de óleos essenciais e extratos vegetais no controle de Aedes spp, Anopheles spp e Culex spp. Métodos: de setembro a outubro de 2022, foi realizado um levantamento de artigos científicos publicados entre os anos de 2017 e 2021, nas bases de dados Portal Periódicos Capes, Scielo, Science Direct e Scopus. Foram utilizados os descritores "larvicide", "essential oil" e "plant extracts" com a interposição do operador boleano "AND". Resultados: inicialmente, foram obtidos 246 artigos, dos quais 110 foram excluídos (68 não estavam disponíveis na íntegra e 42 apareceram em mais de uma base de dados). Dos 136 artigos restantes, 36 foram excluídos por não terem realizado ensaio larvicida. Dos 100 artigos remanescentes, 63 foram excluídos por não mencionarem valores de CL50, enquanto 3 não especificaram a estrutura vegetal de obtenção dos produtos naturais, restando, portanto, 34 artigos para análise. Foram utilizadas 57 espécies vegetais para a obtenção dos produtos vegetais utilizados contra larvas de Aedes spp; 11 espécies nos ensaios contra Anopheles spp, e 36 espécies nos ensaios contra Culex spp. Os óleos essenciais predominaram nos ensaios contra Aedes spp, enquanto os extratos, contra Anopheles spp. A maior parte dos produtos testados exibiu CL50 < 100 ppm. Conclusão: a atividade larvicida demonstrada por uma grande variedade de extratos vegetais e óleos essenciais representa uma alternativa promissora ao tradicional controle químico feito à base de inseticidas sintéticos em programas de manejo integrado de vetores.


Objectives: Conduct a survey of the scientific contributions produced between 2017 and 2021 on the larvicidal effect of essential oils and plant extracts in the control of Aedes spp, Anopheles spp, and Culex spp. Methods: from September to October 2022, a survey was carried out of scientific articles published between 2017 and 2021 in the Portal Periódicos Capes, Scielo, Science Direct, and Scopus databases. The descriptors "larvicide", "essential oil" and "plant extracts" were used with the Boolean operator "AND". Results: initially, 246 articles were obtained, of which 110 were excluded (68 were not available, and 42 appeared in more than one database). Of the remaining 136 articles, 36 were excluded because they did not perform a larvicide assay. Of the 100 remaining articles, 63 were excluded for not mentioning LC50 values, while three did not specify the plant structure for obtaining natural products, thus leaving 34 articles for analysis. A total of 57 plant species were used to obtain plant products used against Aedes spp larvae; 11 species in the tests against Anopheles spp, and 36 species in the tests against Culex spp. Essential oils predominated in the tests against Aedes spp, while extracts against Anopheles spp. Most of the products tested exhibited an LC50 < 100 ppm. Conclusion: the larvicidal activity demonstrated by a wide variety of plant extracts and essential oils represents a promising alternative to traditional chemical control based on synthetic insecticides in integrated vector management programs.


Asunto(s)
Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Aedes/efectos de los fármacos , Culex/efectos de los fármacos , Larva/efectos de los fármacos , Anopheles/efectos de los fármacos , Larvicidas , Agentes de Control Biológico/farmacología
7.
IET Nanobiotechnol ; 16(4): 145-157, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35353449

RESUMEN

Marine seaweeds are known to have a potential role against microbial and pesticidal activities. Ulva lactuca, a green macroalgae extract analysed through gas chromatography mass spectrometry reveals 31 compounds. Resistance of mosquito vectors to synthetic insecticides remains a major problem. Discovering and applying natural agents to act against disease vectors is challenging. The activities of the extract and nano-fabricated green synthesised silver nanoparticles were checked for use against Aedes aegypti and Culex pipiens. The crude extract and synthesised silver nanoparticles exhibited a notable larvicidal effect, and very effective inhibition of pupal and adult emergence. Inhibition of adult emergence of Ae.aegypti was 97.7% and in Cu.pipiens, it was 93.3%. Our genotypic study of Deoxyribonucleic acid from treated larvae utilising random primers MA-09, MA-12 and MA-26 revealed damaged nucleotide sequences when compared with the controls. The antimicrobial activity of both the extract and green synthesised nanomaterials showed prominent activity against pathogenic drug resistant bacteria. Our results contribute to further development of eco-friendly insecticides with lower cost of preparation. This could further contribute to further research helping future generations to be free from these deadly disease-causing vectors and pathogenic microbes.


Asunto(s)
Aedes , Insecticidas , Nanopartículas del Metal , Plata , Ulva , Aedes/efectos de los fármacos , Aedes/genética , Animales , ADN/análisis , Genómica , Insecticidas/química , Insecticidas/farmacología , Larva/efectos de los fármacos , Nanopartículas del Metal/química , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Extractos Vegetales/química , Plata/química , Plata/farmacología , Ulva/química
8.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209137

RESUMEN

Vector-borne diseases, such as those transmitted by Aedes aegypti, are a constant threat to inhabitants of tropical regions of the planet. Synthetic chemicals are commonly used as a strategy to control them; however, these products are known to persist in ecosystems and drive the appearance of resistance genes in arthropod vectors. Thus, the use of natural products has emerged as an environmentally friendly alternative in integrated vector control strategies. The present bioguided study investigated the larvicidal potential of Ipomoea cairica extracts, fractionated using thin-layer and open-column chromatography, because this species has been shown to exert larvicidal effects on the genus Aedes. The objective of this study was to evaluate the nonvolatile components in ethanolic extract of I. cairica stems as a potential natural larvicidal, and coumarins, such as 7-hydroxy-6-methoxychromen-2-one (scopoletin) and 7-hydroxychromen-2-one (umbelliferone), were identified as major compounds; however, they were not shown to be responsible for the larvicidal activity. Based on the results of the larvicidal action tests, these coumarins are not directly responsible for the larvicidal activity, but this activity might be attributed to a synergistic effect of all the compounds present in the most active secondary fraction, called F.DCM, which had an LC50 value of 30.608 mg/L. This type of study has yet not been conducted in the region; therefore, it is an important contribution to recognizing a natural and easy-to-cultivate source of vector control, such I. cairica.


Asunto(s)
Aedes/efectos de los fármacos , Insecticidas/farmacología , Ipomoea/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Animales , Fraccionamiento Químico , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Relación Dosis-Respuesta a Droga , Insecticidas/química , Insecticidas/aislamiento & purificación , Larva/efectos de los fármacos , Espectrometría de Masas , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
9.
Molecules ; 27(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163928

RESUMEN

The aim of this study was to investigate and compare in detail both the antifungal activity in vitro (with planktonic and biofilm-forming cells) and the essential oil composition (EOs) of naturally growing (OMN) and cultivated (OMC) samples of Origanum majorana L. (marjoram). The essential oil composition was analyzed using GC-MS. The major constituent of both EOs was carvacrol: 75.3% and 84%, respectively. Both essential oils showed high antifungal activity against clinically relevant Candida spp. with IC50 and IC90 less than or equal to 0.5 µg mL-1 and inhibition of biofilm with a concentration of 3.5 µg mL-1 or less. Cultivated marjoram oil showed higher anti-biofilm activity against C. albicans. In addition, OMC showed greater inhibition of germ-tube formation (inhibition by 83% in Spider media), the major virulence factor of C. albicans at a concentration of 0.125 µg mL-1. Both EOs modulated cell surface hydrophobicity (CSH), but OMN proved to be more active with a CSH% up to 58.41%. The efficacy of O. majorana EOs was also investigated using Galleria mellonella larvae as a model. It was observed that while the larvae of the control group infected with C. albicans (6.0 × 108 cells) and not receiving treatment died in the controls carried out after 24 h, all larvae in the infected treatment group survived at the end of the 96th hour. When the treatment group and the infected group were evaluated in terms of vital activities, it was found that the difference was statistically significant (p < 0.001). The infection of larvae with C. albicans and the effects of O. majorana EOs on the hemocytes of the model organism and the blastospores of C. albicans were evaluated by light microscopy on slides stained with Giemsa. Cytological examination in the treatment group revealed that C. albicans blastospores were phagocytosed and morphological changes occurred in hemocytes. Our results indicated that the essential oil of both samples showed strong antifungal activities against planktonic and biofilm-forming C. albicans cells and also had an influence on putative virulence factors (germ-tube formation and its length and on CSH).


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Larva/crecimiento & desarrollo , Mariposas Nocturnas/crecimiento & desarrollo , Aceites Volátiles/farmacología , Origanum/química , Aceites de Plantas/farmacología , Animales , Larva/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Pruebas de Toxicidad
10.
Pak J Biol Sci ; 25(11): 971-977, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36591927

RESUMEN

<b>Background and Objective:</b> <i>Pieris rapae</i> L., is one of the most widespread and destructive pests of cruciferous plants. At present, synthetic chemical insecticide is still the main approach to control this pest despite several disadvantages to human health and the wildlife environment as well as biological resistance. To search for plants having insecticidal activity, the biological effects of two medicinal plants <i>Kaempferia galanga</i> L. and <i>Amomum subulatum </i>on <i>Pieris rapae</i> L., were investigated. <b>Materials and Methods:</b> The methanol extracts of dry rhizomes and fruits of <i>Kaempferia galanga</i> L. and <i>Amomum subulatum </i>were used to determine the mortality, feeding and oviposition deterrence of larvae and adult of <i>Pieris rapae</i> L. <b>Results:</b> <i>Kaempferia galanga</i> L. and <i>Amomum subulatum</i> exhibited insecticidal activity against <i>Pieris rapae</i> L., with LC<sub>50</sub> values of 2.11 and 11.80% (w/v), respectively. In the antifeedant test, <i>Kaempferia galanga</i> L., extract showed no significant difference with the control at the low concentration (0.5 and 1%). Whereas, with a concentration of 0.5%, <i>Amomum subulatum</i> extract demonstrated a high antifeedant effect on <i>Pieris rapae</i> L., larvae. In addition, plants treated with these two extracts reduced eggs laid by <i>Pieris rapae</i> L., in field conditions showing the oviposition deterrent properties. <b>Conclusion:</b> These results indicated that <i>Kaempferia galanga</i> L. and <i>Amomum subulatum </i>extracts have insecticidal substances against <i>Pieris rapae </i>L., which can be used for developing effective pesticides or/and oviposition deterrents for integrated pest management.


Asunto(s)
Amomum , Mariposas Diurnas , Insecticidas , Zingiberaceae , Animales , Femenino , Humanos , Insecticidas/farmacología , Larva/efectos de los fármacos , Extractos Vegetales/farmacología
11.
Pest Manag Sci ; 78(3): 1035-1047, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34773363

RESUMEN

BACKGROUND: The house mosquito, Culex pipiens L. is a harmful species, widespread in urban areas, and considered the primary enzootic vector of West Nile arbovirus. Widespread insecticide resistance in mosquito populations and the environmental risks and toxicity hazards of chemical pesticides make insecticides an inadequate mosquito control strategy. Seeking ecofriendly tools for mosquito control tools has become necessary. RESULTS: Essential oil (EO) was hydrodistilled from the fruits of Brazilian pepper, Schinus terebinthifolius Raddi and analyzed using gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. An oil-in-water nanoemulsion (particle size 41.3 nm) was developed and characterized from EO using a green low-energy approach. EO, its nanoemulsion and monoterpenes showed mosquitocidal, repellent and acetylcholinesterase inhibitory activities against Cx. pipiens. A nanoemulsion concentration of 30 µl L-1 caused 100% larval mortality after 24 h of exposure, whereas EO, d-limonene and α-phellandrene at 60 µl L-1 caused 100%, 92.4% and 88.2% larval mortality, respectively. The concentration that killed 50% of organisms (LC50 ) for larvae after 24 h ranged between 6.8 and 40.6 µl L-1 . Upon fumigation, 15.0 µl L-1 of nanoemulsion killed 94.5% of adults after 24 h of exposure. LC50 values against adults ranged between 5.3 and 31.2 µl L-1 . EO products exhibited repellence activity at concentrations between 0.5 and 4.0 µl cm-2 . Test materials effectively inhibited the acetylcholinesterase activity of mosquito and were safe toward the non-target organisms Gambusia affinis and Eisenia fetida. CONCLUSION: There is a potential for using S. terebinthifolius EO, its nanoemulsion and monoterpenes as ecofriendly natural mosquitocides.


Asunto(s)
Anacardiaceae , Culex , Insecticidas , Monoterpenos , Aceites Volátiles , Acetilcolinesterasa , Anacardiaceae/química , Animales , Culex/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Larva/efectos de los fármacos , Monoterpenos/farmacología , Mosquitos Vectores/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología
12.
J Ethnopharmacol ; 284: 114763, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34688800

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants are used to manage and treat epilepsy in Malawi because of traditional beliefs and barriers to conventional anti-seizure drugs. Among the plants prescribed by traditional medical practitioners are Margaritaria discoidea, Dalbergia boehmii, Dalbergia nitidula, Catunaregam spinosa, and Lannea discolor. Despite the wide use of these plants, there is a lack of scientific evidence to support their anti-seizure efficacy. AIM OF THE STUDY: This study used the pentylenetetrazole (PTZ)-induced larval zebrafish seizure model to screen for anti-seizure effects of a collection of medicinal plants traditionally used in Malawi. MATERIALS AND METHODS: Zebrafish larvae were incubated in decoctions at maximum tolerated concentrations for 18 h and exposed to PTZ. As a primary screen, the effects of the decoctions on seizure-induced locomotor activity were determined. Decoctions that significantly reduced total distance traveled were further checked for effects on seizure latency and frequency, brain activity, immediate early gene expression, and c-fos protein expression. RESULTS: M. discoidea male leaves, D. boehmii roots, and D. nitidula leaves showed significant anti-seizure effects in the primary screen and were selected for further study. Electrophysiological and immediate early gene analyses corroborated anti-seizure effect of D. boehmii and D. nitidula. The results of c-fos protein expression further suggested that the anti-seizure effects in the larval brain may be mediated by the suppression of neurons localized in midbrain regions. CONCLUSIONS: These findings provide pioneering scientific evidence of the presence of anti-seizure activity in M. discoidea, D. boehmii, and D. nitidula, prescribed by traditional Malawian medical practitioners. Further studies are needed to identify and isolate compounds responsible for such biological activities and elucidate the possible mechanisms of action.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Pentilenotetrazol/toxicidad , Extractos Vegetales/uso terapéutico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Animales , Larva/efectos de los fármacos , Malaui , Medicinas Tradicionales Africanas , Extractos Vegetales/química , Hojas de la Planta/química , Raíces de Plantas/química , Plantas Medicinales , Pez Cebra
13.
Plant Cell Environ ; 45(2): 496-511, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34719788

RESUMEN

The tea plant, Camellia sinensis (L.) O. Kuntze, is an economically important, perennial woody plant rich in catechins. Although catechins have been reported to play an important role in plant defences against microbes, their roles in the defence of tea plants against herbivores remain unknown. In this study, we allowed the larvae of Ectropis grisescens, a leaf-feeding pest, to feed on the plants, and alternatively, we wounded the plants and then treated them with E. grisescens oral secretions (WOS). Both approaches triggered jasmonic acid-, ethylene- and auxin-mediated signalling pathways; as a result, plants accumulated three catechin compounds: (+)-catechin, epicatechin and epigallocatechin. Not only was the mass of E. grisescens larvae fed on plants previously infested with E. grisescens or treated with WOS significantly lower than that of larvae fed on controls, but also artificial diet supplemented with epicatechin, (+)-catechin or epigallocatechin gallate reduced larval growth rates. In addition, the exogenous application of jasmonic acid, ethylene or auxin induced the biosynthesis of the three catechins, which, in turn, enhanced the resistance of tea plants to E. grisescens, leading to the coordination of the three signalling pathways. Our results suggest that the three catechins play an important role in the defences of tea plants against E. grisescens.


Asunto(s)
Antibiosis/efectos de los fármacos , Camellia sinensis/química , Catequina/análogos & derivados , Catequina/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Animales , Herbivoria/efectos de los fármacos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Mariposas Nocturnas/crecimiento & desarrollo
14.
Toxicol Lett ; 354: 1-13, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718095

RESUMEN

Aurantio-obtusin (AO) is a major anthraquinone (AQ) compound derived from Cassiae semen (CS). Although pharmacological studies have shown that the CS extracts can serve as effective agents in preclinical and clinical practice, AQ-induced hepatotoxicity in humans has attracted widespread attention. To explore whether AO induces hepatotoxicity and its underlying mechanisms, we exposed larval zebrafish and mice to AO. We found that AO delayed yolk sac absorption, and increased liver area and inflammation in the larval zebrafish. This inflammation was manifested as an increase in liver neutrophils and the up-regulated mRNA expression of interleukin-6 (Il-6) and tumor necrosis factor-α (Tnf-α) in the larval zebrafish. Furthermore, a pharmacokinetics study showed that AO was quickly absorbed into the blood and rapidly metabolized in the mice. Of note, AO induced hepatotoxicity in a gender-dependent manner, characterized by liver dysfunction, increased hepatocyte necrosis with inflammatory infiltration, and up-regulated mRNAs of Il-6, Tnf-α and monocyte chemotactic protein 1(Mcp1) in the female mice after 28-day oral administration. It also highlighted that AO triggered NOD-like receptor protein (NLRP) signaling in the female mice, as evidenced by the increased NLRP3, Caspase-1, pro-IL-1ß, IL-1ß and IL-18. Finally, we found that AO led to a significant increase in potassium calcium-activated channel, subfamily N, member 4 (KCNN4) and reactive oxygen species (ROS) levels, along with decreased nuclear factor kappa B p65 (NF-κB p65), in the female mouse livers. In conclusion, AO induced hepatotoxicity by activating NLRP3 inflammasome signaling, at least in part, through increased KCNN4 and ROS production, and NF-κB inhibition.


Asunto(s)
Antraquinonas/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Inflamación/fisiopatología , Pez Cebra/metabolismo , Animales , Cassia/química , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/toxicidad , Femenino , Humanos , Larva/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos
15.
J Med Entomol ; 59(1): 283-290, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34401921

RESUMEN

The horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae), is an important bloodsucking ectoparasite of cattle throughout much of the world. The fly is mostly controlled using conventional synthetic insecticides but as concerns about resistance increase, alternative tactics have come under heightened scrutiny. Four desiccant dust products: Surround WP, a kaolin clay-based wettable powder; CimeXa, comprised of silica aerogel; Drione, silica aerogel + pyrethrins; and EcoVia, silica aerogel + thyme oil, were assessed for their lethal effects against horn fly eggs, larvae, pupae, and adults, under laboratory conditions. Although Surround WP and CimeXa did not prevent egg hatching and (when mixed with manure substrate) pupal development, the two products were associated with moderate reductions of emerged adults, and with complete adult contact mortality within 6 hr and 24 hr, respectively. Drione and EcoVia eliminated egg hatching, pupal development, and adults within 15 min to 1 hr, respectively, whether the flies were exposed to treated filter paper substrate or exposed by immersion in the dusts. Implications for horn fly control and advantages of inert desiccant dust formulations are discussed.


Asunto(s)
Control de Insectos/métodos , Insecticidas/farmacología , Caolín/farmacología , Muscidae/efectos de los fármacos , Animales , Bovinos/parasitología , Infestaciones Ectoparasitarias/veterinaria , Larva/efectos de los fármacos , Mortalidad , Aceites de Plantas/farmacología , Pupa/efectos de los fármacos , Piretrinas/farmacología , Timol/farmacología , Thymus (Planta)
16.
Food Funct ; 13(1): 91-101, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34877951

RESUMEN

South African rooibos (Aspalathus linearis) tea is globally consumed for its health benefits and caffeine free nature, but no information is available on the neuroprotective capacity of (unfermented) green rooibos. Our aim was to investigate the cytoprotective activity of green rooibos in neuronal cells, including probing antioxidant and enzyme inhibitory properties that could explain observed effects in these cells. We also investigated the anxiolytic potential of green rooibos using zebrafish larval models. Green rooibos extract (Green oxithin™) was assessed for its neuroprotective potential in Neuro-2a cells treated with different concentrations of the extract (12.5-25-50-100 µg mL-1) and different concentrations of hydrogen peroxide (250 or 125 µM) as oxidizing agent. Cell viability (MTT) and redox status (intracellular ROS) were also quantified in these cells. Antioxidant properties of the extract were quantified using cell-free systems (DPPH, ORAC and xanthine/xanthine oxidase), and potential neuroprotection evaluated in terms of its potential to inhibit key enzymes of the CNS (monoamine oxidase A (MOA-A), acetylcholinesterase (AChE) and tyrosinase (TYR)). Results demonstrated that green rooibos extract exerted significant cytoprotective properties in Neuro-2a cells, particularly when exposed to lethal 250 µM hydrogen peroxide, increasing cell survival by more than 100%. This may be ascribed (at least partially) to its capacity to limit intracellular ROS accumulation in these cells. Data from cell-free systems confirmed that green rooibos was able to scavenge free radicals (synthetic and physiological) in a dose dependent manner with a similar profile activity to vitamins C and E. Green rooibos also acted as a moderate MAO-A inhibitor, but had no significant effect on AChE or TYR. Finally, zebrafish larvae treated with lower doses of green rooibos demonstrated a significant anxiolytic effect in the light-dark anxiety model. Using the PTZ excitotoxicity model, green rooibos was shown to rescue GABA receptor signalling, which together with its demonstrated inhibition of MAO-A, may account for the anxiolytic outcome. Current data confirms that green rooibos could be considered a "functional brain food" and may be a good option as starting ingredient in the development of new nutraceuticals.


Asunto(s)
Ansiolíticos , Aspalathus/química , Fármacos Neuroprotectores , Extractos Vegetales , Polifenoles , Animales , Ansiolíticos/química , Ansiolíticos/farmacología , Conducta Animal/efectos de los fármacos , Larva/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología , Pez Cebra
17.
Mar Drugs ; 19(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34940681

RESUMEN

Marine biofouling is a natural process that represents major economic, environmental, and health concerns. Some booster biocides have been used in biofouling control, however, they were found to accumulate in environmental compartments, showing negative effects on marine organisms. Therefore, it is urgent to develop new eco-friendly alternatives. Phenyl ketones, such as benzophenones and acetophenones, have been described as modulators of several biological activities, including antifouling activity (AF). In this work, acetophenones were combined with other chemical substrates through a 1,2,3-triazole ring, a strategy commonly used in Medicinal Chemistry. In our approach, a library of 14 new acetophenone-triazole hybrids was obtained through the copper(I)-catalyzed alkyne-azide cycloaddition "click" reaction. All of the synthesized compounds were evaluated against the settlement of a representative macrofouling species, Mytilus galloprovincialis, as well as on biofilm-forming marine microorganisms, including bacteria and fungi. The growth of the microalgae Navicula sp. was also evaluated after exposure to the most promising compounds. While compounds 6a, 7a, and 9a caused significant inhibition of the settlement of mussel larvae, compounds 3b, 4b, and 7b were able to inhibit Roseobacter litoralis bacterial biofilm growth. Interestingly, acetophenone 7a displayed activity against both mussel larvae and the microalgae Navicula sp., suggesting a complementary action of this compound against macro- and microfouling species. The most potent compounds (6a, 7a, and 9a) also showed to be less toxic to the non-target species Artemia salina than the biocide Econea®. Regarding both AF potency and ecotoxicity activity evaluation, acetophenones 7a and 9a were put forward in this work as promising eco-friendly AF agents.


Asunto(s)
Acetofenonas/farmacología , Incrustaciones Biológicas/prevención & control , Desinfectantes/farmacología , Triazoles/farmacología , Acetofenonas/química , Animales , Organismos Acuáticos , Biopelículas/efectos de los fármacos , Bivalvos/efectos de los fármacos , Desinfectantes/química , Larva/efectos de los fármacos , Microalgas/efectos de los fármacos , Relación Estructura-Actividad , Triazoles/química
18.
Toxins (Basel) ; 13(12)2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34941680

RESUMEN

Many plants show significant biological activity against pests due to their unique chemical constituents. It is important to identify effective constituents for their development and utilization as botanical pesticides. Our previous study showed that Artemisia lavandulaefolia essential oil had biological activity against Plutella xylostella. Here, we isolated and identified the constituents of essential oil from A. lavandulaefolia by silica gel column chromatography. The main constituents identified were eucalyptol and caryophyllene oxide, and they were confirmed by gas chromatography-mass spectrometry (GC-MS). Eucalyptol and caryophyllene oxide showed strong contact toxicity against P. xylostella larvae after 24 h of application (Median lethal dose, LD50 = 76.97 µL/mL and 20.71 mg/mL. Furthermore, the two active constituents against P. xylostella adults showed significant fumigant activity (Mmedian lethal concentration, LC50 = 3.25 µL/L and 1.06 mg/L, respectively. Finally, we measured the detoxification enzymes and acetylcholinesterase of the larvae treated with active constituents. The eucalyptol-treated larvae displayed enhanced carboxylesterase (CarE) and glutathione-S-transferase (GST) activities in an in vivo experiment, but it was lower for acetylcholinesterase (AchE) activity. The activities of the CarE and GST significantly decreased when exposed to caryophyllene oxide. In general, the two active constituents, eucalyptol and caryophyllene oxide, showed high insecticidal activity, which demonstrates their potential to be used as natural insecticides.


Asunto(s)
Artemisia/química , Insecticidas/farmacología , Mariposas Nocturnas/efectos de los fármacos , Aceites de Plantas/química , Animales , Bioensayo , Eucaliptol/química , Eucaliptol/farmacología , Insecticidas/química , Larva/efectos de los fármacos , Dosificación Letal Mediana , Aceites Volátiles/química , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacología
19.
Biomed Res Int ; 2021: 1401945, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917680

RESUMEN

OBJECTIVE: Mangifera indica Linn, Bridelia ferruginea Benth, and Alstonia boonei De Wild are three plants commonly used in the traditional treatment of urinary tract infections in Benin. This study sets out to assess the cytotoxic and teratogenic effects of extracts of these plants on Artemia salina larvae and hen embryos. METHODS AND RESULTS: The aqueous and ethanolic extracts were obtained by maceration of the powders in solvents. Larval cytotoxicity was performed on Artemia salina larvae. The teratogenic effect of these plants was evaluated on chick embryos at 100 mg/kg and 300 mg/kg. The extracts were injected on the 7th and 14th days of incubation. The quality of the hatched chicks was evaluated by the Tona score followed by the hematological and the biochemical parameter assays. The extracts did not show cytotoxicity on the larvae. The eggs treated with plant extracts at 300 mg/kg significantly lowered the hatchability rate, except for the Mangifera indica Linn. The chicks obtained were all at the very good quality. Then, no significant variation was observed between hematological parameters except white blood cells. For the biochemical parameters, only ASAT showed some significant variations for a few extracts. It would be important to assess the genotoxicity of the plant extracts to determine more broader toxicity. These data justify the use of these medicinal plants in traditional Beninese medicine and constitute in fact a source of production of anti-infectious drugs.


Asunto(s)
Larva/efectos de los fármacos , Medicina Tradicional/efectos adversos , Plantas Medicinales/efectos adversos , Plantas Medicinales/química , Teratogénesis/efectos de los fármacos , Infecciones Urinarias/tratamiento farmacológico , Animales , Antiinfecciosos/efectos adversos , Antiinfecciosos/farmacología , Benin , Embrión de Pollo , Pollos , Leucocitos/efectos de los fármacos , Mangifera/química , Pruebas de Mutagenicidad/métodos , Extractos Vegetales/efectos adversos , Extractos Vegetales/farmacología
20.
Sci Rep ; 11(1): 24408, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34949763

RESUMEN

Some forest trees have been polyploidized to improve their traits and to supply new germplasms for breeding programs. As trees have a long juvenile stage, the early characterization of the chromosome set doubling effects is crucial for previous selection. Thus, we aimed to characterize the chemical variability of essential oils from diploid and autotetraploid germplasms (autotetraploid A and B) of Eucalyptus benthamii, as well as to evaluate their larvicidal and allelopathic effects. Autotetraploid A showed a higher essential oil yield than diploid and autotetraploid B, which did not differ quantitatively. Aromadendrene, viridiflorol and α-pinene were the major compounds in the diploid essential oil. In contrast, compounds were present in autotetraploids, such as 1,8-cineole, limonene, α-terpineol, and α-terpinyl-acetate. Essential oils from the diploid at 50-200 ppm were twice as larvicidal than those from autotetraploids against Aedes aegypti larvae. Considering the phytotoxicity bioassays using Lactuca sativa, essential oils from both ploidy levels affected root growth. Moreover, the essential oils inhibited shoot growth at all concentrations tested (187.5; 375; 750; 1500; and 3000 ppm). Autotetraploid A and B had the same effect on shoot growth as glyphosate. The essential oils had no cytogenotoxic effect on root meristematic cells of L. sativa, whereas phytotoxic potential was identified mainly in shoot growth. This work demonstrated a dramatic change in secondary metabolism (terpene composition) related to an increase in the ploidy level in Eucalyptus germplasms. In addition, we report the novelty of the chemical composition of essential oils among germplasms and their potential use as larvicidal and post-emergence weed control agents.


Asunto(s)
Aceite de Eucalipto/química , Aceite de Eucalipto/farmacología , Eucalyptus/química , Eucalyptus/genética , Herbicidas , Insecticidas , Aceites Volátiles/química , Aceites Volátiles/farmacología , Tetraploidía , Aedes/efectos de los fármacos , Alelopatía/efectos de los fármacos , Animales , Bioensayo , Relación Dosis-Respuesta a Droga , Larva/efectos de los fármacos , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Fitomejoramiento , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA