Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 184: 1-13, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35613521

RESUMEN

Monoterpenes and sesquiterpenes are the most abundant volatiles in tea plants and have dual functions in aroma quality formation and defense responses in tea plants. Terpene synthases (TPS) are the key enzymes for the synthesis of terpenes in plants; however, the functions of most of them in tea plants are still unknown. In this study, six putative terpene biosynthesis gene clusters were identified from the tea plant genome. Then we cloned three new TPS-b subfamily genes, CsTPS08, CsTPS10 and CsTPS58. In vitro enzyme assays showed that CsTPS08 and CsTPS58 are two multiple-product terpene synthases, with the former synthesizing linalool as the main product, and ß-myrcene, α-phellandrene, α-terpinolene, D-limonene, cis-ß-ocimene, trans-ß-ocimene and (4E,6Z)-allo-ocimene as minor products are also detected, while the latter catalyzing the formation of α-pinene and D-limonene using GPP as the substrate. No product of CsTPS10 was detected in the prokaryotic expression system, but geraniol production was detected when transiently expressed in tobacco leaves. CsTPS08 and CsTPS10 are two functional members of a monoterpene synthase gene cluster, which were significantly induced during both Ectropis oblique feeding and fresh leaf spreading treatments, suggesting that they have dual functions involved in tea plant pest defense and tea aroma quality regulation. In addition, the differences in their expression levels in different tea plant cultivars provide a possibility for the subsequent screening of tea plant resources with a specific aroma flavor. Our results deepen the understanding of terpenoid synthesis in tea plants.


Asunto(s)
Transferasas Alquil y Aril , Camellia sinensis , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Camellia sinensis/metabolismo , Herbivoria , Liasas Intramoleculares , Limoneno/metabolismo , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , , Terpenos/metabolismo
2.
Redox Rep ; 27(1): 92-99, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35435141

RESUMEN

Background: The cardiovascular crisis is advancing rapidly throughout the world. A large number of studies have shown that plant polyphenols affect major mechanisms involved in cardiovascular events through their action on the antioxidant system, signaling, and transcription pathways. D-limonene, a monocyclic monoterpene obtained from citrus fruits, is reported to possess many pharmacological activities.Methods: The experiment was designed to determine the protective effect of D-limonene against cardiac injury induced by CCl4 in Wistar rats. Rats were treated with two doses of D-limonene against cardiac injury induced by CCl4. Serum toxicity markers, cardiac toxicity biomarker enzymes, inflammatory mediators, anti-oxidant armory, lipid peroxidation, lipid profile, and histology were done.Results: CCl4 intoxication resulted in a substantial rise in FFA, TC, TG, PL, LDL, VLDL, and a reduction in HDL, restoring these changes with the administration of D-limonene at a dosage of 200 mg/kg. CCl4 administration also resulted in lipid oxidation and decreased antioxidant activity. At the same time, D-limonene at a dosage of 200 mg/kg body weight inhibited LPO and restored in vivo antioxidant components to normal. CCl4 intoxication also resulted in a significant increase in inflammatory markers like IL-6, TNF-α, high sensitivity Corticotropin Releasing Factor (Hs-CRF), and biomarkers of cardiac toxicity like alanine aminotransferase (ALT), lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase MB (CKMB), and Troponin I & troponin-t activities. D-limonene reversed all these changes to normal. Histology further confirmed our obtained results.Conclusion: These findings indicate that D-limonene can ameliorate cardiac injury at a 200 mg/kg body weight dosage. Henceforth, D-Limonene intervenes in mediating CCl4 induced toxicity by various signaling pathways.


Asunto(s)
Antioxidantes , Cardiotoxicidad , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Peso Corporal , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Creatina Quinasa/metabolismo , Creatina Quinasa/farmacología , Ciclohexanos , Limoneno/metabolismo , Limoneno/farmacología , Limoneno/uso terapéutico , Peroxidación de Lípido , Lípidos , Hígado , Estrés Oxidativo , Extractos Vegetales/farmacología , Ratas , Ratas Wistar
3.
Molecules ; 27(5)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35268817

RESUMEN

Monoterpenes make up the largest group of plant secondary metabolites. They can be found in numerous plants, among others, the Lamiaceae family. The compounds demonstrate antioxidative, antibacterial, sedative and anti-inflammatory activity, hence, they are often employed in medicine and pharmaceuticals. Additionally, their fragrant character is often made use of, notably in the food and cosmetic industries. Nevertheless, long-lasting studies have revealed their toxic properties. This fact has led to a detailed analysis of the compounds towards their side effects on the human organism. Although most are safe for human food and medical applications, there are monoterpene compounds that, in certain amounts or under particular circumstances (e.g., pregnancy), can cause serious disorders. The presented review characterises in vitro and in vivo, the toxic character of selected monoterpenes (α-terpinene, camphor, citral, limonene, pulegone, thujone), as well as that of their original plant sources and their essential oils. The selected monoterpenes reveal various toxic properties among which are embryotoxic, neurotoxic, allergenic and genotoxic. It is also known that the essential oils of popular plants can also reveal toxic characteristics that many people are unaware of.


Asunto(s)
Lamiaceae , Aceites Volátiles , Alcanfor , Femenino , Humanos , Lamiaceae/metabolismo , Limoneno/metabolismo , Monoterpenos/metabolismo , Monoterpenos/toxicidad , Aceites Volátiles/metabolismo , Aceites Volátiles/toxicidad , Aceites de Plantas/metabolismo , Embarazo
4.
J Equine Vet Sci ; 113: 103938, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35346771

RESUMEN

Greenhouse gases emission from livestock is the major concern for the ecosystem. Despite the lower contribution of non-ruminants towards greenhouse gas emission as compared to the ruminants, the emission of methane (CH4) gas from equines is expected to be increased in future due to its increasing population. Thus, it is essential to find or screen potential anti-methanogenic agent in a cost-effective and quicker manner. Considering this, the present investigation was aimed to analyze anti-methanogenic characteristic of bioactive compounds of safflower oil by targeting methanogenesis catalyzing enzyme (Methyl-coenzyme M reductase; MCR) via in silico tool. Initially, a total of 25 compounds associated with safflower oil were selected and their drug-likeness traits were predicted through Lipinski's rule of 5. Of 25 compounds, 9 compounds passed all the parameters of Lipinski's rule of five. These 9 ligands were further submitted for ADME traits analysis using Swiss ADME tool. Results revealed the absence of Lipinski's violation and approval of drug-likeness attributes of methyl tetradecanoate, 3-isopropyl-6-methylenecyclohex-1-ene, trans-2,4-decadienal, cis-6-nonenal, limonene, syringic acids, matairesinol, acacetin, and 2,5-octanedione. Molecular docking analysis was performed for analyzing the affinity between the selected 9 ligands and MCR receptor using FRED v3.2.0 from OpenEye Scientific Software and Discovery Studio client v16.1.0. Results showed maximum binding interaction of acacetin with MCR with the chemguass4 score of -13.35. Other ligands showed comparatively lower binding affinity in the order of matairesinol (-12.43) > methyl tetradecanoate (-9.25) > cis-6-nonenal (-7.88) > syringic acids (-7.73) > limonene (-7.18) > trans-2,4-decadienal (-7.07) > 3-isopropyl-6-methylenecyclohex-1-ene (-7.01) > 2,5-octanedione (-7.0.). In a nutshell, these identified compounds were observed as potential agents to reduce CH4 production from equines by targeting MCR. This in silico study emphasized the role of safflower-associated compounds in developing anti-methanogenic drug for equines in future.


Asunto(s)
Euryarchaeota , Gases de Efecto Invernadero , Animales , Ecosistema , Euryarchaeota/metabolismo , Gases de Efecto Invernadero/metabolismo , Caballos , Ligandos , Limoneno/metabolismo , Simulación del Acoplamiento Molecular , Oxidorreductasas , Aceite de Cártamo/metabolismo
5.
Food Funct ; 10(1): 38-48, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30548041

RESUMEN

Natural killer (NK) cells play an important role in the innate immune system by eliminating cancer cells and virally infected cells. Aging and stress attenuate the activity of NK cells, thereby increasing the risk of various diseases. In this study, we demonstrated that the consumption of a small number of kumquats in an in vivo model could suppress elevated plasma corticosterone levels and reverse the decline in splenocyte cytotoxicity caused by restraint stress. Our results identified ß-cryptoxanthin (BCX) as an active kumquat component with a NK cell-activating effect, and R-limonene as an active component that mediates not only the anti-stress effect but also NK cell activation by oral administration. In addition, BCX, R-limonene, and R-limonene metabolites were found to enhance IFN-γ production in KHYG-1 cells, a human NK cell line. Collectively, our findings suggest that the ingestion of a few kumquats on a daily basis can help to combat stress and enhance NK cell activity.


Asunto(s)
Adyuvantes Inmunológicos/metabolismo , beta-Criptoxantina/metabolismo , Limoneno/metabolismo , Extractos Vegetales/metabolismo , Rutaceae/metabolismo , Adyuvantes Inmunológicos/química , Animales , beta-Criptoxantina/química , Línea Celular , Corticosterona/sangre , Humanos , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Limoneno/química , Masculino , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/química , Rutaceae/química , Estrés Fisiológico
6.
Biosci Rep ; 38(6)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30287506

RESUMEN

Monocyclic monoterpenes have been recognized as useful pharmacological ingredients due to their ability to treat numerous diseases. Limonene and perillyl alcohol as well as their metabolites (especially perillic acid and its methyl ester) possess bioactivities such as antitumor, antiviral, anti-inflammatory, and antibacterial agents. These therapeutic properties have been well documented. Based on the aforementioned biological properties of limonene and its metabolites, their structural modification and development into effective drugs could be rewarding. However, utilization of these monocyclic monoterpenes as scaffolds for the design and developments of more effective chemoprotective agents has not received the needed attention by medicinal scientists. Recently, some derivatives of limonene metabolites have been synthesized. Nonetheless, there have been no thorough studies on their pharmacokinetic and pharmacodynamic properties as well as their inhibition against isoprenylation enzymes. In this review, recent research progress in the biochemical significance of limonene and its metabolites was summarized with emphasis on their antitumor effects. Future prospects of these bioactive monoterpenes for drug design and development are also highlighted.


Asunto(s)
Diseño de Fármacos , Limoneno/uso terapéutico , Neoplasias/tratamiento farmacológico , Ciclohexenos/química , Ciclohexenos/metabolismo , Ciclohexenos/uso terapéutico , Humanos , Limoneno/química , Limoneno/metabolismo , Éteres Metílicos/química , Éteres Metílicos/metabolismo , Éteres Metílicos/uso terapéutico , Monoterpenos/química , Monoterpenos/metabolismo , Monoterpenos/uso terapéutico , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA