Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Pharmacol Toxicol ; 25(1): 14, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308341

RESUMEN

OBJECTIVE: Uranium exposure may cause serious pathological injury to the body, which is attributed to oxidative stress and inflammation. However, the pathogenesis of uranium toxicity has not been clarified. Here, we evaluated the level of oxidative stress to determine the relationship between uranium exposure, nephrotoxic oxidative stress, and endothelial inflammation. METHODS: Forty male Sprague-Dawley rats were divided into three experimental groups (U-24h, U-48h, and U-72h) and one control group. The three experimental groups were intraperitoneally injected with 2.0 mg/kg uranyl acetate, and tissue and serum samples were collected after 24, 48, and 72 h, respectively, whereas the control group was intraperitoneally injected with 1.0 ml/kg normal saline and samples were collected after 24 h. Then, we observed changes in the uranium levels and oxidative stress parameters, including the total oxidative state (TOS), total antioxidant state (TAS), and oxidative stress index (OSI) in kidney tissue and serum. We also detected the markers of kidney injury, namely urea (Ure), creatine (Cre), cystatin C (CysC), and neutrophil gelatinase-associated lipocalin (NGAL). The endothelial inflammatory markers, namely C-reactive protein (CRP), lipoprotein phospholipase A2 (Lp-PLA2), and homocysteine (Hcy), were also quantified. Finally, we analyzed the relationship among these parameters. RESULTS: TOS (z = 3.949; P < 0.001), OSI (z = 5.576; P < 0.001), Ure (z = 3.559; P < 0.001), Cre (z = 3.476; P < 0.001), CysC (z = 4.052; P < 0.001), NGAL (z = 3.661; P < 0.001), and CRP (z = 5.286; P < 0.001) gradually increased after uranium exposure, whereas TAS (z = -3.823; P < 0.001), tissue U (z = -2.736; P = 0.001), Hcy (z = -2.794; P = 0.005), and Lp-PLA2 (z = -4.515; P < 0.001) gradually decreased. The serum U level showed a V-shape change (z = -1.655; P = 0.094). The uranium levels in the kidney tissue and serum were positively correlated with TOS (r = 0.440 and 0.424; P = 0.005 and 0.007) and OSI (r = 0.389 and 0.449; P = 0.013 and 0.004); however, serum U levels were negatively correlated with TAS (r = -0.349; P = 0.027). Partial correlation analysis revealed that NGAL was closely correlated to tissue U (rpartial = 0.455; P = 0.003), CysC was closely correlated to serum U (rpartial = 0.501; P = 0.001), and Lp-PLA2 was closely correlated to TOS (rpartial = 0.391; P = 0.014), TAS (rpartial = 0.569; P < 0.001), and OSI (rpartial = -0.494; P = 0.001). Pearson correlation analysis indicated that the Hcy levels were negatively correlated with tissue U (r = -0.344; P = 0.030) and positively correlated with TAS (r = 0.396; P = 0.011). CONCLUSION: The uranium-induced oxidative injury may be mainly reflected in enhanced endothelial inflammation, and the direct chemical toxicity of uranium plays an important role in the process of kidney injury, especially in renal tubular injury. In addition, CysC may be a sensitive marker reflecting the nephrotoxicity of uranium; however, Hcy is not suitable for evaluating short-term endothelial inflammation involving oxidative stress.


Asunto(s)
Uranio , Ratas , Masculino , Animales , Lipocalina 2/metabolismo , Uranio/toxicidad , Uranio/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Ratas Sprague-Dawley , Estrés Oxidativo , Antioxidantes/farmacología , Riñón/patología , Inflamación/metabolismo , Urea
2.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3839-3847, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37475075

RESUMEN

The purpose of this study was to investigate the effect of notoginsenoside R_1(NGR_1) on alleviating kidney injury by regulating renal oxidative stress and the Nrf2/HO-1 signaling pathway in mice with IgA nephropathy(IgAN) and its mechanism. The mouse model of IgAN was established using a variety of techniques, including continuous bovine serum albumin(BSA) gavage, subcutaneous injections of carbon tetrachloride(CCl_4) castor oil, and tail vein injections of lipopolysaccharide(LPS). After successful modeling, mice with IgAN were randomly separated into a model group, low, medium, and high-dose NGR_1 groups, and a losartan group, and C57BL6 mice were utilized as normal controls. The model and normal groups were given phosphate buffered saline(PBS) by gavage, the NGR_1 groups were given varying dosages of NGR_1 by gavage, and the losartan group was given losartan by gavage for 4 weeks. The 24-hour urine of mice was collected after the last administration, and serum and kidney tissues of mice were taken at the end of the animal experiment. Then urine red blood cell count(URBCC), 24-hour urine protein(24 h protein), serum creatinine(Scr), and blood urea nitrogen(BUN) levels were measured. The enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of galactose-deficient IgA1(Gd-IgA1), kidney injury molecule 1(Kim-1), and neutropil gelatinase-associated lipocalin(NGAL) in the mouse serum. The assay kits were used to detect the levels of malondialdehyde(MDA) and superoxide dismutase(SOD), and immunofluorescence(IF) was used to detect the expression level of glutathione peroxidase 4(GPX4) in the mesangial region. Western blot was used to detect the protein expression of nuclear transcription factor E2 related factor 2(Nrf2)/heme oxygenase 1(HO-1) signaling pathway in the renal tissue. Hematoxylin-eosin(HE) staining was used to observe pathological alterations in the glomerulus of mice. The results revealed that, as compared with the model group, the serum Gd-IgA1 level, URBCC, 24 h protein level, renal damage markers(Kim-1 and NGAL) in the high-dose NGR_1 group decreased obviously and renal function indicators(BUN, Scr) improved significantly. The activity of SOD activity and expression level of GPX4 increased significantly in the high-dose NGR_1 group, whereas the expression level of MDA reduced and protein expression levels of Nrf2 and HO-1 increased. Simultaneously, HE staining of the renal tissue indicated that glomerular damage was greatly decreased in the high-dose NGR_1 group. In conclusion, this study has clarified that NGR_1 may alleviate the kidney injury of mice with IgAN by activating the Nrf2/HO-1 signaling pathway, improving antioxidant capacity, and reducing the level of renal oxidative stress.


Asunto(s)
Glomerulonefritis por IGA , Ratones , Animales , Glomerulonefritis por IGA/tratamiento farmacológico , Glomerulonefritis por IGA/metabolismo , Glomerulonefritis por IGA/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Losartán/metabolismo , Losartán/farmacología , Lipocalina 2/metabolismo , Lipocalina 2/farmacología , Ratones Endogámicos C57BL , Riñón/fisiología , Transducción de Señal , Estrés Oxidativo , Superóxido Dismutasa/metabolismo
3.
J Trace Elem Med Biol ; 79: 127221, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37244046

RESUMEN

BACKGROUND: Cadmium (Cd) is a major environmental pollutant and chronic toxicity could induce nephropathy by increasing renal oxidative stress and inflammation. Although vitamin D (VD) and calcium (Ca) prophylactic treatments attenuated Cd-induced cell injury, none of the prior studies measure their renoprotective effects against pre-established Cd-nephropathy. AIMS: To measure the alleviating effects of VD and/or Ca single and dual therapies against pre-established nephrotoxicity induced by chronic Cd toxicity prior to treatment initiation. METHODS: Forty male adult rats were allocated into: negative controls (NC), positive controls (PC), Ca, VD and VC groups. The study lasted for eight weeks and all animals, except the NC, received CdCl2 in drinking water (44 mg/L) throughout the study. Ca (100 mg/kg) and/or VD (350 IU/kg) were given (five times/week) during the last four weeks to the designated groups. Subsequently, the expression of transforming growth factor-ß (TGF-ß1), inducible nitric oxide synthase (iNOS), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), VD synthesising (Cyp27b1) and catabolizing (Cyp24a1) enzymes with VD receptor (VDR) and binding protein (VDBP) was measured in renal tissues. Similarly, renal expression of Ca voltage-dependent channels (CaV1.1/CaV3.1), store-operated channels (RyR1/ITPR1), and binding proteins (CAM/CAMKIIA/S100A1/S100B) were measured. Serum markers of renal function alongside several markers of oxidative stress (MDA/H2O2/GSH/GPx/CAT) and inflammation (IL-6/TNF-α/IL-10) together with renal cell apoptosis and expression of caspase-3 were also measured. RESULTS: The PC group exhibited hypovitaminosis D, hypocalcaemia, hypercalciuria, proteinuria, reduced creatinine clearance, and increased renal apoptosis/necrosis with higher caspase-3 expression. Markers of renal tissue damage (TGF-ß1/iNOS/NGAL/KIM-1), oxidative stress (MDA/H2O2), and inflammation (TNF-α/IL-1ß/IL-6) increased, whilst the antioxidants (GSH/GPx/CAT) and IL-10 decreased, in the PC group. The PC renal tissues also showed abnormal expression of Cyp27b1, Cyp24a1, VDR, and VDBP, alongside Ca-membranous (CaV1.1/CaV3.1) and store-operated channels (RyR1/ITPR1) and cytosolic Ca-binding proteins (CAM/CAMKIIA/S100A1/S100B). Although VD was superior to Ca monotherapy, their combination revealed the best mitigation effects by attenuating serum and renal tissue Cd concentrations, inflammation and oxidative stress, alongside modulating the expression of VD/Ca-molecules. CONCLUSIONS: This study is the first to show improved alleviations against Cd-nephropathy by co-supplementing VD and Ca, possibly by better regulation of Ca-dependent anti-oxidative and anti-inflammatory actions.


Asunto(s)
Enfermedades Renales , Vitamina D , Ratas , Masculino , Animales , Vitamina D/farmacología , Vitamina D/metabolismo , Cadmio/metabolismo , Calcio/metabolismo , Interleucina-10/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Caspasa 3/metabolismo , Lipocalina 2/metabolismo , Lipocalina 2/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/farmacología , Vitamina D3 24-Hidroxilasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Interleucina-6/metabolismo , Riñón , Enfermedades Renales/metabolismo , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
4.
Oxid Med Cell Longev ; 2023: 6144967, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36644578

RESUMEN

Introduction: Obesity and metabolic syndrome (MetS) constitute a rapidly increasing health problem and contribute to the development of multiple comorbidities like acute and chronic kidney disease. Insulin resistance, inappropriate lipolysis, and excess of free fatty acids (FFAs) are associated with glomerulus hyperfiltration and atherosclerosis. The important component of MetS, oxidative stress, is also involved in the destabilization of kidney function and the progression of kidney injury. Natural polyphenols have the ability to reduce the harmful effect of reactive oxygen and nitrogen species (ROS/RNS). Extract derived from Punica granatum L. is rich in punicalagin that demonstrates positive effects in MetS and its associated diseases. The aim of the study was to investigate the effect of bioactive substances of pomegranate peel to kidney damage associated with the MetS. Methods: In this study, we compared biomarkers of oxidative stress in kidney tissue of adult male Zucker Diabetic Fatty (ZDF) rats with MetS and healthy controls that were treated with Punica granatum L. extract at a dose of 100 or 200 mg/kg. Additionally, we evaluated the effect of polyphenolic extract on kidney injury markers and remodeling. The concentration of ROS/RNS, oxLDL, glutathione (GSH), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), metalloproteinase 2 and 9 (MMP-2, MMP-9), and the activity of superoxide dismutase (SOD) and catalase (CAT) were measured. Results: The data showed significant differences in oxidative stress markers between treated and untreated MetS rats. ROS/RNS levels, oxLDL concentration, and SOD activity were lower, whereas CAT activity was higher in rats with MetS receiving polyphenolic extract. After administration of the extract, markers for kidney injury (NGAL, KIM-1) decreased. Conclusion: Our study confirmed the usefulness of pomegranate polyphenols in the treatment of MetS and the prevention of kidney damage. However, further, more detailed research is required to establish the mechanism of polyphenol protection.


Asunto(s)
Enfermedades Renales , Síndrome Metabólico , Extractos Vegetales , Granada (Fruta) , Animales , Masculino , Ratas , Antioxidantes/farmacología , Glutatión/metabolismo , Riñón , Enfermedades Renales/tratamiento farmacológico , Lipocalina 2/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Estrés Oxidativo , Extractos Vegetales/farmacología , Polifenoles/farmacología , Polifenoles/uso terapéutico , Polifenoles/metabolismo , Granada (Fruta)/química , Ratas Zucker , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
5.
Ecotoxicol Environ Saf ; 245: 114118, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174321

RESUMEN

Mori fructus aqueous extracts (MFAEs) have been used as a traditional Chinese medicine for thousands of years with the function of strengthening the liver and tonifying the kidney. However, its inner mechanism to alleviative renal injury is unclear. To investigate the attenuation of MFAEs on nephrotoxicity and uncover its potential molecular mechanism, we established a nephrotoxicity model induced by carbon tetrachloride (CCl4). The mice were randomly divided into control group, CCl4 model group (10% CCl4), CCl4 + low and high MFAEs groups (10% CCl4 + 100 mg/kg and 200 mg/kg MFAEs). We found that MFAEs decreased the kidney index of mice, restored the pathological changes of renal structure induced by CCl4, reduced cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (Kim-1) blood urea nitrogen and creatinine contents in serum, promoted the nuclear transportation of Nrf2 (nuclear factor erythroid derived 2 like 2), elevated the expression of HO-1 (heme oxygenase 1), GPX4 (glutathione peroxidase 4), SLC7A11 (solute carrier family 7 member 11), ZO-1 (zonula occludens-1) and Occludin, suppressed the expression of Keap1 (kelch-like ECH-associated protein 1), HMGB1 (High Mobility Group Protein 1), ACSL4 (acyl-CoA synthetase long chain family member 4) and TXNIP (thioredoxin interacting protein), upregulated the flora of Akkermansia, Anaerotruncus, Clostridium_sensu_stricto, Ihubacter, Alcaligenes, Dysosmobacter, and downregulated the flora of Clostridium_XlVa, Helicobacter, Paramuribaculum. Overlapped with Disbiome database, Clostridium_XlVa, Akkermansia and Anaerotruncus may be the potential genera treated with renal injury. It indicated that MFAEs could ameliorate kidney injury caused by CCl4 via Nrf2 signaling.


Asunto(s)
Microbioma Gastrointestinal , Proteína HMGB1 , Animales , Tetracloruro de Carbono/metabolismo , Tetracloruro de Carbono/toxicidad , Coenzima A/metabolismo , Creatinina , Cistatina C/metabolismo , Proteína HMGB1/metabolismo , Hemo-Oxigenasa 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/metabolismo , Ligasas/metabolismo , Lipocalina 2/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ocludina/metabolismo , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Tiorredoxinas/metabolismo
6.
Sci Rep ; 12(1): 3049, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197552

RESUMEN

Astrocytes utilize both glycolytic and mitochondrial pathways to power cellular processes that are vital to maintaining normal CNS functions. These cells also mount inflammatory and acute phase reactive programs in response to diverse stimuli. While the metabolic functions of astrocytes under homeostatic conditions are well-studied, the role of cellular bioenergetics in astrocyte reactivity is poorly understood. Teriflunomide exerts immunomodulatory effects in diseases such as multiple sclerosis by metabolically reprogramming lymphocytes and myeloid cells. We hypothesized that teriflunomide would constrain astrocytic inflammatory responses. Purified murine astrocytes were grown under serum-free conditions to prevent acquisition of a spontaneous reactive state. Stimulation with TNFα activated NFκB and increased secretion of Lcn2. TNFα stimulation increased basal respiration, maximal respiration, and ATP production in astrocytes, as assessed by oxygen consumption rate. TNFα also increased glycolytic reserve and glycolytic capacity of astrocytes but did not change the basal glycolytic rate, as assessed by measuring the extracellular acidification rate. TNFα specifically increased mitochondrial ATP production and secretion of Lcn2 required ATP generated by oxidative phosphorylation. Inhibition of dihydroorotate dehydrogenase via teriflunomide transiently increased both oxidative phosphorylation and glycolysis in quiescent astrocytes, but only the increased glycolytic ATP production was sustained over time, resulting in a bias away from mitochondrial ATP production even at doses down to 1 µM. Preconditioning with teriflunomide prevented the TNFα-induced skew toward oxidative phosphorylation, reduced mitochondrial ATP production, and reduced astrocytic inflammatory responses, suggesting that this drug may limit neuroinflammation by acting as a metabolomodulator.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Astrocitos/metabolismo , Crotonatos/farmacología , Hidroxibutiratos/farmacología , Inflamación/metabolismo , Nitrilos/farmacología , Toluidinas/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Células Cultivadas , Quimiocinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Lipocalina 2/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
7.
J Neuroinflammation ; 18(1): 256, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740378

RESUMEN

BACKGROUND: Neurotoxic microglia and astrocytes begin to activate and participate in pathological processes after spinal cord injury (SCI), subsequently causing severe secondary damage and affecting tissue repair. We have previously reported that photobiomodulation (PBM) can promote functional recovery by reducing neuroinflammation after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM ameliorates neuroinflammation by modulating the activation of microglia and astrocytes after SCI. METHODS: Male Sprague-Dawley rats were randomly divided into three groups: a sham control group, an SCI + vehicle group and an SCI + PBM group. PBM was performed for two consecutive weeks after clip-compression SCI models were established. The activation of neurotoxic microglia and astrocytes, the level of tissue apoptosis, the number of motor neurons and the recovery of motor function were evaluated at different days post-injury (1, 3, 7, 14, and 28 days post-injury, dpi). Lipocalin 2 (Lcn2) and Janus kinase-2 (JAK2)-signal transducer and activator of transcription-3 (STAT3) signaling were regarded as potential targets by which PBM affected neurotoxic microglia and astrocytes. In in vitro experiments, primary microglia and astrocytes were irradiated with PBM and cotreated with cucurbitacin I (a JAK2-STAT3 pathway inhibitor), an adenovirus (shRNA-Lcn2) and recombinant Lcn2 protein. RESULTS: PBM promoted the recovery of motor function, inhibited the activation of neurotoxic microglia and astrocytes, alleviated neuroinflammation and tissue apoptosis, and increased the number of neurons retained after SCI. The upregulation of Lcn2 and the activation of the JAK2-STAT3 pathway after SCI were suppressed by PBM. In vitro experiments also showed that Lcn2 and JAK2-STAT3 were mutually promoted and that PBM interfered with this interaction, inhibiting the activation of microglia and astrocytes. CONCLUSION: Lcn2/JAK2-STAT3 crosstalk is involved in the activation of neurotoxic microglia and astrocytes after SCI, and this process can be suppressed by PBM.


Asunto(s)
Astrocitos/efectos de la radiación , Terapia por Luz de Baja Intensidad , Microglía/efectos de la radiación , Recuperación de la Función/efectos de la radiación , Traumatismos de la Médula Espinal/patología , Animales , Astrocitos/metabolismo , Janus Quinasa 2/metabolismo , Janus Quinasa 2/efectos de la radiación , Lipocalina 2/metabolismo , Lipocalina 2/efectos de la radiación , Masculino , Microglía/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/efectos de la radiación , Transducción de Señal/efectos de la radiación , Traumatismos de la Médula Espinal/metabolismo , Regulación hacia Arriba
8.
Life Sci ; 286: 120048, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655604

RESUMEN

AIMS: Clinically, Cerebralcare Granule® (CG) has been widely utilized to treat various types of headache, chronic cerebral insufficiency and other diseases, and the effect is significant. Clinical studies have shown that CG can significantly relieve vascular dementia (VaD), however, the molecular mechanisms haven't been established. To clear the therapeutic mechanisms of CG against VaD, a hypothesis was proposed that CG could treat neurovascular injury by inhibiting the production of lipocalin-2 (LCN 2). MAIN METHODS: 90 dementia rats were selected by water maze test and randomly divided into 6 groups, including nimodipine (NM), CG L (low dose) (0.314 g kg-1), CG H (high dose) (0.628 g kg-1), and combined group (CG + NM). And in vitro neuronal cell OGD modeling to evaluate the effect of CG on JAK2/STAT3. KEY FINDINGS: CG could significantly shorten the escape latency of two-vessel occlusion (2-VO) rats, increase their exploratory behavior, alleviate the symptoms of VaD and improve the ultrastructural pathological damage of neurovascular unit and accelerate the recovery of cerebral blood perfusion. CG combined with NM is better than NM alone. It was further showed that CG could inhibit the pathogenicity of LCN 2 through JAK2/STAT3 pathway and suppress the production of inflammatory cytokines. It plays a role in the protection of cerebral microvasculature and BBB in 2-VO rats. SIGNIFICANCE: Taken together, there data has supported notion that CG can protect the integrity of cerebral blood vessels and BBB and improve cognitive impairment through mainly inhibiting LCN 2, which provides scientific evidence for clinical application.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Medicamentos Herbarios Chinos/metabolismo , Lipocalina 2/metabolismo , Animales , Arterias Carótidas/efectos de los fármacos , China , Disfunción Cognitiva/fisiopatología , Demencia Vascular/prevención & control , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Lipocalina 2/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Nimodipina/metabolismo , Nimodipina/farmacología , Ratas , Ratas Sprague-Dawley
9.
Int J Nanomedicine ; 16: 4335-4349, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234429

RESUMEN

PURPOSE: Selenium nanoparticles (SeNPs) have recently gained much attention in nanomedicine applications owing to their unique biological properties. Biosynthesis of SeNPs using nutraceuticals as lycopene (LYC) maximizes their stability and bioactivities. In this context, this study aimed to elucidate the renoprotective activity of SeNPs coated with LYC (LYC-SeNPs) in the acute kidney injury (AKI) model. METHODS: Rats were divided into six groups: control, AKI (glycerol-treated), AKI+sodium selenite (Na2SeO3; 0.5 mg/kg), AKI+LYC (10 mg/kg), AKI+LYC-SeNPs (0.5 mg/kg) and treated for 14 days. RESULTS: Glycerol treatment evoked significant increases in rhabdomyolysis-related markers (creatine kinase and LDH). Furthermore, relative kidney weight, Kim-1, neutrophil gelatinase-associated lipocalin (NGAL), serum urea, and creatinine in the AKI group were elevated. Glycerol-injected rats displayed declines in reduced glutathione level, and superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities, paralleled with downregulations in Nfe2l2 and Hmox-1 expressions and high renal MDA and NO contents. Glycerol-induced renal inflammation was evident by rises in TNF-α, IL-1ß, IL-6, and upregulated Nos2 expression. Also, apoptotic (elevated caspase-3, Bax, and cytochrome-c with lowered Bcl-2) and necroptotic (elevated Pipk3 expression) changes were reported in damaged renal tissue. Co-treatment with Na2SeO3, LYC, or LYC-SeNPs restored the biochemical, molecular, and histological alterations in AKI. In comparison with Na2SeO3 or LYC treatment, LYC-SeNPs had the best nephroprotective profile. CONCLUSION: Our findings authentically revealed that LYC-SeNPs co-administration could be a prospective candidate against AKI-mediated renal damage via antioxidant, anti-inflammatory, anti-apoptotic and anti-necroptotic activities.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Glicerol/efectos adversos , Licopeno/química , Nanopartículas/química , Selenio/química , Selenio/farmacología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Antioxidantes/metabolismo , Creatinina/sangre , Tecnología Química Verde , Lipocalina 2/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Selenio/uso terapéutico
10.
Sci Rep ; 11(1): 2591, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510370

RESUMEN

Neutrophil gelatinase-associated lipocalin (NGAL) is involved in cardiovascular and renal diseases. Gene inactivation of NGAL blunts the pathophysiological consequences of cardiovascular and renal damage. We aimed to design chemical NGAL inhibitors and investigate its effects in experimental models of myocardial infarction (MI) and chronic kidney disease induced by 5/6 nephrectomy (CKD) on respectively 8-12 weeks old C57Bl6/j and FVB/N male mice. Among the 32 NGAL inhibitors tested, GPZ614741 and GPZ058225 fully blocked NGAL-induced inflammatory and profibrotic markers in human cardiac fibroblasts and primary mouse kidney fibroblasts. The administration of GPZ614741 (100 mg/kg/day) for three months, was able to improve cardiac function in MI mice and reduced myocardial fibrosis and inflammation. The administration of GPZ614741 (100 mg/kg/day) for two months resulting to no renal function improvement but prevented the increase in blood pressure, renal tubulointerstitial fibrosis and profibrotic marker expression in CKD mice. In conclusion, we have identified new compounds with potent inhibitory activity on NGAL-profibrotic and pro-inflammatory effects. GPZ614741 prevented interstitial fibrosis and dysfunction associated with MI, as well as tubulointerstitial fibrosis in a CKD model. These inhibitors could be used for other diseases that involve NGAL, such as cancer or metabolic diseases, creating new therapeutic options.


Asunto(s)
Lipocalina 2/antagonistas & inhibidores , Lipocalina 2/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Animales , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Masculino , Ratones
11.
J Pharmacol Toxicol Methods ; 105: 106901, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32771565

RESUMEN

INTRODUCTION: The implementation of novel, reliable biomarkers for the early and differential diagnosis of acute kidney injury (AKI) could greatly improve the timely treatment and prevention of disease progression, particularly since the current gold standards for detecting kidney injury such as serum creatinine (SCr) and blood urea nitrogen (BUN) lack sensitivity and specificity. We evaluated novel urinary kidney injury biomarkers focusing on early detection and better prediction of AKI with higher sensitivity and specificity. METHODS: In the rat, urinary biomarkers for kidney injury, i.e. albumin, beta-2-microglobulin (B2M), clusterin, cystatin C, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), osteopontin (OPN), and total protein (TP), were investigated in an AKI model using different hyperosmolar and high-dose solutions, i.e. mannitol, sucrose, and contrast medium (CM), as acute single insults leading to kidney injury. Additionally, dose-dependency of sucrose was investigated and effects were compared to the sucrose- and iron-containing marketed drug Venofer®. RESULTS: Levels of excreted urinary biomarkers correlated with severity of AKI, exhibited a dose-dependent response to sucrose treatment, and demonstrated evidence of recovery from kidney injury with transient and reversible changes. The exceptions were KIM-1 and NGAL, which showed later responses following CM and iron-induced renal injury. All biomarkers outperformed plasma creatinine (PCr), BUN, and histopathology, with regard to practicability and/or detection of proximal tubular injury. DISCUSSION: The use of a panel of urinary kidney injury biomarkers emerged as an early, sensitive, and predictive tool to detect AKI showing enhanced sensitivity compared to current state-of-the-art markers.


Asunto(s)
Lesión Renal Aguda/sangre , Lesión Renal Aguda/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Riñón/metabolismo , Animales , Nitrógeno de la Urea Sanguínea , Moléculas de Adhesión Celular/metabolismo , Creatinina/sangre , Modelos Animales de Enfermedad , Diagnóstico Precoz , Pruebas de Función Renal/métodos , Lipocalina 2/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad
12.
Biochem Biophys Res Commun ; 526(3): 780-785, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32265033

RESUMEN

A growing number of evidence shows that human-associated microbiota is an important contributor in health and disease. However, much of the complexity of host-microbiota interaction remains to be elucidated both at cellular and molecular levels. Siderophores are chemically diverse, ferric-specific chelators synthesized and secreted by microbes to secure their iron acquisition. The host defense peptide LL-37 is ubiquitously produced at epithelial surfaces modulating microbial communities and suppressing pathogenic strains. The present work demonstrates that LL-37 binds tightly siderocalin-resistant stealth siderophores which are important contributors to the virulence of several pathogens. As indicated by circular dichroism spectroscopic experiments, addition of aerobactin and rhizoferrin increases the membrane active α-helical conformation of the partially folded peptide. The cationic nature of LL-37 (+6 net charge at pH 7.4) and the multiple carboxylate groups present in siderophores refer to the dominant contribution of electrostatic interactions in the stabilization of peptide-chelator adducts. It is proposed that aside siderocalin proteins, LL-37 may be a complementary, less specific component of the siderophore scavenging repertoire of the innate immune system.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Compuestos Férricos/farmacología , Ácidos Hidroxámicos/farmacología , Lipocalina 2/metabolismo , Sideróforos/metabolismo , Transporte Biológico , Quelantes/química , Humanos , Microbiota/efectos de los fármacos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Electricidad Estática , Virulencia , Catelicidinas
13.
Sci Rep ; 10(1): 3210, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081946

RESUMEN

Lysozyme (LZM) is a natural anti-bacterial protein that is found in the saliva, tears and milk of all mammals including humans. Its anti-bacterial properties result from the ability to cleave bacterial cell walls, causing bacterial death. The current study was conducted to investigate the effects of dietary LZM on fecal microbial composition and variation in metabolites in sow. The addition of LZM decreased the fecal short-chain fatty acids (SCFAs). Zonulin and endotoxin in the serum, and feces, were decreased with lysozyme supplementation. Furthermore, fecal concentrations of lipocalin-2 and the pro-inflammatory cytokine TNF-α were also decreased while the anti-inflammatory cytokine IL-10 was increased by lysozyme supplementation. 16S rRNA gene sequencing of the V3-V4 region suggested that fecal microbial levels changed at different taxonomic levels with the addition of LZM. Representative changes included the reduction of diversity between sows, decreased Bacteroidetes, Actinobacteria, Tenericutes and Spirochaetes during lactation as well as an increase in Lactobacillus. These findings suggest that dietary lysozyme supplementation from late gestation to lactation promote microbial changes, which would potentially be the mechanisms by which maternal metabolites and inflammatory status was altered after LZM supplementation.


Asunto(s)
Alimentación Animal/análisis , Bacterias/metabolismo , Heces/microbiología , Lactancia/efectos de los fármacos , Muramidasa/administración & dosificación , Actinobacteria , Animales , Bacterias/clasificación , Bacteroidetes , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos Volátiles/metabolismo , Femenino , Inflamación , Interleucina-10/metabolismo , Lipocalina 2/metabolismo , ARN Ribosómico 16S/metabolismo , Spirochaetales , Porcinos , Tenericutes , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo
14.
Kidney Blood Press Res ; 45(2): 222-232, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32008005

RESUMEN

AIMS: This study was designed to evaluate the conflicting association between 2 tubular protein markers including neutrophil gelatinase-associated lipocalin (NGAL) and retinol-binding protein-4 (RBP-4) with albuminuria and glomerular filtration rate (GFR) and calculate the accuracy of the role of NGAL and RBP-4 in diagnosis of diabetic nephropathy (DN) in patients with type2 diabetes. METHODS: This is a cross-sectional study that included 133 patients with type 2 diabetes. There were 3 diabetic study groups with normoalbuminuria, moderately increased albuminuria, severely increased albuminuria, and non-diabetic control group without any renal disease. We analyzed the difference of urinary NGAL (uNGAL) and RBP-4 between nondiabetics and diabetics, as well as within the diabetic group. We also assessed the association between albuminuria and NGAL and RBP-4. RESULTS: The urinary levels of NGAL and RBP-4 were higher in patients with type 2 diabetes compared to nondiabetics as well as in albuminuric diabetics compared to nonalbuminuric patients with diabetes (p value <0.001). These 2 proteins were higher in patients with severely increased albuminuria compared to patients with moderately increased albuminuria, even after adjustment for other metabolic factors (all p < 0.01). Moreover, areas under the curve of NGAL and RBP-4 for the diagnosis of chronic kidney disease were 80.6 and 74.6%, respectively. CONCLUSION: uNGAL and RBP-4 are potential markers of tubular damage that may increase before the onset of glomerular markers such as albuminuria and GFR in patients with type 2 diabetes. Therefore, these markers can be used as complementary measurements to albuminuria and GFR in the earlier diagnosis of DN.


Asunto(s)
Biomarcadores/sangre , Nefropatías Diabéticas/genética , Lipocalina 2/metabolismo , Neutrófilos/metabolismo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
J Dermatolog Treat ; 31(5): 519-523, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30995143

RESUMEN

Background: Lipocalin-2 (LCN2) is an adipokine related to insulin resistance and metabolic syndrome (MetS) in addition to its role in innate immunity and apoptosis.Objective: To estimate LCN2 tissue levels (lesional and non-lesional) in psoriasis. To assess the metabolic status of patients and to detect any possible associations between LCN2 and MetS. To evaluate the effect of narrow-band ultraviolet B (NBUVB) on tissue LCN2 in psoriasis.Methods: This case-control study was conducted on 25 psoriatic patients and 25 healthy controls. Dyslipidemia and MetS have been evaluated. Tissue LCN2 was estimated using ELISA technique before and after treatment with NBUVB.Results: Tissue LCN2 was significantly higher in psoriasis, with no significant difference as regards dyslipidemia or metabolic disturbance in these patients. Both lesional and non-lesional LCN2 and PASI score dropped significantly after NBUVB. No significant correlations have been detected between tissue LCN2 and disease extent or PASI score. Significant positive correlations were detected regarding tissue LCN2 levels between lesional and non-lesional samples before and after treatment.Conclusions: Psoriatic patients were at higher risk of metabolic disorders. LCN2 was not related to metabolic disturbances in our patients. NBUVB might exert its therapeutic effect in psoriasis through reduction of tissue LCN2.


Asunto(s)
Biomarcadores/metabolismo , Lipocalina 2/metabolismo , Psoriasis/radioterapia , Terapia Ultravioleta , Adulto , Anciano , Estudios de Casos y Controles , Dislipidemias/patología , Femenino , Humanos , Masculino , Síndrome Metabólico/patología , Persona de Mediana Edad , Psoriasis/patología , Índice de Severidad de la Enfermedad
16.
Cell Death Dis ; 10(12): 936, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31819048

RESUMEN

Chemoresistance is a major cause of cancer progression and the mortality of cancer patients. Developing a safe strategy for enhancing chemosensitivity is a challenge for biomedical science. Recent studies have suggested that vitamin D supplementation may decrease the risk of many cancers. However, the role of vitamin D in chemotherapy remains unknown. We found that vitamin D sensitised oral cancer cells to cisplatin and partially reversed cisplatin resistance. Using RNA-seq, we discovered that lipocalin 2 (LCN2) is an important mediator. Cisplatin enhanced the expression of LCN2 by decreasing methylation at the promoter, whereas vitamin D enhanced methylation and thereby inhibited the expression of LCN2. Overexpression of LCN2 increased cell survival and cisplatin resistance both in vitro and in vivo. High LCN2 expression was positively associated with differentiation, lymph node metastasis, and T staging and predicted a poor prognosis in oral squamous cell carcinoma (OSCC) patients. LCN2 was also associated with post-chemotherapy recurrence. Moreover, we found that LCN2 promoted the activation of NF-κB by binding to ribosomal protein S3 (RPS3) and enhanced the interaction between RPS3 and p65. Our study reveals that vitamin D can enhance cisplatin chemotherapy and suggests that vitamin D should be supplied during chemotherapy; however, more follow-up clinical studies are needed.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Escamosas/dietoterapia , Cisplatino/farmacología , Suplementos Dietéticos , Lipocalina 2/metabolismo , Neoplasias de la Boca/dietoterapia , FN-kappa B/metabolismo , Proteínas Ribosómicas/metabolismo , Vitamina D/uso terapéutico , Adulto , Animales , Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Estudios de Seguimiento , Humanos , Lipocalina 2/antagonistas & inhibidores , Lipocalina 2/genética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Receptores de Calcitriol/genética , Proteínas Ribosómicas/genética , Transducción de Señal/efectos de los fármacos , Transfección , Carga Tumoral/efectos de los fármacos , Vitamina D/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Oxid Med Cell Longev ; 2019: 8416105, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31565154

RESUMEN

BACKGROUND: Astrogliosis can result in astrocytes with hypertrophic morphology after injury, indicated by extended processes and swollen cell bodies. Lipocalin-2 (LCN2), a secreted glycoprotein belonging to the lipocalin superfamily, has been reported to play a detrimental role in ischaemic brains and neurodegenerative diseases. Sailuotong (SLT) capsule is a standardized three-herb preparation composed of ginseng, ginkgo, and saffron for the treatment of vascular dementia. Although recent clinical trials have demonstrated the beneficial effect of SLT on vascular dementia, its potential cellular mechanism has not been fully explored. METHODS: Male adult Sprague-Dawley (SD) rats were subjected to microsphere-embolized cerebral ischaemia. Immunostaining and Western blotting were performed to assess astrocytic reaction. Human astrocytes exposed to oxygen-glucose deprivation (OGD) were used to elucidate the effects of SLT-induced inflammation and astrocytic reaction. RESULTS: A memory recovery effect was found to be associated with the cerebral ischaemia-induced expression of inflammatory proteins and the suppression of LCN2 expression in the brain. Additionally, SLT reduced the astrocytic reaction, LCN2 expression, and the phosphorylation of STAT3 and JAK2. For in vitro experiments, OGD-induced expression of inflammation and LCN2 was also decreased in human astrocyte by the SLT treatment. Moreover, LCN2 overexpression significantly enhanced the above effects. SLT downregulated these effects that were enhanced by LCN2 overexpression. CONCLUSIONS: SLT mediates neuroinflammation, thereby protecting against ischaemic brain injury by inhibiting astrogliosis and suppressing neuroinflammation via the LCN2-JAK2/STAT3 pathway, providing a new idea for the treatment strategy of ischaemic stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Demencia Vascular/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Inflamación/tratamiento farmacológico , Lipocalina 2/antagonistas & inhibidores , Lipocalina 2/metabolismo , Memoria/efectos de los fármacos , Animales , Medicamentos Herbarios Chinos/farmacología , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Transfección
18.
J Agric Food Chem ; 66(5): 1147-1156, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29355013

RESUMEN

Tea is thought to alleviate neurotoxicity due to the antioxidative effect of ester-type tea catechins (ETC). Neutrophil gelatinase-associated lipocalin (NGAL) can sensitize ß-amyloid (Aß) induced neurotoxicity, and inhibitors of NGAL may relieve associated symptoms. As such, the interactions of ETC with NGAL were investigated by fluorescence spectrometry and molecular simulation. NGAL fluorescence is quenched regularly when being added with six processing types of tea infusion (SPTT) and ETC. Thermodynamic analyses suggest that ETC with more catechol moieties has a stronger binding capacity with NGAL especially in the presence of Fe3+. (-)-Epicatechin 3-O-caffeoate (ECC), a natural product isolated from Zijuan green tea, shows the strongest binding ability with NGAL (Kd = 15.21 ± 8.68 nM in the presence of Fe3+). All ETC are effective in protecting nerve cells against H2O2 or Aß1-42 induced injury. The inhibitory mechanism of ETC against NGAL supports its potential use in attenuation of neurotoxicity.


Asunto(s)
Catequina/farmacología , Lipocalina 2/farmacología , Té/química , Catequina/metabolismo , Interacciones Farmacológicas , Ésteres , Peróxido de Hidrógeno/farmacología , Quelantes del Hierro , Lipocalina 2/antagonistas & inhibidores , Lipocalina 2/metabolismo , Modelos Moleculares , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores , Espectrometría de Fluorescencia
19.
Mol Psychiatry ; 23(4): 1031-1039, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28485407

RESUMEN

In the adult mammalian brain, newborn granule cells are continuously integrated into hippocampal circuits, and the fine-tuning of this process is important for hippocampal function. Thus, the identification of factors that control adult neural stem cells (NSCs) maintenance, differentiation and integration is essential. Here we show that the deletion of the iron trafficking protein lipocalin-2 (LCN2) induces deficits in NSCs proliferation and commitment, with impact on the hippocampal-dependent contextual fear discriminative task. Mice deficient in LCN2 present an increase in the NSCs population, as a consequence of a G0/G1 cell cycle arrest induced by increased endogenous oxidative stress. Of notice, supplementation with the iron-chelating agent deferoxamine rescues NSCs oxidative stress, promotes cell cycle progression and improves contextual fear conditioning. LCN2 is, therefore, a novel key modulator of neurogenesis that, through iron, controls NSCs cell cycle progression and death, self-renewal, proliferation and differentiation and, ultimately, hippocampal function.


Asunto(s)
Discriminación en Psicología/fisiología , Lipocalina 2/metabolismo , Neurogénesis/fisiología , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Giro Dentado/metabolismo , Miedo/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Lipocalina 2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo
20.
BMC Complement Altern Med ; 17(1): 544, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29258482

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is an initial factor in many kidney disorders. Pre- and intra-renal AKI biomarkers have recently been reported. Recovery from AKI by herbal medicine has rarely been reported. Thus, this study aimed to investigate the dose- and time-dependent effects of herbal medicines to protect against AKI in cisplatin-induced human kidney 2 (HK-2) cells by assessing the activities of high-mobility group box protein 1 (HMGB1), neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1). METHODS: Proximal tubular HK-2 cell lines were treated with either 400 µM of cisplatin for 6 h or 10 µM of cisplatin for 24 h and then exposed to ten types of single herbal medicines, including Nelumbo nymphaea (NY) at a dose of 100 µg/mL. The AKI biomarkers HMGB1, NGAL and KIM-1 were repeatedly measured by an ELISA assay at 2, 4, and 6 h in the group treated with 400 µM of cisplatin to confirm necrotic cell death and at 6, 24, and 48 h in the group treated with 10 µM of cisplatin to examine apoptotic cell death. Recovery confirm was conducted through in vivo study using ICR mice for 3 day NY or Paeonia suffruticosa intake. RESULTS: Cisplatin treatment at a concentration of 10 µM decreased cell viability. Treatment with 400 µM of cisplatin reduced HMBG1 activity and resulted in lactate dehydrogenase release. In longer exposure durations (up to 48 h), NGAL and KIM-1 exhibited activity from 24 h onward. Additionally, NY treatment resulted in an approximately 50% change in all three biomarkers. The time-dependent profiles of HMGB1, NGAL and KIM-1 activities up to 48 h were notably different; HMGB1 exhibited a 7-fold change at 6 h, and NGAL and KIM-1 exhibited 1.7-fold changes at 24 h, respectively. Consistently, serum and urine NGAL and KIM-1 activities were all reduced in ICR mice. CONCLUSIONS: Several single herbal medicines, including NY, have a potential as effectors of AKI due to their ability to inhibit the activation of HMGB1, NGAL and KIM-1 in an in vitro AKI-mimicked condition and simple in vivo confirm. Furthermore, an in vivo proof-of-concept study is needed.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Preparaciones de Plantas/farmacología , Preparaciones de Plantas/uso terapéutico , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/fisiopatología , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cisplatino/efectos adversos , Proteína HMGB1/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Lipocalina 2/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA