Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Neurobiol ; 44(1): 36, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637346

RESUMEN

Surgical brain injury (SBI), induced by neurosurgical procedures or instruments, has not attracted adequate attention. The pathophysiological process of SBI remains sparse compared to that of other central nervous system diseases thus far. Therefore, novel and effective therapies for SBI are urgently needed. In this study, we found that neutrophil extracellular traps (NETs) were present in the circulation and brain tissues of rats after SBI, which promoted neuroinflammation, cerebral edema, neuronal cell death, and aggravated neurological dysfunction. Inhibition of NETs formation by peptidylarginine deiminase (PAD) inhibitor or disruption of NETs with deoxyribonuclease I (DNase I) attenuated SBI-induced damages and improved the recovery of neurological function. We show that SBI triggered the activation of cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes (cGAS-STING), and that inhibition of the cGAS-STING pathway could be beneficial. It is worth noting that DNase I markedly suppressed the activation of cGAS-STING, which was reversed by the cGAS product cyclic guanosine monophosphate-adenosine monophosphate (cGMP-AMP, cGAMP). Furthermore, the neuroprotective effect of DNase I in SBI was also abolished by cGAMP. NETs may participate in the pathophysiological regulation of SBI by acting through the cGAS-STING pathway. We also found that high-dose vitamin C administration could effectively inhibit the formation of NETs post-SBI. Thus, targeting NETs may provide a novel therapeutic strategy for SBI treatment, and high-dose vitamin C intervention may be a promising translational therapy with an excellent safety profile and low cost.


Asunto(s)
Lesiones Encefálicas , Trampas Extracelulares , Animales , Ratas , Encéfalo , Lesiones Encefálicas/tratamiento farmacológico , Ácido Ascórbico , Desoxirribonucleasa I/farmacología
2.
Phytomedicine ; 128: 155529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503156

RESUMEN

BACKGROUND/PURPOSE: Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba (R. crenulate), a famous and characteristic Tibetan medicine, has been demonstrated to exert an outstanding brain protection role in the treatment of high-altitude hypoxia disease. However, the metabolic effects of R. crenulate on high-altitude hypoxic brain injury (HHBI) are still incompletely understood. Herein, the anti-hypoxic effect and associated mechanisms of R. crenulate were explored through both in vivo and in vitro experiments. STUDY DESIGN/METHODS: The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE, 0.5, 1.0 and 2.0 g/kg) and salidroside (Sal, 25, 50 and 100 mg/kg) was given by gavage for 7 days. Pathological changes and neuronal apoptosis of mice hippocampus and cortex were evaluated using H&E and TUNEL staining, respectively. The effects of RCE and Sal on the permeability of blood brain barrier (BBB) were detected by Evans blue staining and NIR-II fluorescence imaging. Meanwhile, the ultrastructural BBB and cerebrovascular damages were observed using a transmission electron microscope (TEM). The levels of tight junction proteins Claudin-1, ZO-1 and occludin were detected by immunofluorescence. Additionally, the metabolites in mice serum and brain were determined using UHPLC-MS and MALDI-MSI analysis. The cell viability of Sal on hypoxic HT22 cells induced by CoCl2 was investigated by cell counting kit-8. The contents of LDH, MDA, SOD, GSH-PX and SDH were detected by using commercial biochemical kits. Meanwhile, intracellular ROS, Ca2+ and mitochondrial membrane potential were determined by corresponding specific labeled probes. The intracellular metabolites of HT22 cells were performed by the targeted metabolomics analysis of the Q300 kit. The cell apoptosis and necrosis were examined by YO-PRO-1/PI, Annexin V/PI and TUNEL staining. In addition, mitochondrial morphology was tested by Mito-tracker red with confocal microscopy and TEM. Real-time ATP production, oxygen consumption rate, and proton efflux rate were measured using a Seahorse analyzer. Subsequently, MCU, OPA1, p-Drp1ser616, p-AMPKα, p-AMPKß and Sirt1 were determined by immunofluorescent and western blot analyses. RESULTS: The results demonstrated that R. crenulate and Sal exert anti-hypoxic brain protection from inhibiting neuronal apoptosis, maintaining BBB integrity, increasing tight junction protein Claudin-1, ZO-1 and occludin and improving mitochondrial morphology and function. Mechanistically, R. crenulate and Sal alleviated HHBI by enhancing the tricarboxylic acid cycle to meet the demand of energy of brain. Additionally, experiments in vitro confirmed that Sal could ameliorate the apoptosis of HT22 cells, improve mitochondrial morphology and energy metabolism by enhancing mitochondrial respiration and glycolysis. Meanwhile, Sal-mediated MCU inhibited the activation of Drp1 and enhanced the expression of OPA1 to maintain mitochondrial homeostasis, as well as activation of AMPK and Sirt1 to enhance ATP production. CONCLUSION: Collectively, the findings suggested that RCE and Sal may afford a protective intervention in HHBI through maintaining BBB integrity and improving energy metabolism via balancing MCU-mediated mitochondrial homeostasis by activating the AMPK/Sirt1 signaling pathway.


Asunto(s)
Barrera Hematoencefálica , Metabolismo Energético , Extractos Vegetales , Rhodiola , Animales , Rhodiola/química , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Ratones , Extractos Vegetales/farmacología , Metabolismo Energético/efectos de los fármacos , Masculino , Apoptosis/efectos de los fármacos , Glucósidos/farmacología , Modelos Animales de Enfermedad , Fenoles/farmacología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Línea Celular , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mal de Altura/tratamiento farmacológico , Mal de Altura/metabolismo , Hipoxia/tratamiento farmacológico
3.
J Ethnopharmacol ; 328: 118114, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552993

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Alcohol misuse persists as a prevalent societal concern and precipitates diverse deleterious consequences, entailing significant associated health hazards including acute alcohol intoxication (AAI). Binge drinking, a commonplace pattern of alcohol consumption, may incite neurodegeneration and neuronal dysfunction. Clinicians tasked with managing AAI confront a dearth of pharmaceutical intervention alternatives. In contrast, natural products have garnered interest due to their compatibility with the human body and fewer side effects. Lingjiao Gouteng decoction (LGD), a classical traditional Chinese medicine decoction, represents a frequently employed prescription in cases of encephalopathy, although its efficacy in addressing acute alcoholism and alcohol-induced brain injury remains inadequately investigated. AIM OF THE STUDY: To investigate the conceivable therapeutic benefits of LGD in AAI and alcohol-induced brain injury, while delving into the underlying fundamental mechanisms involved. MATERIALS AND METHODS: We established an AAI mouse model through alcohol gavage, and LGD was administered to the mice twice at the 2 h preceding and 30 min subsequent to alcohol exposure. The study encompassed the utilization of the loss of righting reflex assay, histopathological analysis, enzyme-linked immunosorbent assays, and cerebral tissue biochemical assays to investigate the impact of LGD on AAI and alcohol-induced brain injury. These assessments included a comprehensive evaluation of various biomarkers associated with the inflammatory response and oxidative stress. Finally, RT-qPCR, Western blot, and immunofluorescence staining were carried out to explore the underlying mechanisms through which LGD exerts its therapeutic influence, potentially through the regulation of the RhoA/ROCK2/NF-κB signaling pathway. RESULTS: Our investigation underscores the therapeutic efficacy of LGD in ameliorating AAI, as evidenced by discernible alterations in the loss of righting reflex assay, pathological analysis, and assessment of inflammatory and oxidative stress biomarkers. Furthermore, the results of RT-qPCR, Western blot, and immunofluorescence staining manifest a noteworthy regulatory effect of LGD on the RhoA/ROCK2/NF-κB signaling pathway. CONCLUSIONS: The present study confirmed the therapeutic potential of LGD in AAI and alcohol-induced brain injury, and the protective effects of LGD against alcohol-induced brain injury may be intricately linked to the RhoA/ROCK2/NF-κB signaling pathway.


Asunto(s)
Intoxicación Alcohólica , Alcoholismo , Lesiones Encefálicas , Ratones , Humanos , Animales , FN-kappa B/metabolismo , Intoxicación Alcohólica/tratamiento farmacológico , Transducción de Señal , Etanol/farmacología , Lesiones Encefálicas/tratamiento farmacológico , Biomarcadores , Quinasas Asociadas a rho/metabolismo
4.
Phytomedicine ; 124: 155326, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185068

RESUMEN

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) is a phenomenon that pathological injury of ischemic brain tissue is further aggravated after the restoration of blood supply. The complex pathological mechanism of CIRI has led to the failure of multiple neuroprotective agents in clinical studies. Salvianolic acid A (SAA) is a neuroprotective extract from Salvia miltiorrhiza Bge., with significant pharmacological activities in the treatment of brain injury. However, the neuroprotective mechanisms of SAA remain unclear. PURPOSE: To explore the potential protective effect of SAA on CIRI and its mechanism, and to provide experimental basis for the research of new drugs for CIRI. STUDY DESIGN: A model of transient middle cerebral artery occlusion (tMCAO) in rats was used to simulate clinical CIRI, and the neuroprotective effect of SAA on tMCAO rats was investigated within 14 days after reperfusion. The improvement effects of SAA on cognitive impairment of tMCAO rats were investigated by behavioral tests from days 7-14. Finally, the neuroprotective mechanism of SAA was investigated on day 14. METHODS: The neuroprotective effects and mechanism of SAA were investigated by behavioral tests, HE and TUNEL staining, RNA sequence (RNA-seq) analysis and Western blot in tMCAO rats. RESULTS: The brain protective effects of SAA were achieved by alleviating cerebral infarction, cerebral edema, cerebral atrophy and nerve injury in tMCAO rats. Meanwhile, SAA could effectively improve the cognitive impairment and pathological damage of hippocampal tissue, and inhibit cell apoptosis in tMCAO rats. Besides, SAA could provide neuroprotective effects by up-regulating the expression of Bcl-2, inhibiting the activation of Caspase 3, and regulating PKA/CREB/c-Fos signaling pathway. CONCLUSION: SAA can significantly improve brain injury and cognitive impairment in CIRI rats, and this neuroprotective effect may be achieved through the anti-apoptotic effect and the regulation of PKA/CREB/c-Fos signaling pathway.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Ácidos Cafeicos , Lactatos , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas Sprague-Dawley , Transducción de Señal , Isquemia Encefálica/patología , Daño por Reperfusión/metabolismo , Apoptosis , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Lesiones Encefálicas/tratamiento farmacológico
5.
J Ethnopharmacol ; 319(Pt 3): 117335, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37863400

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Early brain damage (EBI) following subarachnoid hemorrhage (SAH) is a long-lasting condition with a high occurrence. However, treatment options are restricted. Wu-zhu-yu Decoction (WZYD) can treat headaches and vomiting, which are similar to the early symptoms of subarachnoid hemorrhage (SAH). However, it is yet unknown if WZYD can reduce EBI following SAH and its underlying mechanisms. AIM OF THE STUDY: This study aimed to investigate whether WZYD protects against EBI following SAH by inhibiting oxidative stress through activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling via Sirtuin 6 (SIRT6)-mediated histone H3 lysine 56 (H3K56) deacetylation. MATERIALS AND METHODS: In the current investigation, the principal components of WZYD were identified using high-performance liquid chromatography-diode array detection (HPLC-DAD). The SAH model in rats using the internal carotid artery plug puncture approach and the SAH model in primary neurons using hemoglobin incubation were developed. WZYD with different doses (137 mg kg-1, 274 mg kg-1, 548 mg kg-1) and the positive drug-Nimodipine (40 mg kg-1) were intragastrically administered in SAH model rats, respectively. The PC12 cells were cultured with corresponding medicated for 24h. In our investigation, neurological scores, brain water content, Evans blue leakage, Nissl staining, TUNEL staining, oxidative stress, expression of apoptosis-related proteins, and Nrf2/HO-1 signaling were evaluated. The interaction between SIRT6 and Nrf2 was detected by co-immunoprecipitation. SIRT6 knockdown was used to confirm its role in WZYD's neuroprotection. RESULTS: The WZYD treatment dramatically reduced cerebral hemorrhage and edema, and enhanced neurological results in EBI following SAH rats. WZYD administration inhibited neuronal apoptosis via reducing the expression levels of Cleaved cysteinyl aspartate specific proteinase-3(Cleaved Caspase-3), cysteinyl aspartate specific proteinase-3(caspase-3), and Bcl-2, Associated X Protein (Bax) and increasing the expression of B-cell lymphoma-2(Bal2). It also decreased reactive oxygen species and malondialdehyde levels and increased Nrf2 and HO-1 expression in the rat brain after SAH. In vitro, WZYD attenuated hemoglobin-induced cytotoxicity, oxidative stress and apoptosis in primary neurons. Mechanistically, WZYD enhanced SIRT6 expression and H3K56 deacetylation, activated Nrf2/HO-1 signaling, and promoted the interaction between SIRT6 and Nrf2. Knockdown of SIRT6 abolished WZYD-induced neuroprotection. CONCLUSIONS: WZYD attenuates EBI after SAH by activating Nrf2/HO-1 signaling through SIRT6-mediated H3K56 deacetylation, suggesting its therapeutic potential for SAH treatment.


Asunto(s)
Lesiones Encefálicas , Fármacos Neuroprotectores , Sirtuinas , Hemorragia Subaracnoidea , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Caspasa 3 , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Ácido Aspártico/farmacología , Ácido Aspártico/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Apoptosis , Hemoglobinas/farmacología , Hemoglobinas/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
6.
J Nat Med ; 78(2): 312-327, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38143256

RESUMEN

Our previous study demonstrated neuroprotective and therapeutic effects of a standardized flavonoid extract from leaves of Diospyros kaki L.f. (DK) on middle cerebral artery occlusion-and-reperfusion (MCAO/R)-induced brain injury and its underlying mechanisms. This study aimed to clarify flavonoid components responsible for the effects of DK using in vitro and in vivo transient brain ischemic models. Organotypic hippocampal slice cultures (OHSCs) subjected to oxygen- and glucose-deprivation (OGD) were performed to evaluate in vitro neuroprotective activity of DK extract and nine isolated flavonoid components. MCAO/R mice were employed to elucidate in vivo neuroprotective effects of the flavonoid component that exhibited the most potent neuroprotective effect in OHSCs. DK extract and seven flavonoids [quercetin, isoquercetin, hyperoside, quercetin-3-O-(2″-O-galloyl-ß-D-galactopyranoside), kaempferol, astragalin, and kaempferol-3-O-(2″-O-galloyl-ß-D-glucopyranoside) compound (9)] attenuated OGD-induced neuronal cell damage and compound (9) possessed the most potent neuroprotective activity in OHSCs. The MCAO/R mice showed cerebral infarction, massive weight loss, characteristic neurological symptoms, and deterioration of neuronal cells in the brain. Compound (9) and a reference drugs, edaravone, significantly attenuated these physical and neurological impairments. Compound (9) mitigated the blood-brain barrier dysfunction and the change of glutathione and malondialdehyde content in the MCAO mouse brain. Edaravone suppressed the oxidative stress but did not significantly affect the blood-brain barrier permeability. The present results indicated that compound (9) is a flavonoid constituent of DK with a potent neuroprotective activity against transient ischemia-induced brain damage and this action, at least in part, via preservation of blood-brain barrier integrity and suppression of oxidative stress caused by ischemic insult.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Diospyros , Fármacos Neuroprotectores , Daño por Reperfusión , Ratones , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Quercetina/farmacología , Quercetina/uso terapéutico , Edaravona/uso terapéutico , Quempferoles/farmacología , Quempferoles/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Infarto Cerebral/tratamiento farmacológico , Flavonoides/farmacología , Daño por Reperfusión/tratamiento farmacológico , Oxígeno , Lesiones Encefálicas/tratamiento farmacológico
7.
Sci Rep ; 13(1): 20100, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973931

RESUMEN

Prophylactic pharmacotherapy for health care in patients with high risk of cardiac arrest (CA) is an elusive and less explored strategy. Melatonin has possibilities used as a daily nutraceutical to trigger the cellular adaptation. We sought to find the effects of long-term daily prophylactic supplement with melatonin on the victim of CA. Rats were divided into sham, CA, and melatonin + CA (Mel + CA) groups. The rats in the Mel + CA group received daily IP injection of melatonin 100 mg/kg for 14 days. CA was induced by 8 min asphyxia and followed by manual cardiopulmonary resuscitation. The endpoint was 24 h after resuscitation. Survival, neurological outcome, and hippocampal mitochondrial integrity, dynamics and function were assessed. Survival was significantly higher in the Mel + CA group than the CA group (81 vs. 42%, P = 0.04). Compared to the CA group, neurological damage in the CA1 region and the level of cytochrome c, cleaved caspase-3 and caspase-9 in the Mel + CA group were decreased (P < 0.05). Mitochondrial function and integrity were protected in the Mel + CA group compared to the CA group, according to the results of mitochondrial swelling, ΔΨm, ROS production, oxygen consumption rate, and respiratory control rate (P < 0.05). Melatonin increased SIRT3 and downregulated acetylated CypD. The mitochondrial dynamics and autophagy were improved in the Mel + CA group (P < 0.05). Long-term daily prophylactic supplement with melatonin buy the time from brain injury after CA.


Asunto(s)
Lesiones Encefálicas , Paro Cardíaco , Melatonina , Humanos , Ratas , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Ratas Sprague-Dawley , Paro Cardíaco/tratamiento farmacológico , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/etiología , Lesiones Encefálicas/prevención & control , Suplementos Dietéticos
8.
ACS Chem Neurosci ; 14(19): 3686-3693, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37698590

RESUMEN

Ischemic stroke is a common type of stroke, but effective treatment methods are still imperfect and new effective therapies need to be explored. Radix Aconiti Coreani and Rhizoma Typhonii used as Baifuzi in the treatment of stroke or symptoms associated with stroke have been recorded in ancient Chinese books and are widely used. Modern pharmacological studies have demonstrated that both of them have antioxidant and anti-inflammatory effects. The purpose of this study is to investigate whether Radix Aconiti Coreani and Rhizoma Typhonii have therapeutical effects on gerbils with ischemic stroke, to investigate their potential mechanisms of action, and to provide a reference for rational clinical application by comparing the differences between them. In this manuscript, the right unilateral ligation of the carotid artery of gerbils was used to cause an ischemic stroke model. The neurological deficits of gerbils in each group were scored by Longa scale. The area of cerebral infarction was detected by 2,3,5-tribenzotetrazolchloride staining. The levels of inflammatory factors, oxidative stress indexes, and vascular endothelial function indexes in brain homogenate and serum were determined by ELISA. The expression levels of P-Akt PI3K, HO-1, and KEAP1 proteins in brain tissue were determined by Western blot. Immunofluorescence staining was used to observe the recovery of neuronal cells in the hippocampal CA1 region of the gerbil brain tissue and the expression of proteins related to PI3K/Akt and KEAP1/Nrf2 signaling pathways in neuronal cells in the hippocampal CA1 region. It was found that Radix Aconiti Coreani and Rhizoma Typhonii could improve neurological deficits and reduce cerebral infarction rate in gerbils. The results showed that Radix Aconiti Coreani and Rhizoma Typhonii could significantly decrease the expression of inflammatory factors, increase the expression of antioxidative stress indexes and vascular endothelial function factors, activate the PI3K/Akt, KEAP1/Nrf2 signaling pathway, reduce the inflammatory response, inhibit the oxidative stress, enhance the vascular endothelial cell function, and thus protect against ischemic brain injury. From the experimental results, both Radix Aconiti Coreani and Rhizoma Typhonii had neuroprotective effects on ischemic brain injury. Compared with Rhizoma Typhonii, the effects of Radix Aconiti Coreani on anti-inflammatory and antioxidative stress were more significant, while Rhizoma Typhonii had showed more significant effects in promoting angiogenesis after ischemic stroke by increasing the level of NO.


Asunto(s)
Aconitum , Lesiones Encefálicas , Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Medicamentos Herbarios Chinos/farmacología , Gerbillinae , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Accidente Cerebrovascular/tratamiento farmacológico , Infarto Cerebral/tratamiento farmacológico , Antiinflamatorios , Lesiones Encefálicas/tratamiento farmacológico
9.
Medicine (Baltimore) ; 102(23): e33914, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37335674

RESUMEN

BACKGROUND: Hypoxic-ischemic brain injury (HIBI) is a disabling consequence of cardiopulmonary resuscitation, which has no direct treatment except supportive care. Many studies have used pharmacological agents to reduce or stop this disability. MLC901 is a traditional Chinese medicine showing neuroprotective and regenerative effects on focal and global ischemia in previous animal and human studies. We designed an experimental, randomized, double-blind, placebo-controlled study to analyze MLC901 efficacy in HIBI patients. METHODS: In a randomized, placebo-controlled trial, 35 patients with HIBI were randomly designated to receive either MLC901 or placebo capsules 3 times per day over 6 months. We assessed the 2 groups by modified Rankin Scale and Glasgow Outcome Scale at baseline, and follow-up visits in 3rd month, and 6th-month after injury. RESULTS: Thirty-one patients completed this study. There was no significant difference in baseline characteristics between the 2 groups as regards age, gender, time of resuscitation, the interval between injury and start of the intervention, and the length of intensive care unit stay. Both the placebo and intervention groups improved during the investigation. However, the Glasgow Outcome Scale and modified Rankin Scale scales were significantly improved in the MLC901 group compared to the placebo after 6 months (P < .05) with close to no adverse effects. No major side effect was reported. CONCLUSION: MLC901 has shown, compared to placebo, a statistically better improvement at 6 months in neurological functions of patients with HIBI.


Asunto(s)
Lesiones Encefálicas , Medicamentos Herbarios Chinos , Animales , Humanos , Proyectos Piloto , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Método Doble Ciego , Lesiones Encefálicas/tratamiento farmacológico , Resultado del Tratamiento
10.
J Nat Med ; 77(3): 544-560, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37115470

RESUMEN

This study aimed to investigate the neuroprotective and therapeutic effects of Diospyros kaki L.f. leaves (DK) on transient focal cerebral ischemic injury and underlying mechanisms using a middle cerebral artery occlusion (MCAO) model of mice. The animals received the MCAO operation on day 0. The daily administrations of DK (50 and 100 mg/kg, p.o) and edaravone (6 mg/kg, i.v), a reference drug with radical scavenging activity, were started 7 days before (pre-treatment) or immediately after the MCAO operation (post-treatment) and continued during the experimental period. Histochemical, biochemical, and neurological changes and cognitive performance were evaluated. MCAO caused cerebral infarction and neuronal cell loss in the cortex, striatum, and hippocampus in a manner accompanied by spatial cognitive deficits. These neurological and cognitive impairments caused by MCAO were significantly attenuated by pre- and post-ischemic treatments with DK and edaravone, suggesting that DK, like edaravone, has therapeutic potential for cerebral ischemia-induced brain damage. DK and edaravone suppressed MCAO-induced changes in biomarkers for apoptosis (TUNEL-positive cell number and cleaved caspase-3 protein expression) and oxidative stress (glutathione and malondialdehyde contents) in the brain. Interestingly, DK, but not edaravone, mitigated an increase in blood-brain permeability and down-regulation of vascular endothelial growth factor protein expression caused by MCAO. Although the exact chemical constituents implicated in the effects of DK remain to be clarified, the present results indicate that DK exerts neuroprotective and therapeutic activity against transient focal cerebral ischemia-induced injury probably by suppressing oxidative stress, apoptotic process, and mechanisms impairing blood-brain barrier integrity in the brain.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Diospyros , Fármacos Neuroprotectores , Daño por Reperfusión , Ratones , Animales , Flavonoides/farmacología , Factor A de Crecimiento Endotelial Vascular , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/complicaciones , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Apoptosis , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico
11.
Med J (Ft Sam Houst Tex) ; (Per 23-4/5/6): 31-38, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37042504

RESUMEN

Creatine supplementation has not been researched for Traumatic Brain Injury (TBI) extensively, but studies suggest potential as a neuroprotective agent and potential treatment for brain-injury complications. Patients suffering from TBI experience mitochondrial dysfunction, neuropsychological burden, and deficits in cognitive performance due to malperformance of brain creatine levels, diminished brain Adenosine Triphosphate (ATP) levels, glutamate toxicity, and oxidative stress. In this systemic review, the current available research is reviewed to examine the effects of creatine on common sequalae of TBI within children, adolescents, and mice. Past and present data still lacks the knowledge of creatine supplementation for the adult population and military members during TBI. PubMed was searched for studies which assessed the correlation between creatine supplementation of TBI complications. The search strategy yielded 40 results, of which 15 articles were included in this systemic review. The results of the review supported an apparent understanding creatine does offer an obvious benefit to patients suffering from TBI and post-injury complications under specific guidelines. Time and dose dependent metabolic alterations seem to be only exceptionally prevalent when given as a prophylaxis or if given acutely. Results are only clinically significant after a month of supplementation. Although patients may need many therapeutic treatments to recover from TBI, especially in acute resuscitation, creatine shows superior efficacy as a neuroprotective agent in battling the chronic manifestations which lead to oxidative stress and cognitive function post brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Fármacos Neuroprotectores , Animales , Ratones , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Creatina/uso terapéutico , Suplementos Dietéticos , Neuroprotección , Fármacos Neuroprotectores/uso terapéutico
12.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(2): 193-201, 2023 Feb 15.
Artículo en Chino | MEDLINE | ID: mdl-36854697

RESUMEN

OBJECTIVES: To study the protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism. METHODS: A preterm rat model of brain injury caused by intrauterine inflammation was prepared by intraperitoneal injections of lipopolysaccharide in pregnant rats. The pregnant rats and preterm rats were respectively randomly divided into 5 groups: control, model, low-dose breviscapine (45 mg/kg), high-dose breviscapine (90 mg/kg), and high-dose breviscapine (90 mg/kg)+ML385 [a nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, 30 mg/kg] (n=10 each). The number and body weight of the live offspring rats were measured for each group. Hematoxylin-eosin staining was used to observe the pathological morphology of the uterus and placenta of pregnant rats and the pathological morphology of the brain tissue of offspring rats. Immunofluorescent staining was used to measure the co-expression of ionized calcium binding adaptor molecule-1 (IBA-1) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex of offspring rats. ELISA was used to measure the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1ß (IL-1ß) in the brain tissue of offspring rats. Western blotting was used to measure the expression of Nrf2 pathway-related proteins in the brain tissue of offspring rats. RESULTS: Pathological injury was found in the uterus, and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, and severe microglia pyroptosis occurred in the cerebral cortex of the offspring rats in the model group. Compared with the control group, the model group had significant reductions in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the brain tissue of the offspring rats (P<0.05), but significant increases in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1ß, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). Compared with the model group, the breviscapine administration groups showed alleviated pathological injury of the uterus and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, significant increases in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and HO-1 in the brain tissue of the offspring rats (P<0.05), and significant reductions in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1ß, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). The high-dose breviscapine group had a significantly better effect than the low-dose breviscapine (P<0.05). ML385 significantly inhibited the intervention effect of high-dose breviscapine (P<0.05). CONCLUSIONS: Breviscapine can inhibit inflammatory response in brain tissue of preterm rats caused by intrauterine inflammation by activating the Nrf2 pathway, and it can also inhibit microglial pyroptosis and alleviate brain injury.


Asunto(s)
Lesiones Encefálicas , Flavonoides , Inflamación , Animales , Femenino , Embarazo , Ratas , Peso Corporal , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/etiología , Lesiones Encefálicas/prevención & control , Caspasa 1 , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Interleucina-6 , Interleucina-8 , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Flavonoides/uso terapéutico
13.
J Ethnopharmacol ; 301: 115836, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36252877

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xingnaojing(XNJ)injection is a traditional Chinese medicine injection with neuroprotective effect, which has been widely used in the treatment of stroke for many years. AIM OF THE STUDY: This study aimed to explore the potential mechanism of XNJ in cerebral ischemia mediated by ferroptosis using proteomics and in vivo and in vitro experiments. MATERIALS AND METHODS: After the rat model of middle cerebral artery occlusion (MCAO) was successfully established, they were randomly divided into model, XNJ, and deferoxamine (DFO) group. Triphenyl tetrazolium chloride (TTC) staining, Hematoxylin and eosin (H&E), and Nissl staining were used to observe the infarct area, pathological changes and the degree of neuronal apoptosis of rat brain. Proteins extracted from rat brain tissues were analyzed by quantitative proteomics using tandem mass tags (TMT). Western blotting and immunohistochemical assessment were used to measure the expression of ferroptosis-related proteins. In vitro, the SH-SY5Y cells were subjected to hypoxia (37°C/5% CO2/1% O2) for 24 h to observe the survival rate, and detect the reactive oxygen species (ROS) content and ferroptosis-related proteins. RESULTS: In TTC and H&E experiments, we found that XNJ drug treatment reduced the infarct volume and brain tissue damage in MCAO rats. Nissl staining also showed that compared with MCAO group rats, the Nissl bodies of brain tissue after XNJ drug intervention were clear with a 3.54-fold increased times, suggesting that XNJ improved cerebral infraction, and neurological deficits in MCAO rats. Proteomics identified 101 intersected differentially expressed proteins (DEPs). According to the bioinformatics analysis, these DEPs were closely related to ferroptosis. Further research indicated that MCAO-induced cerebral ischemia was alleviated by upregulating recombinant glutathione peroxidase 4 (GPX4), ferroportin (FPN) expression, Heme oxygenase-1 (HO-1) expression, and downregulating cyclooxygenase-2 (COX-2), transferring receptor (TFR) and divalent metal transporter-1 (DMT1) expression after XNJ treatment. In addition, in vitro experiment indicated that XNJ improved the survival rate of hypoxia-damaged SH-SY5Y cells. XNJ increased the level of GPX4 and inhibited the protein expression of COX-2 and TFR after cell hypoxia. Moreover, different concentrations of XNJ (0.25%, 0.5%, 1%) reduced the ROS content of hypoxic cells, suggesting that XNJ could inhibit hypoxia-induced cell damage by regulating the expression of ferroptosis-related proteins and decreasing the production of ROS. CONCLUSIONS: XNJ could promote the recovery of neurological function in MCAO rats and hypoxia SH-SY5Y cells by regulating ferroptosis.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Ferroptosis , Neuroblastoma , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Ratas , Lesiones Encefálicas/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Ciclooxigenasa 2 , Hipoxia/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Especies Reactivas de Oxígeno , Daño por Reperfusión/tratamiento farmacológico
14.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35806098

RESUMEN

Brain injury, especially traumatic brain injury (TBI), may induce severe dysfunction of extracerebral organs. Cardiac dysfunction associated with TBI is common and well known as the brain-heart crosstalk, which broadly refers to different cardiac disorders such as cardiac arrhythmias, ischemia, hemodynamic insufficiency, and sudden cardiac death, which corresponds to acute disorders of brain function. TBI-related cardiac dysfunction can both worsen the brain damage and increase the risk of death. TBI-related cardiac disorders have been mainly treated symptomatically. However, the analysis of pathomechanisms of TBI-related cardiac dysfunction has highlighted an important role of melatonin in the prevention and treatment of such disorders. Melatonin is a neurohormone released by the pineal gland. It plays a crucial role in the coordination of the circadian rhythm. Additionally, melatonin possesses strong anti-inflammatory, antioxidative, and antiapoptotic properties and can modulate sympathetic and parasympathetic activities. Melatonin has a protective effect not only on the brain, by attenuating its injury, but on extracranial organs, including the heart. The aim of this study was to analyze the molecular activity of melatonin in terms of TBI-related cardiac disorders. Our article describes the benefits resulting from using melatonin as an adjuvant in protection and treatment of brain injury-induced cardiac dysfunction.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Cardiopatías , Melatonina , Antioxidantes/farmacología , Encéfalo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/etiología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Cardiopatías/tratamiento farmacológico , Cardiopatías/etiología , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico
15.
Phytomedicine ; 103: 154240, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35691080

RESUMEN

BACKGROUND: Rhodiola crenulate (R. crenulate), a famous Tibetan medicine, has been demonstrated to possess superiorly protective effects in high-altitude hypoxic brain injury (HHBI). However, its mechanisms on HHBI are still largely unknown. METHODS: Herein, the protective effects and underlying mechanisms of R. crenulate on HHBI of BABL/c mice were explored through in vivo experiments. The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE) (0.5, 1.0 and 2.0 g/kg) was given by gavage for 7 days. Pathological changes and neuronal viability of mice hippocampus and cortex were evaluated using H&E and Nissl staining, respectively. The brain water content (BWC) in mice was determined by calculating the ratio of dry to wet weight of brain tissue. And serum of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH-Px) and lactate dehydrogenase (LDH) were detected via commercial biochemical kits. Synchronously, the contents of total antioxidant capacity (T-AOC), lactic acid (LA), adenosine triphosphate (ATP), succinate dehydrogenase (SDH), pyruvate kinase (PK), Ca2+-Mg2+-ATPcase, Na+-K+-ATPcase, TNF-α, IL-1ß and IL-6 in brain tissue were quantitative analysis by corresponding ELISA assay. Subsequently, NLRP3, ZO-1, claudin-5, occluding, p-p65, p65, ASC, cleaved-caspase-1, caspase-1 and IL-18 were determined by immunofluorescent and western blot analyses. RESULTS: The results demonstrated that RCE remarkably alleviated pathological damage, BWC, as well enhanced neuronal viability. Furthermore, the oxidative stress injuries were reversely abrogated after RCE treatment, evidenced by the increases of SOD, GSH-Px and T-AOC, while the decreases of MDA and LDH contents. Marvelously, the administration of RCE rectified and balanced the abnormal energy metabolism via elevating the levels of ATP, SDH, PK, Ca2+-Mg2+-ATPcase and Na+-K+-ATPcase, and lowering LA. Simultaneously, the expression of tight junction proteins (ZO-1, claudin-5 and occludin) was enhanced, illustrating RCE treatment might maintain the integrity of blood-brain barrier (BBB). Additionally, RCE treatment confined the contents of IL-6, IL-1ß and TNF-α, and attenuated fluorescent signal of NLRP3 protein. Concurrently, the results of western blot indicated that RCE treatment dramatically restrained p-p65/p65, ASC, NLRP3, cleaved-caspase-1/caspase-1 and IL-18 protein expressions in brain tissues of mice. CONCLUSION: RCE may afford a protectively intervention in HHBI of mice through suppressing the oxidative stress, improving energy metabolism and the integrity of BBB, and subsiding inflammatory responses via the NF-κB/NLRP3 signaling pathway. As a promising agent for the treatment of mice HHBI, the deep-crossing molecular mechanisms of R. crenulate still needs to be further elucidated to identify novel core hub targets.


Asunto(s)
Lesiones Encefálicas , Rhodiola , Adenosina Trifosfato , Animales , Antioxidantes/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Caspasa 1 , Claudina-5 , Hipoxia/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-18/uso terapéutico , Interleucina-6 , Ratones , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa
16.
PLoS One ; 17(3): e0266084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35324981

RESUMEN

OBJECTIVE: Food safety and nutrition during pregnancy are important concerns related to fetal brain development. In the present study, we aimed to explore the effects of omega-3 polyunsaturated fatty acids (PUFA ω-3) on exogenous sodium nitrite intervention-induced fetal brain injury in pregnant rats. METHODS: During pregnancy, rats were exposed to water containing sodium nitrite (0.05%, 0.15%, and 0.25%) to establish a fetal rat brain injury model. Inflammatory factors and oxidative stress levels were detected using enzyme-linked immunosorbent assay (ELISA) or flow cytometry. Subsequently, animals were divided into three groups: control, model, and 4% PUFA ω-3. Pregnancy outcomes were measured and recorded. Hematoxylin-eosin (H&E) staining and immunohistochemistry (IHC) were utilized to observe brain injury. ELISA, quantitative real-time PCR (qRT-PCR), western blot, flow cytometry, and transmission electron microscopy (TEM) were adopted to measure the levels of inflammatory factors, the NRF1/HMOX1 signaling pathway, and mitochondrial and oxidative stress damage. RESULTS: With the increase of sodium nitrite concentration, the inflammatory factors and oxidative stress levels increased. Therefore, the high dose group was set as the model group for the following experiments. After PUFA ω-3 treatment, the fetal survival ratio, average body weight, and brain weight were elevated. The cells in the PUFA ω-3 group were more closely arranged and more round than the model. PUFA ω-3 treatment relieved inflammatory factors, oxidative stress levels, and mitochondria damage while increasing the indicators related to brain injury and NRF1/HMOX1 levels. CONCLUSIONS: Sodium nitrite exposure during pregnancy could cause brain damage in fetal rats. PUFA ω-3 might help alleviate brain inflammation, oxidative stress, and mitochondrial damage, possibly through the NRF1/HMOX1 signaling pathway. In conclusion, appropriately reducing sodium nitrite exposure and increasing PUFA omega-3 intake during pregnancy may benefit fetal brain development. These findings could further our understanding of nutrition and health during pregnancy.


Asunto(s)
Lesiones Encefálicas , Encefalitis , Ácidos Grasos Omega-3 , Animales , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/prevención & control , Suplementos Dietéticos , Encefalitis/tratamiento farmacológico , Femenino , Inflamación/tratamiento farmacológico , Embarazo , Ratas , Nitrito de Sodio
17.
Molecules ; 27(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35164373

RESUMEN

Acanthopanax senticosus (AS) is a medicinal and food homologous plant with many biological activities. In this research, we generated a brain injury model by 60Co -γ ray radiation at 4 Gy, and gavaged adult mice with the extract with AS, Acanthopanax senticocus polysaccharides (ASPS), flavones, syringin and eleutheroside E (EE) to explore the therapeutic effect and metabolic characteristics of AS on the brain injury. Behavioral tests and pathological experiments showed that the AS prevented the irradiated mice from learning and memory ability impairment and protected the neurons of irradiated mice. Meanwhile, the functional components of AS increased the antioxidant activity of irradiated mice. Furthermore, we found the changes of neurotransmitters, especially in the EE and syringin groups. Finally, distribution and pharmacokinetic analysis of AS showed that the functional components, especially EE, could exert their therapeutic effects in brain of irradiated mice. This lays a theoretical foundation for the further research on the treatment of radiation-induced brain injury by AS.


Asunto(s)
Antioxidantes/farmacología , Lesiones Encefálicas/tratamiento farmacológico , Eleutherococcus/química , Fármacos Neuroprotectores/farmacología , Neurotransmisores/metabolismo , Extractos Vegetales/farmacología , Traumatismos por Radiación/tratamiento farmacológico , Animales , Antioxidantes/farmacocinética , Encéfalo/efectos de los fármacos , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Radioisótopos de Cobalto/toxicidad , Masculino , Ratones , Fármacos Neuroprotectores/farmacocinética , Extractos Vegetales/farmacocinética , Traumatismos por Radiación/etiología , Traumatismos por Radiación/patología , Distribución Tisular
18.
Ann Neurol ; 91(3): 389-403, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979595

RESUMEN

OBJECTIVE: Cardiac arrest (CA) is a major health burden with brain damage being a significant contributor to mortality. We found lysophosphatidylcholine (LPC), including a species containing docosahexaenoic acid (LPC-DHA), was significantly decreased in plasma post-CA, supplementation of which significantly improved neurological outcomes. The aim of this study is to understand the protective role of LPC-DHA supplementation on the brain post-CA. METHODS: We first evaluated associations between the plasma level of LPC-DHA and neurological injury and outcomes of human patients with CA. We then utilized a rat CA model and cell cultures to investigate therapeutic and mechanistic aspects of plasma LPC-DHA supplementation. RESULTS: We found that decreased plasma LPC-DHA was strongly associated with neurological outcomes and disappearance of the difference between gray and white matter in the brain after CA in human patients. In rats, the decreased plasma LPC-DHA was associated with decreased levels of brain LPC-DHA after CA, and supplementing plasma LPC-DHA normalized brain levels of LPC-DHA and alleviated neuronal cell death, activation of astrocytes, and expression of various inflammatory and mitochondrial dynamics genes. We also observed deceased severity of metabolic alterations with LPC-DHA supplementation using untargeted metabolomics analysis. Furthermore, LPC treatment showed a similar protective effect for neurons and astrocytes in mixed primary brain cell cultures. INTERPRETATION: The observed neuroprotection accompanied with normalized brain LPC-DHA level by plasma supplementation implicate the importance of preventing the decrease of brain LPC-DHA post-CA for attenuating brain injury. Furthermore, the data supports the causative role of decreased plasma LPC-DHA for brain damage after CA. ANN NEUROL 2022;91:389-403.


Asunto(s)
Astrocitos/efectos de los fármacos , Lesiones Encefálicas/tratamiento farmacológico , Muerte Celular/efectos de los fármacos , Paro Cardíaco/complicaciones , Lisofosfatidilcolinas/administración & dosificación , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Lesiones Encefálicas/sangre , Lesiones Encefálicas/etiología , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/sangre , Ácidos Docosahexaenoicos/uso terapéutico , Humanos , Lisofosfatidilcolinas/sangre , Lisofosfatidilcolinas/uso terapéutico , Masculino , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Sprague-Dawley
19.
Chin J Integr Med ; 28(7): 594-602, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35015222

RESUMEN

OBJECTIVE: To determine whether Schisandrin B (Sch B) attenuates early brain injury (EBI) in rats with subarachnoid hemorrhage (SAH). METHODS: Sprague-Dawley rats were divided into sham (sham operation), SAH, SAH+vehicle, and SAH+Sch B groups using a random number table. Rats underwent SAH by endovascular perforation and received Sch B (100 mg/kg) or normal saline after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evan's blue extravasation, and terminal transferase-mediated dUTP nick end-labeling (TUNEL) staining were carried out 24 h after SAH. Immunofluorescent staining was performed to detect the expressions of ionized calcium binding adapter molecule 1 (Iba-1) and myeloperoxidase (MPO) in the rat brain, while the expressions of B-cell lymphoma 2 (Bcl-2), Bax, Caspase-3, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated specklike protein containing the caspase-1 activator domain (ASC), Caspase-1, interleukin (IL)-1ß, and IL-18 in the rat brains were detected by Western blot. RESULTS: Compared with the SAH group, Sch B significantly improved the neurological function, reduced brain water content, Evan's blue content, and apoptotic cells number in the brain of rats (P<0.05 or P<0.01). Moreover, Sch B decreased SAH-induced expressions of Iba-1 and MPO (P<0.01). SAH caused the elevated expressions of Bax, Caspase-3, NLRP3, ASC, Caspase-1, IL-1ß, and IL-18 in the rat brain (P<0.01), all of which were inhibited by Sch B (P<0.01). In addition, Sch B increased the Bcl-2 expression (P<0.01). CONCLUSION: Sch B attenuated SAH-induced EBI, which might be associated with the inhibition of neuroinflammation, neuronal apoptosis, and the NLRP3 inflammatory signaling pathway.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Animales , Apoptosis , Encéfalo/patología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/patología , Caspasa 3/metabolismo , Ciclooctanos , Azul de Evans , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Lignanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Compuestos Policíclicos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Agua , Proteína X Asociada a bcl-2/metabolismo
20.
J Ethnopharmacol ; 285: 114874, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838942

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tongmai granules (TMG) is composed of Salvia miltiorrhiza Bge., Radix puerariae Lobata., and Ligusticum chuanxiong hort. TMG is mainly used for ischemic cardiovascular, cerebrovascular diseases, atherosclerosis, coronary heart disease, cerebral infarction and cerebral ischemia. TMG is a kind of traditional compound granule, which has a protective effect on brain injury. However, the potential protective mechanism of the TMG has not been elucidated. AIM OF THE STUDY: TMG has a good effect on brain injury, but its brain protective mechanism is still unclear. The purpose of this study was to confirm the neuroprotective mechanism of TMG, reveal its target genes and identify the active components of TMG. MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was used to identify the fingerprint of TMG. UPLC-Q-TOF-MSE was used to analyze the base peak intensity (BPI) chromatograms of TMG. TMG was pre-administered for one week, brain injury and edema were induced by injection of glutamate (Glu) into the lateral ventricles of rats. HE staining was used to investigate the pathological damage caused by Glu in the hippocampus of rats, and the RNA-seq was used to analyze the changes of different genes before and after TMG treatment. Finally, changes of related proteins were analyzed by qRT-PCR, Western blot, and other molecular biological methods. Dosage of TMG were set to 0.6 g/kg, 1.2 g/kg and 2.4 g/kg. RESULTS: We found that TMG contained many active components, including salvianolic acid, puerarin, ferulic acid, etc. TMG could improve cerebral edema and brain injury induced by Glu. After TMG treatment, differential gene analysis showed that differential genes were significantly enriched in toll-like receptor signaling pathway. qRT-PCR validation results were consistent with RNA-Seq analysis results. Combined with Western blot analysis, we found that TMG ultimately regulated the expression of inflammatory cytokines by affecting the TLR4/MyD88/AP-1 pathway. CONCLUSIONS: In this study, we combined TMG with RNA-seq analysis to demonstrate that TMG may play a neuroprotective role by regulating Toll-like receptor signaling pathway and down-regulating the expression of inflammatory cytokine. TMG may become a kind of traditional Chinese medicine with neuroprotective potential.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Medicamentos Herbarios Chinos , Hipocampo/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Lesiones Encefálicas/inducido químicamente , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/toxicidad , Masculino , Factor 88 de Diferenciación Mieloide/genética , Fitoterapia , Ratas , Ratas Wistar , Receptor Toll-Like 4/genética , Factor de Transcripción AP-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA