Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
PeerJ ; 12: e16900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435994

RESUMEN

Background: Land management change towards intensive grazing has been shown to alter plant and pollinator communities and the structure of plant-pollinator interactions in different ways across the world. Land-use intensification in Eastern Europe is shifting highly diverse, traditionally managed hay meadows towards intensive pastures, but few studies have examined how this influences plant-pollinator networks. We hypothesized that the effects of intensive grazing on networks will depend on how plant communities and their floral traits change. Methods: We investigated plant and pollinator diversity and composition and the structure of plant-pollinator interactions near Sibiu, Romania at sites that were traditionally managed as hay meadows or intensive pastures. We quantified the identity and abundance of flowering plants, and used transect walks to observe pollinator genera interacting with flowering plant species. We evaluated the effects of management on diversity, composition and several indices of network structure. Results: Pollinator but not plant diversity declined in pastures and both plant and pollinator taxonomic composition shifted. Functional diversity and composition remained unchanged, with rather specialized flowers having been found to dominate in both hay meadows and pastures. Apis mellifera was found to be the most abundant pollinator. Its foraging preferences played a crucial role in shaping plant-pollinator network structure. Apis mellifera thus preferred the highly abundant Dorycnium herbaceum in hay meadows, leading to hay meadows networks with lower Shannon diversity and interaction evenness. In pastures, however, it preferred less abundant and more generalized flower resources. With pollinators being overall less abundant and more generalized in pastures, we found that niche overlap between plants was higher. Discussion: With both hay meadows and pastures being dominated by plant species with similar floral traits, shifts in pollinator preferences seem to have driven the observed changes in plant-pollinator interaction networks. We thus conclude that the effects of grazing on pollinators and their interactions are likely to depend on the traits of plant species present in different management types as well as on the effects of grazing on plant community composition. We thereby highlight the need for better understanding how floral abundance shapes pollinator visitation rates and how floral traits may influence this relationship.


Asunto(s)
Lotus , Magnoliopsida , Animales , Abejas , Rumanía , Europa Oriental , Flores , Interacciones de Hierba-Droga
2.
J Environ Manage ; 356: 120502, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479281

RESUMEN

Effective removal of phosphorus from water is crucial for controlling eutrophication. Meanwhile, the post-disposal of wetland plants is also an urgent problem that needs to be solved. In this study, seedpods of the common wetland plant lotus were used as a new raw material to prepare biochar, which were further modified by loading nano La(OH)3 particles (LBC-La). The adsorption performance of the modified biochar for phosphate was evaluated through batch adsorption and column adsorption experiments. Adsorption performance of lotus seedpod biochar was significantly improved by La(OH)3 modification, with adsorption equilibrium time shortened from 24 to 4 h and a theoretical maximum adsorption capacity increased from 19.43 to 52.23 mg/g. Moreover, LBC-La maintained a removal rate above 99% for phosphate solutions with concentrations below 20 mg/L. The LBC-La exhibited strong anti-interference ability in pH (3-9) and coexisting ion experiments, with the removal ratio remaining above 99%. The characterization analysis indicated that the main mechanism is the formation of monodentate or bidentate lanthanum phosphate complexes through inner sphere complexation. Electrostatic adsorption and ligand exchange are also the mechanisms of LBC-La adsorption of phosphate. In the dynamic adsorption experiment of simulated wastewater treatment plant effluent, the breakthrough point of the adsorption column was 1620 min, reaching exhaustion point at 6480 min, with a theoretical phosphorus saturation adsorption capacity of 6050 mg/kg. The process was well described by the Thomas and Yoon-Nelson models, which indicated that this is a surface adsorption process, without the internal participation of the adsorbent.


Asunto(s)
Lotus , Contaminantes Químicos del Agua , Fósforo , Aguas Residuales , Fosfatos/química , Carbón Orgánico , Adsorción , Lantano/química , Contaminantes Químicos del Agua/química , Semillas , Cinética
3.
BMC Plant Biol ; 24(1): 225, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539110

RESUMEN

BACKGROUND: Plants are considered the primary source of many principal bioactive compounds that have been utilized in a wide range of applications including the pharmaceutical and biotechnological industries. Therefore, there is an imperative need to modulate the production of natural bioactive components. The present study aimed to determine the importance of dried and pulverized date palm seeds (DPS) as a natural elicitor for the synthesis of secondary metabolites in Lotus arabicus L. RESULTS: The presence of various antioxidant compounds, simple sugars, amino acids, fatty acids and reasonable mineral contents was distinct in the phytochemical characterization of DPS. The major components detected in DPS analysis were the 5-(hydroxymethyl) furfural and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone. The induced callus of L. arabicus (seven weeks old) was supplemented with DPS at different concentrations (0, 2, 4, 8 and 10 g/l) in culture media. Treatment with 8 g/l DPS induced the highest antioxidant capacity, ascorbic acid content and secondary metabolites (total phenolics and flavonoids) in the produced callus. Stress biomarkers (hydrogen peroxide and malondialdehyde) were found in the control ranges except at 10 g/l DPS. The expression patterns of key genes involoved in secondary metabolism modulation, such as phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS) and deoxyxylulose phosphate reductoisomerase (DXR), were triggered after DPS treatments. Moreover, the quantitative profiling of phenolic and flavonoid compounds showed that supplementation with DPS, especially at 8 g/l, led to pronounced increases in most of the measured compounds. CONCLUSION: The marked upregulation of eliciting-responsive genes and overproduction of secondary metabolites provide molecular-based evidence for intensifying the principal pathways of phenylpropanoid, flavonoid and terpenoid biosynthesis. Overall, the present in vitro study highlights the stimulating capacity of DPS utilization to improve the bioactive components of L. arabicus at the physiological and molecular levels, enhancing its potential as a medicinal herb.


Asunto(s)
Lotus , Phoeniceae , Antioxidantes/metabolismo , Lotus/metabolismo , Phoeniceae/metabolismo , Polvos , Flavonoides/metabolismo , Fenoles/metabolismo , Semillas/metabolismo
4.
Int J Biol Macromol ; 254(Pt 1): 127818, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918602

RESUMEN

Lotus rhizome residue, a cell wall material produced during the production of lotus rhizome starch, has long been underutilized. This study aims to extract pectin-rich polysaccharides from the cell wall of lotus rhizome and investigate their gelation mechanism in order to improve their industrial applicability. The results indicated that both CP and MP (pectin extracted from crisp and mealy lotus rhizome) exhibited a highly linear low methoxyl pectin structure, with the primary linkage mode being →4)-GalpA-(1→. The pectin chains in MP were found to be more flexible than those in CP. Then the impact of Na+, D-glucono-d-lactone (GDL), urea, sodium dodecyl sulfate (SDS), either individually or in combination, on the rheological characteristics of gels was evaluated. The results indicated that gels induced by GDL exhibited favorable thermoreversible properties, whereas the thermoreversibility of Na+-induced gels is poor. In addition to hydrogen bonding and ionic interactions, hydrophobic interactions also play a significant role in the formation of pectin gels. This study offers theoretical guidance and methodologies to improve the utilization rate of lotus rhizome starch processing by-products, while also provides novel insights into the correlation between LMP structure and gelation mechanism.


Asunto(s)
Lotus , Pectinas , Pectinas/química , Lactonas/química , Rizoma/química , Almidón/análisis , Geles/química
5.
J Agric Food Chem ; 71(32): 12311-12324, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37531597

RESUMEN

Research on advanced glycation end product (AGEs) inhibition has generally focused on food processing, but many protein-AGEs will still be taken. Oligopeptide (OLP)-AGEs, as the main form after digestion, will damage human health once absorbed. Here, we investigated the ability of lotus seedpod oligomeric procyanidins (LSOPC) to inhibit the absorption of the OLP-AGEs and elucidated the underlying mechanism. Our results showed that the inhibition rate of LSOPC on the absorption of OLP-AGEs was about 50 ± 5.38%. 0.1, 0.2, and 0.3 mg/mL could upregulate the expression of ZO-1 and downregulate the expression of PepT1 and clathrin. Molecular docking showed that LSOPC could compete with the binding of OLP-AGEs to PepT1 and AP-2, thus inhibiting the absorption of OLP-AGEs. Furthermore, the interaction of LSOPC with the OLP-AGEs reduced the surface hydrophobicity of OLP-AGEs. It altered the secondary structure of the OLP-AGEs, thus weakening the affinity of the OLP-AGEs to the transporter protein to inhibit the absorption of OLP-AGEs. Together, our data revealed potential mechanisms by which LSOPC inhibit the absorption of OLP-AGEs and opened up new perspectives on the application of LSOPC in reducing the increasing health risks posed by OLP-AGEs.


Asunto(s)
Lotus , Proantocianidinas , Humanos , Proantocianidinas/química , Lotus/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Productos Finales de Glicación Avanzada/química , Semillas/química
6.
Food Funct ; 14(17): 7992-8007, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37580964

RESUMEN

Procyanidin-amino acid interactions during transmembrane transport cause changes in the structural and physical properties of peptides, which limits further absorption of oligopeptide-advanced glycation end products (AGEs). In this study, glycated casein hydrolysates (GCSHs) were employed to investigate the structure and interaction mechanism of GCSH with lotus seedpod oligomeric procyanidin (LSOPC) complexes in an intestinal environment. LSOPC can interact with GCSH under certain conditions to form hydrogen bonds and hydrophobic interactions to form GCSH-LSOPC complexes. Results showed that procyanidin further leads to the transformation of a GCSH secondary structure and the increase of surface hydrophobicity (H0). The strongest non-covalent interaction between GCSH and (-)-epigallocatechin gallate (EGCG) was due to the polyhydroxy structure of EGCG. Binding site analysis showed that EGCG binds to the internal cavity of P1 to maintain the relative stability of the binding conformation. The antioxidant capacity of GCSH was remarkably elevated by GCSH-LSOPC. This study will provide a new reference for the accurate control of oligopeptide-AGEs absorption by LSOPC in vivo.


Asunto(s)
Catequina , Lotus , Proantocianidinas , Caseínas/análisis , Extractos Vegetales/química , Proantocianidinas/química , Lotus/química , Antioxidantes/análisis , Catequina/química , Productos Finales de Glicación Avanzada/metabolismo , Semillas/química , Digestión
7.
J Agric Food Chem ; 71(23): 8969-8980, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37259824

RESUMEN

Lotus leaf is effective in regulating glycolipid absorption and metabolism, but the roles of small-molecule compounds and polysaccharides are unknown. In this study, the small-molecule compounds including flavonoids, alkaloids, and polysaccharides were gradually isolated from lotus leaf infusion by multi-column chromatography and applied to in vitro activity verification and structural characterization. Although flavonoids and alkaloids were effective in inhibiting pancrelipase and α-glucosidase, polysaccharides more effectively bounded bile acids, inhibited cholesterol micelle solubility, and stimulated the growth of Bifidobacterium than lotus leaf infusion. Polysaccharides, presented as spherical conformation in water, were identified as rhamnogalacturonan I-enriched (93%) low-ester pectin with multiple branches mainly composed of arabinan, arabinogalactan-type II, and galactan formed by →3)-Galp-(1→, →5)-Araf-(1→ and →4)-Galp-(1→ residues. Polysaccharides, which were a key constituent of lotus leaf infusion in regulating glycolipid absorption and metabolism, should be paid more attention and developed as a functional food ingredient.


Asunto(s)
Alcaloides , Lotus , Lotus/química , Flavonoides/farmacología , Flavonoides/análisis , Polisacáridos/química , Pectinas/química , Alcaloides/análisis , Hojas de la Planta/química
8.
Carbohydr Polym ; 316: 121065, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321745

RESUMEN

The lotus (Nelumbo nucifera Gaertn.) is the largest aquatic vegetable in Asia. The lotus seedpod (LS) is an inedible part of the mature flower receptacle of the lotus plant. However, the polysaccharide isolated from the receptacle has been less studied. The purification of LS resulted in two polysaccharides (LSP-1 and LSP-2). Both polysaccharides were found to be medium-sized HG pectin, with a Mw of 74 kDa. Their structures were elucidated via GC-MS and NMR spectrum and proposed as the repeating sugar units of GalA connected via α-1,4-glycosidic linkage, with LSP-1 having a higher degree of esterification. They have certain content of antioxidant and immunomodulatory activities. The esterification of HG pectin would have an adverse effect on these activities. Furthermore, the degradation pattern and kinetics of LSPs by pectinase conformed to the Michaelis-Menten model. There is a large amount of LS, resulting from the by-product of locus seed production, and thus a promising source for the isolation of the polysaccharide. The findings of the structure, bioactivities, and degradation property provide the chemical basis for their applications in the food and pharmaceutical industries.


Asunto(s)
Antioxidantes , Lotus , Antioxidantes/química , Lotus/química , Semillas/química , Polisacáridos/química , Pectinas/análisis
9.
Int J Biol Macromol ; 246: 125615, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37391001

RESUMEN

The current study sought to depict the structural feature of polysaccharides extracted from Na2CO3 unextractable fraction (LUN) of lotus rhizome using galactosidase with assistance of ball milling. The extracted polysaccharides were a complex of cellulose microfibrils and the RG-I structural domain of pectin, and the top three monosaccharides were glucose, galactose and galactose uronic acid, which allowed to tune the properties of the enzyme-hydrolyzed polysaccharide from LUN after 15 and 45 min of ball milling. The data of XRD revealed that pectin has a masking effect on the diffraction peaks of cellulose components. The removing of the polysaccharides could increase the degree of crystallinity and the pectin-cellulose interaction mainly occured through the galactan side chain was speculated. Textural characterization by SEM exhibited a cross-linked rod-like structure, which is similar to the structure of cellulose microfibrils. The morphological analysis of AFM revealed that L15-P (enzyme-hydrolyzed polysaccharide from LUN after 15 min of ball milling) contained relatively ordered and uniform network structures. Overall, the present study provides an important insight into cell wall of lotus rhizome matrix polysaccharide.


Asunto(s)
Celulosa , Lotus , Celulosa/química , Pectinas/química , Galactosa/análisis , Galactosidasas , Rizoma , Polisacáridos/química , Pared Celular/química
10.
Food Chem ; 415: 135756, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36863237

RESUMEN

Antique Lotus (Nelumbo) is a perennial aquatic plant with unique historical significance and cultural value, whereas its potential economic value hasn't been fully explored. The present study showed that lotus seedpods had significantly higher antioxidant capacity than other parts by FRAP, ABTS, and ORAC assays and analyzed the proanthocyanidins and flavonols in the seedpods of Antique Lotus. Polyphenols contributed to great antioxidant activity and 51 polyphenols were identified by UPLC-TQ-MS analysis. In which, 27 compounds were identified from lotus seedpods for the first time, including 20 trimers, 5 dimers and 2 tetramers of proanthocyanidin. Total proanthocyanidins explained 70%-90% of the different antioxidant activities and the content of proanthocyanidin trimers showed the strongest correlations with the antioxidant activities. This study provided a fundamental reference for the research of polyphenols in lotus and found that Antique Lotus seedpod extracts have the promising prospects of additives used in feed and food processing.


Asunto(s)
Lotus , Proantocianidinas , Antioxidantes/análisis , Flavonoles/análisis , Lotus/química , Extractos Vegetales , Polifenoles/análisis , Proantocianidinas/análisis , Semillas/química
11.
Food Chem ; 412: 135581, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36731239

RESUMEN

Nelumbo nucifera Gaertn, commonly known as lotus, is a genus comprising perennial and rhizomatous aquatic plants, found throughout Asia and Australia. This review aimed to cover the biosynthesis of flavonoids, alkaloids, and lipids in plants and their types in different parts of lotus. This review also examined the physiological functions of bioactive compounds in lotus and the extracts from different organs of the lotus plant. The structures and identities of flavonoids, alkaloids, and lipids in different parts of lotus as well as their biosynthesis were illustrated and updated. In the traditional medicine systems and previous scientific studies, bioactive compounds and the extracts of lotus have been applied for treating inflammation, cancer, liver disease, Alzheimer's disease, etc. We suggest future studies to be focused on standardization of the extract of lotus, and their pharmacological mechanisms as drugs or functional foods. This review is important for the lotus-based food processing and application.


Asunto(s)
Alcaloides , Lotus , Nelumbo , Nelumbo/química , Alcaloides/química , Extractos Vegetales/química , Flavonoides , Lípidos
12.
Anal Bioanal Chem ; 415(9): 1641-1655, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36719439

RESUMEN

Erhuangquzhi granules (EQG) have been clinically proven to be effective in nonalcoholic steatohepatitis (NASH) treatment. However, the active components and molecular mechanisms remain unknown. This study aimed to screen active components targeting tumor necrosis factor α (TNF-α) in EQG for the treatment of NASH by a surface plasmon resonance (SPR) biosensor-based active ingredient recognition system (SPR-AIRS). The amine-coupling method was used to immobilize recombinant TNF-α protein on an SPR chip, the specificity of the TNF-α-immobilized chip was validated, and nine medicinal herbs in EQG were prescreened. Nuciferine (NF), lirinidine (ID), and O-nornuciferine (NNF) from lotus leaves were found and identified as TNF-α ligands by UPLC‒MS/MS, and the affinity constants of NF, ID, and NNF to TNF-α were determined by SPR experiments (Kd = 61.19, 31.02, and 20.71 µM, respectively). NF, ID, and NNF inhibited TNF-α-induced apoptosis in L929 cells, the levels of secreted IL-6 and IL-1ß were reduced, and the phosphorylation of IKKß and IκB was inhibited in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In conclusion, a class of new active small-molecule TNF-α inhibitors was discovered, which also provides a valuable reference for the material basis and mechanism of EQG action in NASH treatment.


Asunto(s)
Técnicas Biosensibles , Enfermedad del Hígado Graso no Alcohólico , Humanos , Cromatografía Liquida , Factores Inmunológicos , Espectrometría de Masas en Tándem , Factor de Necrosis Tumoral alfa/metabolismo , Lotus/química , Hojas de la Planta/química
13.
Int J Biol Macromol ; 226: 562-579, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36521698

RESUMEN

Nelumbo nucifera Gaertn. (lotus) is a widely distributed plant with a long history of cultivation and consumption. Almost all parts of the lotus can be used as foodstuff and nourishment, or as an herb. It is noteworthy that the polysaccharides obtained from lotus exhibit surprisingly and satisfying biological activities, which explains the various benefits of lotus to human health, including anti-diabetes, anti-osteoporosis, antioxidant, anti-inflammatory, anti-tumor, etc. Here, we systematically review the recent major studies on extraction and purification methods of polysaccharides from different parts (rhizome, seed, leaf, plumule, receptacle and stamen) of lotus, as well as the characterization of their chemical structure, biological activity and structure-activity relationship, and the applications of lotus polysaccharides in different fields. This article will give an updated and deeper understanding of lotus polysaccharides and provide theoretical basis for their further research and application in human health and manufacture development.


Asunto(s)
Lotus , Nelumbo , Humanos , Nelumbo/química , Polisacáridos/química , Extractos Vegetales/química , Antiinflamatorios
14.
Chem Biodivers ; 20(1): e202200885, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36524455

RESUMEN

The snow lotus is an endangered traditional Chinese medicinal herb. Saussurea involucrata, Saussurea laniceps, and Saussurea medusa, the three main snow lotus species (five herbs and two S. involucrata cell cultures), were selected for this study. Snow lotus (XLs) was extracted using 75 % (v/v) ethanol. Two reversed phase-high performance liquid chromatography-diode array detector methods were developed and validated for the determination of 10 representative components in XLs. The antioxidant efficacy of XLs and their components was investigated using DPPH, ABTS free radical scavenging, and ROS inhibition experiments. The results showed that the IC50 for DPPH scavenging ranged from 0.06-0.29 mg/mL for XLs and from 0.13-0.63 mg/mL for ABTS, and could downregulate ROS to varying degrees. The results of the antioxidant activity showed that rutin, quercetin, and isochlorogenic acid A contributed to the antioxidant capacity of XLs. The high content and activity of the cell cultures indicate that they can serve as an effective alternative to snow lotus, thus providing a theoretical basis for the selection of herbs and cell cultures to fulfil various needs.


Asunto(s)
Lotus , Saussurea , Antioxidantes/farmacología , Antioxidantes/química , Especies Reactivas de Oxígeno , Saussurea/química , Etanol
15.
New Phytol ; 237(3): 734-745, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36324147

RESUMEN

Legumes such as soybean are considered important crops as they provide proteins and oils for humans and livestock around the world. Different from other crops, leguminous crops accumulate nitrogen (N) for plant growth through symbiotic nitrogen fixation (SNF) in coordination with rhizobia. A number of studies have shown that efficient SNF requires the cooperation of other nutrients, especially phosphorus (P), a nutrient deficient in most soils. During the last decades, great progress has been made in understanding the molecular mechanisms underlying the interactions between SNF and P nutrition, specifically through the identification of transporters involved in P transport to nodules and bacteroids, signal transduction, and regulation of P homeostasis in nodules. These studies revealed a distinct N-P interaction in leguminous crops, which is characterized by specific signaling cross talk between P and SNF. This review aimed to present an updated picture of the cross talk between N fixation and P nutrition in legumes, focusing on soybean as a model crop, and Medicago truncatula and Lotus japonicus as model plants. We also discuss the possibilities for enhancing SNF through improving P nutrition, which are important for high and sustainable production of leguminous crops.


Asunto(s)
Lotus , Medicago truncatula , Humanos , Fijación del Nitrógeno/fisiología , Lotus/metabolismo , Medicago truncatula/metabolismo , Glycine max/metabolismo , Simbiosis/fisiología , Productos Agrícolas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo
16.
Int J Cosmet Sci ; 45(1): 62-72, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36324215

RESUMEN

BACKGROUND: Botanical ingredients are widely used in hair- and skin-care products. However, few studies have investigated the effectiveness of botanical products on counteracting sebum synthesis and secretion. OBJECTIVE: To investigate the composition of Lotus corniculatus seed extract (LC) and its potential inhibition of lipogenesis in SZ95 sebocytes and oily human skin. METHODS: The active components of LC solutions were identified by high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). The in vitro effects of LC were evaluated using SZ95 cells treated with linoleic acid (LA) and dihydrotestosterone (DHT) and incubated with LCs for 24 h and 72 h. Lipogenesis was assessed by Oil Red O and Nile Red staining of the cells. In vivo effects were assessed on 30 subjects with oily skin who were enrolled in a randomized, blank-controlled trial and were treated with LC solution for 6 h and 4 weeks. The skin sebum contents and area on the forehead and cheeks were evaluated using a Sebumeter SM815 and Sebfix sebutape with Visioscan VC98. In addition, VISIA was used to collect half-face photos for analysis. RESULTS: A novel active molecule, 5'-o-rhamnosyl uridine, was identified in LC. LC exhibited a dose-dependent inhibitory effect on LA and DHT-induced lipid synthesis. When 5% LC was applied for 3 h, the skin sebum contents and area were significantly reduced compared with the vehicle control, with an obvious reduction after 6 h. Continued use of the serum containing 5% LC for 4 weeks resulted in a significant reduction in the skin sebum contents and area. No adverse reactions were reported during the study. CONCLUSIONS: Topical application of LC resulted in an immediate and long-lasting reduction of the sebum contents and area of oily human skin by reducing sebaceous lipogenesis through the LA and DHT pathways. This indicates the potential of LC as a new biological treatment for oily skin.


CONTEXTE: Les ingrédients végétaux sont largement utilisés dans les produits de soins des cheveux et de la peau. Cependant, peu d'études ont examiné l'efficacité des produits végétaux dans l'inhibition de la synthèse et de la sécrétion de sébum. OBJECTIF: Étudier les composants de l'extrait de graines de lotus (LC) et son effet inhibiteur potentiel sur la lipogenèse des cellules sébacées SZ95 et de la peau grasse. MÉTHODES: Les composants actifs de la solution LC ont été identifiés par chromatographie liquide à haute performance (HPLC) et par résonance magnétique nucléaire (NMR). Les effets de la LC in vitro ont été évalués à l'aide de cellules SZ95 traitées à l'acide linoléique (LA) et à la dihydrotestostérone (DHT) et incubées avec la LC pendant 24 et 72 heures. Les effets in vivo ont été évalués chez 30 sujets à peau grasse qui ont participé à un essai contrôlé randomisé à blanc et qui ont été traités avec une solution de LC pendant 6 heures et 4 semaines. Le sebumeter SM815 et le sebfix sebutape et le visioscan VC98 ont été utilisés pour évaluer la teneur en sébum et la surface de la peau sur le front et les joues. De plus, des photos de demi - visage ont été recueillies pour analyse à l'aide de VISIA. RÉSULTATS: Une nouvelle molécule active, 5'-o-rhamnosyluridine, a été identifiée dans la LC. La LC a un effet inhibiteur dose - dépendant sur la synthèse lipidique induite par LA et DHT. La teneur et la surface du sébum cutané ont été significativement diminuées par rapport à celles du support photographique après 3 heures d'application de 5% de LC, et significativement diminuées après 6 heures. L'utilization de sérum contenant 5% de LC pendant quatre semaines consécutives a entraîné une réduction significative de la teneur en sébum et de la surface de la peau. Aucun effet indésirable n'a été signalé au cours de l'étude. CONCLUSION: L'application topique de LC peut réduire la production de sébum par les voies LA et DHT, ce qui réduit immédiatement et durablement la teneur en sébum et la surface de la peau huileuse humaine. Cela démontre le potentiel de la LC en tant que nouveau traitement biologique de la peau huileuse.


Asunto(s)
Lotus , Sebo , Humanos , Sebo/metabolismo , Glándulas Sebáceas/metabolismo , Lipogénesis/fisiología , Aceites , Extractos Vegetales/farmacología
17.
Crit Rev Food Sci Nutr ; 63(21): 4867-4900, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34845950

RESUMEN

Different parts of lotus (Nelumbo nucifera Gaertn.) including the seeds, rhizomes, leaves, and flowers, are used for medicinal purposes with health promoting and illness preventing benefits. The presence of active chemicals such as alkaloids, phenolic acids, flavonoids, and terpenoids (particularly alkaloids) may account for this plant's pharmacological effects. In this review, we provide a comprehensive overview and summarize up-to-date research on the biosynthesis, pharmacokinetics, and bioactivity of lotus alkaloids as well as their safety. Moreover, the potential uses of lotus alkaloids in the food, pharmaceutical, and cosmetic sectors are explored. Current evidence shows that alkaloids, mainly consisting of aporphines, 1-benzylisoquinolines, and bisbenzylisoquinolines, are present in different parts of lotus. The bioavailability of these alkaloids is relatively low in vivo but can be enhanced by technological modification using nanoliposomes, liposomes, microcapsules, and emulsions. Available data highlights their therapeutic and preventive effects on obesity, diabetes, neurodegeneration, cancer, cardiovascular disease, etc. Additionally, industrial applications of lotus alkaloids include their use as food, medical, and cosmetic ingredients in tea, other beverages, and healthcare products; as lipid-lowering, anticancer, and antipsychotic drugs; and in facial masks, toothpastes, and shower gels. However, their clinical efficacy and safety remains unclear; hence, larger and longer human trials are needed to achieve their safe and effective use with minimal side effects.


Asunto(s)
Alcaloides , Lotus , Nelumbo , Humanos , Extractos Vegetales/farmacología , Hojas de la Planta
18.
Comb Chem High Throughput Screen ; 26(6): 1157-1166, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35993467

RESUMEN

OBJECTIVE: To explore the clinical efficacy of Zhuang Medicine Lotus Acupuncture Cupping Stasis Therapy on patients with postherpetic neuralgia (PHN) and its action mechanism. METHODS: 36 patients are randomly divided into Lotus Acupuncture Cupping Stasis Therapy group, pure cupping group and gabapentin group, with a total of five observation points for the first, fifth, tenth, fifteenth, and twentieth sessions of therapy (one session every three days). At each observation point, the venous blood of the patients is taken, and the contents of and changes in WNT3a, Frizzled8, ß-catenin, IL-18, TNF-α, NR2B, NK-1 and SP are tested by ELISA, RT-PCR and WesternBlot, respectively. The VAS scores and safety of the patients in the three groups are compared. RESULTS: With increased time spent in therapy, the VAS scores of patients in each group decreased gradually and there was a significant reduction in pain in patients in the Lotus Acupuncture Cupping Stasis Therapy group compared to the gabapentin and pure cupping groups (P<0.05). The levels of IL-18, TNF-α, NK-1, SP, WNT3a, Frizzled 8 and ß-catenin in the serum of all patients experienced a constant decline over time (P<0.05); the levels of the aforesaid factors in the serum of patients in the Lotus Acupuncture Cupping Stasis Therapy group dropped remarkably after the tenth session of therapy compared to those in gabapentin and pure cupping groups (P<0.05). CONCLUSIONS: Zhuang Medicine Lotus Acupuncture Cupping Stasis Therapy can significantly reduce the pain of PHN patients, with a good therapeutic effect, and it is worthy of clinical use.


Asunto(s)
Terapia por Acupuntura , Lotus , Neuralgia Posherpética , Humanos , Neuralgia Posherpética/terapia , Interleucina-18 , beta Catenina , Gabapentina , Factor de Necrosis Tumoral alfa , Resultado del Tratamiento
19.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364322

RESUMEN

In the current work, the leaf and flower extracts of Anthyllis vulneraria were evaluated for their chemical characterization using HPLC-MS and for their radical scavenging capacity toward methoxy radicals produced by a Fenton-type reaction using an electron paramagnetic resonance (EPR) spectroscopy assay. The in vitro antiproliferative activity of these extracts against several human-derived cancer cells (breast: MCF-7; cervical: HeLa; hepatocellular: HepG2) was also evaluated. The results showed that the Anthyllis vulneraria leaf extract was characterized by 17 different phenolic compounds, among which phenolic acids were the most abundant, while its flower extract exhibited higher contents of flavonoids. Furthermore, Anthyllis vulneraria extracts demonstrated a potent radical scavenging activity against methoxy radicals. Both extracts also significantly reduced the viability of the different cancer cell lines. The results of the current study suggested that Anthyllis vulneraria extracts are a promising source of antioxidant compounds with health benefits and pointed to their potential use for treating cancer and developing novel therapeutic agents.


Asunto(s)
Lotus , Neoplasias , Humanos , Extractos Vegetales/química , Espectroscopía de Resonancia por Spin del Electrón , Fenoles/farmacología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Células HeLa , Neoplasias/tratamiento farmacológico
20.
Fitoterapia ; 162: 105294, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36058474

RESUMEN

One new 1,4-bis-phenyl-1,4-butanedione glycoside (14), one new eudesmane-type sesquiterpenoid (16), and 16 known compounds were isolated from the leaves and stems of Nelumbo nucifera Gaertn. The structures of the isolated compounds were elucidated by interpretation of their 1D and 2D NMR spectroscopic and HRESIMS data. Time-dependent density functional theory calculations and Electronic Circular Dichroism (ECD) spectroscopy was used to determine absolute configurations of the new eudesmane-type sesquiterpenoid (16). All the isolated compounds were examined for their antiosteoclastogenic activity. Preliminarily results of the TRAP staining on RAW 264.7 cells indicated that compounds 1 and 11 possess potential inhibitory effects on RANKL-induced osteoclast formation. Further bioassay investigation was carried out to reveal that compounds 1 and 11 suppressed RANKL-induced osteoclast formation in a concentration-dependent manner with the inhibition up to 55% and 78% at the concentration of 10 µM, respectively. In addition, the structure-activity relationship analysis showed that the 1,3-dioxole substitute and the double bond at C-6a/C-7 in the aporphine skeleton may be responsible for the antiosteoclastogenic activity. The findings provided valuable insights for the discovery and structural modification of aporphine alkaloids as the antiosteoclastogenic lead compounds.


Asunto(s)
Alcaloides , Aporfinas , Lotus , Nelumbo , Sesquiterpenos de Eudesmano , Alcaloides/farmacología , Aporfinas/farmacología , Dioxoles , Glicósidos/análisis , Estructura Molecular , Nelumbo/química , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA