Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 867
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Animal ; 18(4): 101127, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574452

RESUMEN

Supplementing a diet with rumen-protected amino acids (AAs) is a common feeding strategy for efficient production. For a cost-effective use of rumen-protected AA, the accurate bioavailability of rumen-protected amino acids should be known and their metabolism after absorption needs to be well understood. The current study determined the bioavailability, absorption, utilization, and excretion of rumen-protected Lys (RP-Lys). Four ruminally cannulated cows in a 4 × 4 Latin square design (12 d for diet adaptation; 5 or 6 d for total collections) received the following treatments: L0, a basal diet; L25, the basal diet and L-Lys infused into the abomasum to provide 25.9 g/d L-Lys; L50, the basal diet and L-Lys infused into the abomasum to provide 51.8 g/d L-Lys; and RPL, the basal diet supplemented with 105 g/d (as-is) of RP-Lys to provide 26.7 g of digestible Lys. During the last 5 or 6 d in each period, 15N-Lys (0.38 g/d) was infused into the abomasum for all cows to label the pool of AA, and the total collection of milk, urine, and feces were conducted. 15N enrichment of samples on d 4 and 5 were used to calculate the bioavailability and Lys metabolism. We used a model containing a fast AA turnover (≤ 5 d) and slow AA turnover pool (> 5 d) to calculate fluxes of Lys. The Lys flux to the fast AA turnover pool (absorbed Lys + Lys from the slow AA turnover pool to fast AA turnover pool) was calculated using 15N enrichment of milk Lys. The flux of Lys from the fast AA turnover pool to milk and urine was calculated using 15N transfer into milk and urine. Then, absorbed Lys was estimated by the sum of Lys flux to milk and urine assuming no net utilization of Lys by body tissues. Duodenal Lys flow was estimated by 15N enrichment of fecal Lys. The bioavailability of RP-Lys was calculated from duodenal Lys flows and Lys absorption for RPL. Increasing Lys supply from L25 to L50 increased Lys utilization for milk by 9 g/d but also increased urinary excretion by 10 g/d. For RPL, absorbed Lys was estimated to be 136 g/d where 28 g of absorbed Lys originated from RP-Lys. In conclusion, 68% of bioavailability was obtained for RP-Lys. The Lys provided from RP-Lys was not only utilized for milk protein (48%) but also excreted in urine (20%) after oxidation.


Asunto(s)
Lactancia , Lisina , Femenino , Bovinos , Animales , Lisina/metabolismo , Rumen/metabolismo , Disponibilidad Biológica , Dieta/veterinaria , Aminoácidos/metabolismo , Proteínas de la Leche/metabolismo , Aminas/metabolismo , Metionina/metabolismo
2.
Methods Mol Biol ; 2791: 15-22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532088

RESUMEN

Immunostaining is a well-established technique for identifying specific proteins in tissue samples with specific antibodies to identify a single target protein. It is commonly used in research and provides information about cellular localization and protein expression levels. This chapter describes a detailed protocol for immunostaining fixed Fagopyrum calli embedded in Steedman's wax using nine antibodies raised against histone H3 and H4 methylation and acetylation on several lysines and DNA methylation.


Asunto(s)
Fagopyrum , Fagopyrum/metabolismo , Histonas/metabolismo , Epigénesis Genética , Metilación de ADN , Lisina/metabolismo , Anticuerpos/metabolismo , Acetilación
3.
Adv Sci (Weinh) ; 11(14): e2307526, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38298064

RESUMEN

Arginine and lysine, frequently appearing as a pair on histones, have been proven to carry diverse modifications and execute various epigenetic regulatory functions. However, the most context-specific and transient effectors of these marks, while significant, have evaded study as detection methods have thus far not reached a standard to capture these ephemeral events. Herein, a pair of complementary photo-arginine/δ-photo-lysine (R-dz/K-dz) probes is developed and involve these into histone peptide, nucleosome, and chromatin substrates to capture and explore the interactomes of Arg and Lys hPTMs. By means of these developed tools, this study identifies that H3R2me2a can recruit MutS protein homolog 6 (MSH6), otherwise repelDouble PHD fingers 2 (DPF2), Retinoblastoma binding protein 4/7 (RBBP4/7). And it is disclosed that H3R2me2a inhibits the chromatin remodeling activity of the cBAF complex by blocking the interaction between DPF2 (one component of cBAF) and the nucleosome. In addition, the novel pairs of H4K5 PTMs and respective readers are highlighted, namely H4K5me-Lethal(3)malignant brain tumor-like protein 2 (L3MBTL2), H4K5me2-L3MBTL2, and H4K5acK8ac-YEATS domain-containing protein 4 (YEATS4). These powerful tools pave the way for future investigation of related epigenetic mechanisms including but not limited to hPTMs.


Asunto(s)
Lisina , Nucleosomas , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Histonas/metabolismo , Cromatina , Arginina/metabolismo
4.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38412360

RESUMEN

A strain of Bacillus subtilis (MAFIC Y7) was isolated from the intestine of Tibetan pigs and was able to express high protease activity. The aim of this study was to characterize the proteases produced by MAFIC Y7, and to investigate the effects of protease addition on growth performance, ileal amino acid digestibility, and serum immunoglobulin and immune factors of broilers fed SBM-based diets, or on growth performance, carcass characteristics, and intestinal morphology of broilers fed CSM-based diets. B. subtilis (MAFIC Y7) expressed protease showed its optimal enzyme activity at 50 °C and pH 7.0. The coated crude enzyme (CCE) showed greater stability at pH 3.0 than its uncoated counterpart. Experiment 1 was conducted with six diets based on three levels of crude protein (CP)-CPlow, CPmedium, and CPhigh-with or without CCE. In CPlow, CCE increased gain:feed (G:F) (days 1 to 21, days 1 to 42) by 8%, 3%, respectively, and enhanced apparent ileal digestibility (AID) of crude protein and lysine (on day 42) by 8.8%, 4.6%, respectively, compared with diets containing no CCE (P < 0.05). CCE increased G:F from days 1 to 21 from 0.63 to 0.68, improved G:F and average daily gain (ADG) during days 1 to 42, and enhanced AID of crude protein, lysine, cysteine, and isoleucine on day 42 compared with the unsupplemented treatments (in CPmedium, P < 0.05). CCE increased serum IgA (on day 21), serum IgA and IgG and increased serum IL-10 (on day 42), but decreased serum tumor necrosis factor-α (TNF-α; on day 21), and serum IL-8 and TNF-α (on day 42) compared with unsupplemented treatments. At CPhigh, CCE decreased serum levels of IL-6 and TNF-α (on day 21), and IL-8 and TNF-α (on day 42) compared with unsupplemented treatments (in CPhigh, P < 0.05). In experiment 2, CSM-based diets with two lysine-to-protein ratios (5.2% or 5.5%) with or without CCE. In the high Lys diet (5.5% Lys:protein), CCE increased ADG and G:F, increased carcass, but decreased abdominal fat compared with the unsupplemented treatment (P < 0.05). In the 5.2% Lys:protein dietary treatment, CCE improved duodenal villus height compared with the unsupplemented treatment (P < 0.05). Supplementation of protease produced by MAFIC Y7 was associated with lower inflammatory responses in SBM diets (CPmedium or CPhigh) and improved ADG in broilers fed CPmedium or CPhigh. The proteases improved ADG and the efficiency of CSM use when the ratio of Lys to protein was 5.5%.


The aim of this study was to investigate the effects of Bacillus subtilis (MAFIC Y7)-expressed protease on reducing inflammatory responses of soybean meal (SBM) diets and improving the efficiency of cottonseed meal (CSM) in broilers. Experiment 1 was conducted with six dietary treatments based on three levels of crude protein (CP)­CPlow, CPmedium, and CPhigh­without or with proteases (0 or 4,000 U/kg). Supplementation of proteases significantly improved growth performance, gain:feed (G:F), and apparent ileal digestibility of crude protein and amino acids (cysteine, isoleucine, and histidine) in broilers fed CPmedium treatment (P < 0.05). Proteases inhibited inflammatory responses in SBM-based diets by decreasing serum tumor necrosis factor-α (TNF-α) (in CPmedium and CPhigh), and interleukin (IL)-6 (in CPhigh); and IL-8 and TNF-α (in CPmedium and CPhigh) on day 21. In experiment 2, broilers were fed with CSM-based diets with two ratios of lysine-to-protein (5.2% or 5.5%) with or without proteases. Proteases in the diet of 5.5% Lys to protein ratio increased growth performance and G:F compared to diets without proteases (P < 0.05). Proteases produced by MAFIC Y7 improved growth performance and G:F in CPmedium. Supplementation of protease was associated with lower inflammatory responses of broilers fed SBM-based diets (CPmedium or CPhigh) and improved the efficiency of CSM use when the ratio of lysine-to-protein was 5.5%.


Asunto(s)
Bacillus subtilis , Lisina , Animales , Porcinos , Lisina/metabolismo , Pollos/fisiología , Aceite de Semillas de Algodón , Péptido Hidrolasas/metabolismo , Harina , Interleucina-8/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Dieta/veterinaria , Antiinflamatorios , Inmunoglobulina A/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
5.
Food Funct ; 15(4): 2197-2207, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38304954

RESUMEN

As prebiotics supplemented in infant formulas (IFs), galactooligosaccharides (GOSs) also have many other biological activities; however, their Maillard reaction characteristics are still unclear. We investigated the Maillard reactivity of GOSs and their effects on advanced glycation end product (AGE) formation during IF processing. The results showed that AGE and HMF formation was temperature-dependent and reached the maximum at pH 9.0 in the Maillard reaction system of GOSs and Nα-acetyl-L-lysine. Acidic conditions accelerated HMF formation; however, protein cross-linking was more likely to occur under alkaline conditions. The degree of polymerization (DP) of GOSs had no significant effect on AGEs formation (except pyrraline); however, the greater the DP, the higher the concentration of HMF and pyrraline. Besides, compared with arginine and casein, lysine and whey protein were more prone to Maillard reaction with GOSs. GOSs promoted AGEs formation in a dose-dependent manner during the processing of IFs. These results provide a reliable theoretical basis for application of GOSs in IFs.


Asunto(s)
Productos Finales de Glicación Avanzada , Reacción de Maillard , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Fórmulas Infantiles , Temperatura , Lisina/metabolismo
6.
Phytomedicine ; 125: 155356, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38241920

RESUMEN

BACKGROUND: Catalpol (CAT), a naturally occurring iridoid glycoside sourced from the root of Rehmannia glutinosa, affects mitochondrial metabolic functions. However, the mechanism of action of CAT against pyrexia and its plausible targets remain to be fully elucidated. PURPOSE: This study aimed to identify the specific targets of CAT for blocking mitochondrial thermogenesis and to unveil the unique biological mechanism of action of the orthogonal binding mode between the hemiacetal group and lysine residue on the target protein in vivo. METHODS: Lipopolysaccharide (LPS)/ carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-induced fever models were established to evaluate the potential antipyretic effects of CAT. An alkenyl-modified CAT probe was designed to identify and capture potential targets. Binding capacity was tested using in-gel imaging and a cellular thermal shift assay. The underlying antipyretic mechanisms were explored using biochemical and molecular biological methods. Catalpolaglycone (CA) was coupled with protein profile identification and molecular docking analysis to evaluate and identify its binding mode to UCP2. RESULTS: After deglycation of CAT in vivo, the hemiacetal group in CA covalently binds to Lys239 of UCP2 in the mitochondria of the liver via an ɛ-amine nucleophilic addition. This irreversible binding affects proton leakage and improves mitochondrial membrane potential and ADP/ATP transformation efficiency, leading to an antipyretic effect. CONCLUSION: Our findings highlight the potential role of CA in modulating UCP2 activity or function within the mitochondria and open new avenues for investigating the therapeutic effects of CA on mitochondrial homeostasis.


Asunto(s)
Canales Iónicos , Protones , Canales Iónicos/metabolismo , Canales Iónicos/farmacología , Lisina/metabolismo , Simulación del Acoplamiento Molecular , Mitocondrias , Termogénesis
7.
Autophagy ; 20(1): 114-130, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37615625

RESUMEN

Bevacizumab plays an important role in the first and second line treatment for metastatic colorectal cancer (CRC). And induction of hypoxia and the tumors response to it plays an important role in determining the efficacy of antiangiogenic therapy while the connection between them remains unclear. Here, we found that lactate accumulated in the tumor environment of CRC and acted as substrates for histone lactylation, and this process was further induced by cellular enhanced glycolysis in hypoxia. We determined that CRC patients resistant to bevacizumab treatment presented with elevated levels of histone lactylation and inhibition of histone lactylation efficiently suppressed CRC tumorigenesis, progression and survival in hypoxia. Histone lactylation promoted the transcription of RUBCNL/Pacer, facilitating autophagosome maturation through interacting with BECN1 (beclin 1) and mediating the recruitment and function of the class III phosphatidylinositol 3-kinase complex, which had a crucial role in hypoxic cancer cells proliferation and survival. Moreover, combining inhibition of histone lactylation and macroautophagy/autophagy with bevacizumab treatment demonstrated remarkable treatment efficacy in bevacizumab-resistance patients-derived pre-clinical models. These findings delivered a new exploration and important supplement of metabolic reprogramming-epigenetic regulation, and provided a new strategy for improving clinical efficacy of bevacizumab in CRC by inhibition of histone lactylation.Abbreviations: 2-DG: 2-deoxy-D-glucose; BECN1: beclin 1; CQ: chloroquine; CRC: colorectal cancer; DMOG: dimethyloxalylglycine; H3K18la: histone H3 lysine 18 lactylation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nala: sodium lactate; PDO: patient-derived orgnoid; PDX: patient-derived xenograft; RUBCNL/Pacer: rubicon like autophagy enhancer; SQSTM1/p62: sequestosome 1.


Asunto(s)
Neoplasias Colorrectales , Histonas , Humanos , Autofagia/fisiología , Beclina-1/metabolismo , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Epigénesis Genética , Histonas/metabolismo , Hipoxia , Ácido Láctico , Lisina/metabolismo
8.
BMC Plant Biol ; 23(1): 648, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38102555

RESUMEN

In the current industrial scenario, cadmium (Cd) as a metal is of great importance but poses a major threat to the ecosystem. However, the role of micronutrient - amino chelates such as iron - lysine (Fe - lys) in reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous applications of Fe - lys i.e., 0 and10 mg L - 1, were examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments, oxidative stress indicators and antioxidant response, sugar and osmolytes under the soil contaminated with varying levels of Cd i.e., 0, 50 and 100 µM using two different varieties of canola i.e., Sarbaz and Pea - 09. Results revealed that the increasing levels of Cd in the soil decreased plant growth and growth-related attributes and photosynthetic apparatus and also the soluble protein and soluble sugar. In contrast, the addition of different levels of Cd in the soil significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), which induced oxidative damage in both varieties of canola i.e., Sarbaz and Pea - 09. However, canola plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and non-enzymatic compounds such as phenolic, flavonoid, proline, and anthocyanin, which scavenge the over-production of reactive oxygen species (ROS). Cd toxicity can be overcome by the supplementation of Fe - lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and sugar contents, and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of Cd in the soil. Research findings, therefore, suggested that the Fe - lys application can ameliorate Cd toxicity in canola and result in improved plant growth and composition under metal stress.


Asunto(s)
Brassica napus , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/metabolismo , Brassica napus/metabolismo , Lisina/metabolismo , Hierro/metabolismo , Peróxido de Hidrógeno/metabolismo , Ecosistema , Antioxidantes/metabolismo , Estrés Oxidativo , Suelo/química , Azúcares/metabolismo , Contaminantes del Suelo/metabolismo
9.
World J Microbiol Biotechnol ; 40(2): 43, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38105384

RESUMEN

Microalgae are powerful source for nutritionally valuable components as proteins, carbohydrates and especially unsaturated fatty acids. Microalgae may be employed in pharmaceutical, food, cosmetic, health industries, and biofuels. In this study for looking at high-level unsaturated fatty acids species, from 31 strains, by comparing growth curves, the best strain with a high growth rate and lipid content was selected by red Nile staining. It was determined by molecular identification that this strain belongs to the genus Chlorella sp. and is deposited into the Agricultural Biotechnology Research Institute of Iran Culture collection with culture collection number ABRIICC 30,041. Biomass analysis after growth optimization by response surface methodology showed that the selected strain had a specific growth rate of 0.216 ± 0.008 d-1, biomass productivity of 142.58 ± 4.41 mg/Ld, and lipid content of 13.9 ± 0.26% with a high level of unsaturated fatty acids of 53.15%. It also included 51.3 ± 0.53% protein with a very high quality essential amino acids of 40.36%, the most lysine (8.77%) and arginine (13.31%) has been reported until now, and 26.9 ± 0.23% carbohydrates in photoautotroph condition. By MTT assay, there is no effect of cytotoxicity. This research introduces a potent native strain comparable with commercial strains that can be a hopeful source for food supplements and valuable bioactive ingredients in functional foods.


Asunto(s)
Chlorella , Microalgas , Ácidos Grasos/análisis , Lisina/metabolismo , Microalgas/metabolismo , Arginina/metabolismo , Ácidos Grasos Insaturados/metabolismo , Carbohidratos , Proteínas/metabolismo , Suplementos Dietéticos/análisis , Biomasa , Biocombustibles
10.
Nutrients ; 15(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38004100

RESUMEN

Skeletal muscle is the key tissue for maintaining protein and glucose homeostasis, having a profound impact on the development of diabetes. Diabetes causes deleterious changes in terms of loss of muscle mass, which will contribute to reduced glucose uptake and therefore progression of the disease. Nutritional approaches in diabetes have been directed to increase muscle glucose uptake, and improving protein turnover has been at least partially an oversight. In muscle, ß-hydroxy ß-methyl butyrate (HMB) promotes net protein synthesis, while arginine and lysine increase glucose uptake, albeit their effects on promoting protein synthesis are limited. This study evaluates if the combination of HMB, lysine, and arginine could prevent the loss of muscle mass and function, reducing the progression of diabetes. Therefore, the combination of these ingredients was tested in vitro and in vivo. In muscle cell cultures, the supplementation enhances glucose uptake and net protein synthesis due to an increase in the amount of GLUT4 transporter and stimulation of the insulin-dependent signaling pathway involving IRS-1 and Akt. In vivo, using a rat model of diabetes, the supplementation increases lean body mass and insulin sensitivity and decreases blood glucose and serum glycosylated hemoglobin. In treated animals, an increase in GLUT4, creatine kinase, and Akt phosphorylation was detected, demonstrating the synergic effects of the three ingredients. Our findings showed that nutritional formulations based on the combination of HMB, lysine, and arginine are effective, not only to control blood glucose levels but also to prevent skeletal muscle atrophy associated with the progression of diabetes.


Asunto(s)
Diabetes Mellitus , Lisina , Ratas , Animales , Lisina/farmacología , Lisina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucemia/metabolismo , Arginina/farmacología , Arginina/metabolismo , Músculo Esquelético/metabolismo , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Suplementos Dietéticos
11.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37971408

RESUMEN

This project was conducted to determine if providing standardized ileal digestible (SID) Lys at 40% above estimated requirements (NRC, 2012), with the concomitant increased protein intake, from days 90 to 110 of gestation stimulates mammary development in multiparous sows. From day 90 of gestation, Yorkshire × Landrace multiparous sows (parities 2 and 3) were fed 2.6 kg/d of either a conventional diet (CTL, control, n = 17) providing 14.8 g/d of SID Lys or a diet providing 20.8 g/d of SID Lys via additional soybean meal (HILYS, n = 16). The diets were isoenergetic. Concentrations of IGF-1, glucose, free fatty acids (FFA), urea, and amino acids (AA) were measured in jugular blood samples obtained on days 90 and 110 of gestation. Sows were necropsied on day 110 ±â€…1 of gestation to obtain mammary glands for compositional and histological analyses. Backfat or BW changes of sows during late gestation were unaffected by treatment (P > 0.10), as was the case for fetal BW (P > 0.10). None of the variables measured in mammary tissue were altered by supplementary Lys (P > 0.10). Circulating IGF-1, glucose, and FFA did not differ (P > 0.10) between HILYS and CTL sows on day 110 of gestation, whereas concentrations of urea were greater (P < 0.01) in HILYS versus CTL gilts. Concentrations of Ile and Thr in plasma were also greater (P < 0.05), and those of Glu were lower (P < 0.01) in HILYS than CTL sows. These results demonstrate that feeding Lys (via protein) above current NRC recommendations during late gestation does not improve mammary development of multiparous sows. Hence, the use of a two-phase feeding strategy to provide more Lys (protein) to multiparous sows during this period is not necessary.


Results indicate that there is no advantage in terms of mammary development to feeding late-pregnant multiparous sows with 40% more lysine (via protein) than current recommendations (NRC, 2012). From days 90 to 110 of gestation, multiparous sows (parities 2 and 3) were fed 2.6 kg/d of either a conventional diet providing 14.8 g/d of standardized ileal digestible (SID) lysine or a diet providing 20.8 g/d of SID lysine via the inclusion of additional soybean meal. Diets were isoenergetic. Feeding supplementary SID lysine had no effect on mammary development at the end of gestation. Contrary to our previous report for gilts, mammary gland development is not improved by providing more lysine to multiparous sows in late gestation. Such information is crucial for developing the best feeding strategies to maximize milk yield. The use of a two-phase feeding strategy to provide more lysine (protein) as of day 90 of gestation is not necessary in multiparous sows.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Lisina , Embarazo , Porcinos , Animales , Femenino , Lisina/metabolismo , Lactancia , Dieta/veterinaria , Sus scrofa/metabolismo , Paridad , Suplementos Dietéticos , Urea , Glucosa , Alimentación Animal/análisis
12.
Front Immunol ; 14: 1264228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881437

RESUMEN

The interest in dietary amino acids (AAs) as potential immunomodulators has been growing the recent years, since specific AAs are known to regulate key metabolic pathways of the immune response or increase the synthesis of some immune-related proteins. Methionine, tryptophan and lysine are among the ten essential AAs for fish, meaning that they cannot be produced endogenously and must be provided through the diet. To date, although dietary supplementation of fish with some of these AAs has been shown to have positive effects on some innate immune parameters and disease resistance, the effects that these AAs provoke on cells of the adaptive immune system remained unexplored. Hence, in the current study, we have investigated the effects of these three AAs on the functionality of rainbow trout (Oncorhynchus mykiss) IgM+ B cells. For this, splenic leukocytes were isolated from untreated adult rainbow trout and incubated in culture media additionally supplemented with different doses of methionine, tryptophan or lysine in the presence or absence of the model antigen TNP-LPS (2,4,6-trinitrophenyl hapten conjugated to lipopolysaccharide). The survival, IgM secreting capacity and proliferation of IgM+ B cells was then studied. In the case of methionine, the phagocytic capacity of IgM+ B cells was also determined. Our results demonstrate that methionine supplementation significantly increases the proliferative effects provoked by TNP-LPS and also up-regulates the number of cells secreting IgM, whereas tryptophan or lysine have either minor or even negative effects on rainbow trout IgM+ B cells. This increase in the number of IgM-secreting cells in response to methionine surplus was further verified in a feeding experiment, in which the beneficial effects of methionine on the specific response to anal immunization were also confirmed. The results presented demonstrate the beneficial effects of dietary supplementation with methionine on the adaptive immune responses of fish.


Asunto(s)
Metionina , Oncorhynchus mykiss , Animales , Metionina/farmacología , Lipopolisacáridos/metabolismo , Lisina/metabolismo , Triptófano/metabolismo , Suplementos Dietéticos , Racemetionina/metabolismo , Inmunoglobulina M/metabolismo
13.
Sci Rep ; 13(1): 16667, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794129

RESUMEN

Supplementing diets with rumen-protected lysine is a common strategy to meet the nutritional needs of high-producing dairy cows. This work addressed two separate but crucial issues: the lysine protection degree across the entire digestive tract as well as the production scalability of the proposed delivery systems. This was achieved by evaluating, in vitro or ex vivo, previously developed rumen-resistant lipid nanoparticles regarding their stability in the digestive tract and in the bloodstream of the dairy cow as well as how their production could be scaled-up. Results showed that the developed nanoparticles were able to resist digestion along the digestive tract but were degraded in the blood over 24 h. Thus, releasing their content to be used by the animal. In vitro viability assays were also performed, with the nanoparticles being found not to be inherently toxic when using nanoparticle concentrations up to 1 mg/mL. Results showed that neither the purity of the used lipids nor the production method significantly altered the nanoparticles' properties or their ruminal resistance. Furthermore, the shelf-life of these nanoparticles was assessed, and they were found to retain their properties and remain usable after at least 1 month of storage. Moreover, a pilot-scale production allowed the production of nanoparticles with similar properties to the previous ones made using standard methods. To summarize, the proposed rumen-resistant nanoparticles presented potential as orally ingested lysine delivery systems for dairy cattle supplementation, being capable of a large-scale production using cheaper components while maintaining their properties and without any efficiency loss. It should however be noted that these results were obtained mainly in vitro and further in vivo bioavailability and production experiments are needed before this technology can be confirmed as a viable way of delivering lysine to dairy cows.


Asunto(s)
Lisina , Nanopartículas , Animales , Femenino , Bovinos , Lisina/metabolismo , Leche/metabolismo , Lactancia , Rumen/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Digestión , Fermentación
14.
Protein Sci ; 32(10): e4781, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37703013

RESUMEN

The 11 lytic transglycosylases of Pseudomonas aeruginosa have overlapping activities in the turnover of the cell-wall peptidoglycan. Rare lipoprotein A (RlpA) is distinct among the 11 by its use of only peptidoglycan lacking peptide stems. The spatial localization of RlpA and its interactome within P. aeruginosa are unknown. We employed suppression of introduced amber codons at sites in the rlpA gene for the introduction of the unnatural-amino-acids Νζ -[(2-azidoethoxy)carbonyl]-l-lysine (compound 1) and Nζ -[[[3-(3-methyl-3H-diazirin-3-yl)propyl]amino]carbonyl]-l-lysine (compound 2). In live P. aeruginosa, full-length RlpA incorporating compound 1 into its sequence was fluorescently tagged using strained-promoted alkyne-azide cycloaddition and examined by fluorescence microscopy. RlpA is present at low levels along the sidewall length of the bacterium, and at higher levels at the nascent septa of replicating bacteria. In intact P. aeruginosa, UV photolysis of full-length RlpA having compound 2 within its sequence generated a transient reactive carbene, which engaged in photoaffinity capture of neighboring proteins. Thirteen proteins were identified. Three of these proteins-PBP1a, PBP5, and MreB-are members of the bacterial divisome. The use of the complementary methodologies of non-canonical amino-acid incorporation, photoaffinity proximity analysis, and fluorescent microscopy confirm a dominant septal location for the RlpA enzyme of P. aeruginosa, as a divisome-associated activity. This accomplishment adds to the emerging recognition of the value of these methodologies for identification of the intracellular localization of bacterial proteins.


Asunto(s)
Lipoproteína(a) , Pseudomonas aeruginosa , Lipoproteína(a)/metabolismo , Codón de Terminación/metabolismo , Peptidoglicano/metabolismo , Lisina/metabolismo
15.
J Dairy Sci ; 106(9): 6567-6576, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37532623

RESUMEN

Rumen-protected Lys (RPL) fed to Holstein cows prepartum resulted in a greater intake and improved health of their calves during the first 6 wk of life. However, whether increased supply of Lys in late gestation can influence placental tissue and, if so, which pathways are affected remain to be investigated. Therefore, we hypothesize that feeding RPL during late gestation could modulate placental metabolism, allowing for improved passage of nutrients to the fetus and thus influencing the offspring development. Therefore, we aimed to determine the effects of feeding RPL (AjiPro-L Generation 3, Ajinomoto Health and Nutrition North America) prepartum (0.54% DM of TMR) on mRNA gene expression profiles of placental samples of Holstein cows. Seventy multiparous Holstein cows were randomly assigned to 1 of 2 dietary treatments, consisting of TMR top-dressed with RPL (PRE-L) or without (control, CON), fed from 27 ± 5 d prepartum until calving. After natural delivery (6.87 ± 3.32 h), placentas were rinsed with physiological saline (0.9% sodium chloride solution) to clean any dirtiness from the environment and weighed. Then, 3 placentomes were collected, one from each placental region (cranial, central, and caudal), combined and flash-frozen in liquid nitrogen to evaluate the expression of transcripts and proteins related to protein metabolism and inflammation. Placental weights did not differ from cows in PRE-L (15.5 ± 4.03 kg) and cows in CON (14.5 ± 4.03 kg). Feeding RPL prepartum downregulated the expression of NOS3 (nitric oxide synthase 3), involved in vasodilation processes, and SOD1, which encodes the enzyme superoxide dismutase, involved in oxidative stress processes. Additionally, feeding RPL prepartum upregulated the expression of transcripts involved in energy metabolism (SLC2A3, glucose transporter 3; and PCK1, phosphoenolpyruvate carboxykinase 1), placental metabolism and cell proliferation (FGF2, fibroblast growth factor 2; FGF2R, fibroblast growth factor 2 receptor; and PGF, placental growth factor), Met metabolism (MAT2A, methionine adenosyltransferase 2-α), and tended to upregulate IGF2R (insulin-like growth factor 2 receptor). Placental FGF2 and LRP1 (low-density lipoprotein receptor-related protein 1) protein abundance were greater for cows that received RPL prepartum than cows in CON. In conclusion, feeding RPL to prepartum dairy cows altered uteroplacental expression of genes and proteins involved in cell proliferation, and in metabolism and transport of glucose. Such changes are illustrated by increased expression of SLC2A3 and PCK1 and increased protein abundance of FGF2 and LRP1 in uteroplacental tissue of cows consuming RPL.


Asunto(s)
Suplementos Dietéticos , Lisina , Femenino , Embarazo , Animales , Bovinos , Lisina/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Lactancia , Rumen/metabolismo , Leche/metabolismo , Placenta , Factor de Crecimiento Placentario/metabolismo , Factor de Crecimiento Placentario/farmacología , Dieta/veterinaria , Periodo Posparto
16.
Epilepsy Behav ; 146: 109363, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499576

RESUMEN

Lysine, as an essential amino acid, predominantly undergoes metabolic processes through the saccharopine pathway, whereas a smaller fraction follows the pipecolic acid pathway. Although the liver is considered the primary organ for lysine metabolism, it is worth noting that lysine catabolism also takes place in other tissues and organs throughout the body, including the brain. Enzyme deficiency caused by pathogenic variants in its metabolic pathway may lead to a series of neurometabolic diseases, among which glutaric aciduria type 1 and pyridoxine-dependent epilepsy have the most significant clinical manifestations. At present, through research, we have a deeper understanding of the multiple pathophysiological mechanisms related to these diseases, including intracerebral accumulation of neurotoxic metabolites, imbalance between GABAergic and glutamatergic neurotransmission, energy deprivation due to metabolites, and the dysfunction of antiquitin. Because of the complexity of these diseases, their clinical manifestations are also diverse. The early implementation of lysine-restricted diets and supplementation with arginine and carnitine has reported positive impacts on the neurodevelopmental outcomes of patients. Presently, there is more robust evidence supporting the effectiveness of these treatments in glutaric aciduria type 1 compared with pyridoxine-dependent epilepsy.


Asunto(s)
Encefalopatías Metabólicas , Epilepsia , Humanos , Lisina/metabolismo , Epilepsia/metabolismo , Encefalopatías Metabólicas/complicaciones , Encefalopatías Metabólicas/metabolismo
17.
J Proteomics ; 288: 104959, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37478968

RESUMEN

Danshen, belongs to the Lamiaceae family, and its scientific name is Salvia miltiorrhiza Bunge. It is a valuable medicinal plant to prevent and treat cardiovascular and cerebrovascular diseases. Lysine succinylation, a widespread modification found in various organisms, plays a critical role in regulating secondary metabolism in plants. The hairy roots of Salvia miltiorrhiza were subject to proteomic analysis to identify lysine succinylation sites using affinity purification and HPLC-MS/MS in this investigation. Our findings reveal 566 lysine succinylation sites in 348 protein sequences. We observed 110 succinylated proteins related to secondary metabolism, totaling 210 modification sites. Our analysis identified 53 types of enzymes among the succinylated proteins, including phenylalanine ammonia-lyase (PAL) and aldehyde dehydrogenase (ALDH). PAL, a crucial enzyme involved in the biosynthesis of rosmarinic acid and flavonoids, displayed succinylation at two sites. ALDH, which participates in the phenylpropane metabolic pathway, was succinylated at 8 eight sites. These observations suggest that lysine succinylation may play a vital role in regulating the production of secondary metabolites in Salvia miltiorrhiza. Our study may provide valuable insights for further investigation on plant succinylation, specifically as a reference point. SIGNIFICANCE: Salvia miltiorrhiza Bunge is a valuable medicinal plant that prevents and treats cardiovascular and cerebrovascular diseases. Lysine succinylation plays a critical role in regulating secondary metabolism in plants. The hairy roots of Salvia miltiorrhiza were subject to proteomic analysis to identify lysine succinylation sites using affinity purification and HPLC-MS/MS in this investigation. These observations suggest that lysine succinylation may act as a vital role in regulating the production of secondary metabolites in Salvia miltiorrhiza. Our study may provide valuable insights for further investigation on succinylation in plants, specifically as a reference point.


Asunto(s)
Salvia miltiorrhiza , Metabolismo Secundario , Salvia miltiorrhiza/metabolismo , Lisina/metabolismo , Proteoma/metabolismo , Espectrometría de Masas en Tándem , Proteómica
18.
CNS Neurosci Ther ; 29(11): 3479-3492, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37287407

RESUMEN

AIMS: Lysine-specific demethylase 6B (KDM6B) serves as a key mediator of gene transcription. It regulates expression of proinflammatory cytokines and chemokines in variety of diseases. Herein, the role and the underlying mechanisms of KDM6B in inflammatory pain were studied. METHODS: The inflammatory pain was conducted by intraplantar injection of complete Freund's adjuvant (CFA) in rats. Immunofluorescence, Western blotting, qRT-PCR, and chromatin immunoprecipitation (ChIP)-PCR were performed to investigate the underlying mechanisms. RESULTS: CFA injection led to upregulation of KDM6B and decrease in the level of H3K27me3 in the dorsal root ganglia (DRG) and spinal dorsal horn. The mechanical allodynia and thermal hyperalgesia following CFA were alleviated by the treatment of intrathecal injection of GSK-J4, and by microinjection of AAV-EGFP-KDM6B shRNA in the sciatic nerve or in lumbar 5 dorsal horn. The increased production of tumor necrosis factor-α (TNF-α) following CFA in the DRGs and dorsal horn was inhibited by these treatments. ChIP-PCR showed that CFA-induced increased binding of nuclear factor κB with TNF-α promoter was repressed by the treatment of microinjection of AAV-EGFP-KDM6B shRNA. CONCLUSIONS: These results suggest that upregulated KDM6B via facilitating TNF-α expression in the DRG and spinal dorsal horn aggravates inflammatory pain.


Asunto(s)
Ganglios Espinales , Histonas , Asta Dorsal de la Médula Espinal , Factor de Necrosis Tumoral alfa , Animales , Ratas , Desmetilación , Adyuvante de Freund/toxicidad , Ganglios Espinales/metabolismo , Histonas/metabolismo , Hiperalgesia/metabolismo , Lisina/metabolismo , Dolor/metabolismo , Dimensión del Dolor , Ratas Sprague-Dawley , ARN Interferente Pequeño/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
19.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166780, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37286143

RESUMEN

Breast cancer has gradually become the predominant cause for cancer-associated death in women. The metastatic dissemination and underlying mechanisms of triple-negative breast cancer (TNBC) are not sufficiently understood. (Su(var)3-9, enhancer of zeste, Trithorax) domain-containing protein 7 (SETD7) is vital for promoting the metastasis of TNBC, as demonstrated in this study. Clinical outcomes were significantly worse in primary metastatic TNBC with upregulated SETD7. Overexpression of SETD7 in vitro and in vivo promotes migration of TNBC cells. Two highly conserved lysine (K) residues K173 and K411 of Yin Yang 1 (YY1) are methylated by SETD7. Further, we found that SETD7-mediated K173 residue methylation protects YY1 from the ubiquitin-proteasome degradation. Mechanistically, it was found that the SETD7/YY1 axis regulates epithelial-mesenchymal transition (EMT) and tumor cell migration via the ERK/MAPK pathway in TNBC. The findings indicated that TNBC metastasis is driven by a novel pathway, which may be a promising target for advanced TNBC treatment.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/metabolismo , Lisina/metabolismo , Metilación , Proliferación Celular , Procesamiento Proteico-Postraduccional , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/uso terapéutico
20.
Carbohydr Polym ; 317: 121087, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364957

RESUMEN

The amidation of pectin by amino acids has been widely applied due to its safety and excellent gelling properties. This study systematically examined the effects of pH on the gelling properties of lysine-amidated pectin during amidation and gelation. Pectin was amidated over the range of pH 4-10, and the amidated pectin obtained at pH 10 showed the highest degree of amidation (DA, 27.0 %) due to the de-esterification, electrostatic attraction, and the stretching state of pectin. Moreover, it also exhibited the best gelling properties due to its greater numbers of calcium-binding regions (carboxyl groups) and hydrogen bond donors (amide groups). During gelation, the gel strength of CP (Lys 10) at pH 3-10 first increased and then decreased, with the highest gel strength at pH 8, which was due to the deprotonation of carboxyl groups, protonation of amino groups, and ß-elimination. These results show that pH plays a key role in both amidation and gelation, with distinct mechanisms, and would provide a basis for the preparation of amidated pectins with excellent gelling properties. This will facilitate their application in the food industry.


Asunto(s)
Citrus , Lisina , Lisina/metabolismo , Pectinas/química , Esterificación , Concentración de Iones de Hidrógeno , Citrus/química , Geles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA