Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 979
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Bodyw Mov Ther ; 30: 112-117, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35500958

RESUMEN

OBJECTIVE: Many stretching methods are applied on the hamstring muscles for reducing muscle resistance on movement. The aim of our study to investigate the acute effects of static stretching and the Mulligan traction straight leg raise (TSLR) technique administered to the hamstring muscles on reducing its resistance to movement. METHODS: The study included 22 healthy male volunteers (19.5 ± 0.98 years). After the individuals were randomly divided into two groups, static stretching was administered to the hamstring muscles in the first group and the Mulligan TSLR technique was administered on the same muscle in the second group. Active knee extension angles of the individuals were evaluated by a digital goniometer and muscle strain was assessed by ultrasound elastography. RESULTS: While there was a significant difference in all parameters in both groups after the treatment, the changes in the active knee extension angle and the strain index value of the biceps femoris musculotendinous junction were higher in the Mulligan TSLR group compared to the static stretching group (p < 0.05). CONCLUSION: It was concluded that, static stretching and the Mulligan TSLR technique administered to the hamstring muscles are effective ways to increase the range of motion. The Mulligan TSLR technique, however, can be opted in healthy individuals and patients since it is painless and more effective in reducing muscle resistance to movement and range of motion.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Músculos Isquiosurales , Ejercicios de Estiramiento Muscular , Músculos Isquiosurales/diagnóstico por imagen , Músculos Isquiosurales/fisiología , Humanos , Masculino , Músculos/fisiología , Rango del Movimiento Articular/fisiología , Adulto Joven
2.
Elife ; 112022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35098925

RESUMEN

Although fossil evidence suggests that various animal groups were able to move actively through their environment in the early stages of their evolution, virtually no direct information is available on the nature of their muscle systems. The origin of jellyfish swimming, for example, is of great interest to biologists. Exceptionally preserved muscles are described here in benthic peridermal olivooid medusozoans from the basal Cambrian of China (Kuanchuanpu Formation, ca. 535 Ma) that have direct equivalent in modern medusozoans. They consist of circular fibers distributed over the bell surface (subumbrella) and most probably have a myoepithelial origin. This is the oldest record of a muscle system in cnidarians and more generally in animals. This basic system was probably co-opted by early Cambrian jellyfish to develop capacities for jet-propelled swimming within the water column. Additional lines of fossil evidence obtained from ecdysozoans (worms and panarthropods) show that the muscle systems of early animals underwent a rapid diversification through the early Cambrian and increased their capacity to colonize a wide range of habitats both within the water column and sediment at a critical time of their evolutionary radiation.


Asunto(s)
Evolución Biológica , Cnidarios/anatomía & histología , Cnidarios/fisiología , Músculos/fisiología , Animales , Ecosistema , Fósiles , Geografía , Filogenia , Escifozoos
3.
Crit Care ; 25(1): 415, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863251

RESUMEN

BACKGROUND: Although the combination of rehabilitation and nutrition may be important for the prevention of intensive care unit (ICU)-acquired weakness, a protocolized intervention of this combination has not yet been reported. We herein developed an original combined protocol and evaluated its efficacy. METHODS: In this single-center historical control study, we enrolled adult patients admitted to the ICU. Patients in the control group received standard care, while those in the intervention group received the protocol-based intervention. The ICU mobility scale was used to set goals for early mobilization and a neuromuscular electrical stimulation was employed when patients were unable to stand. The nutritional status was assessed for nutritional therapy, and target calorie delivery was set at 20 or 30 kcal/kg/day and target protein delivery at 1.8 g/kg/day in the intervention group. The primary endpoint was a decrease in femoral muscle volume in 10 days assessed by computed tomography. RESULTS: Forty-five patients in the control group and 56 in the intervention group were included in the analysis. Femoral muscle volume loss was significantly lower in the intervention group (11.6 vs 14.5%, p = 0.03). The absolute risk difference was 2.9% (95% CI 0.1-5.6%). Early mobilization to a sitting position by day 10 was achieved earlier (p = 0.03), and mean calorie delivery (20.1 vs. 16.8 kcal/kg/day, p = 0.01) and mean protein delivery (1.4 vs. 0.8 g/kg/day, p < 0.01) were higher in the intervention group. CONCLUSION: The protocolized intervention, combining early mobilization and high-protein nutrition, contributed to the achievement of treatment goals and prevention of femoral muscle volume loss. TRIAL REGISTRATION NUMBER: The present study is registered at the University Hospital Medical Information Network-clinical trials registry (UMIN000040290, Registration date: May 7, 2020).


Asunto(s)
Terapia por Estimulación Eléctrica , Terapia Nutricional , Rehabilitación , Protocolos Clínicos , Objetivos , Humanos , Unidades de Cuidados Intensivos , Músculos/fisiología , Paquetes de Atención al Paciente , Rehabilitación/métodos
4.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836589

RESUMEN

For organisms to have robust locomotion, their neuromuscular organization must adapt to constantly changing environments. In jellyfish, swimming robustness emerges when marginal pacemakers fire action potentials throughout the bell's motor nerve net, which signals the musculature to contract. The speed of the muscle activation wave is dictated by the passage times of the action potentials. However, passive elastic material properties also influence the emergent kinematics, with time scales independent of neuromuscular organization. In this multimodal study, we examine the interplay between these two time scales during turning. A three-dimensional computational fluid-structure interaction model of a jellyfish was developed to determine the resulting emergent kinematics, using bidirectional muscular activation waves to actuate the bell rim. Activation wave speeds near the material wave speed yielded successful turns, with a 76-fold difference in turning rate between the best and worst performers. Hyperextension of the margin occurred only at activation wave speeds near the material wave speed, suggesting resonance. This hyperextension resulted in a 34-fold asymmetry in the circulation of the vortex ring between the inside and outside of the turn. Experimental recording of the activation speed confirmed that jellyfish actuate within this range, and flow visualization using particle image velocimetry validated the corresponding fluid dynamics of the numerical model. This suggests that neuromechanical wave resonance plays an important role in the robustness of an organism's locomotory system and presents an undiscovered constraint on the evolution of flexible organisms. Understanding these dynamics is essential for developing actuators in soft body robotics and bioengineered pumps.


Asunto(s)
Escifozoos/fisiología , Natación/fisiología , Animales , Fenómenos Biomecánicos , Módulo de Elasticidad , Hidrodinámica , Modelos Biológicos , Músculos/fisiología
5.
Food Chem ; 354: 129498, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33773482

RESUMEN

Creatine improves flesh quality on mammalian but studies on crustaceans are scarce. In the present study, diets with six levels of creatine (1.23, 2.58, 5.12, 8.28, 14.12, 24.49 g kg-1 diet) were hand-fed to juvenile Litopenaeus vannamei (IBW: 1.50 ± 0.02 g) reared in freshwater for 46 days. Results showed creatine supplementation did not affect the growth performance (FBW: 17.04 ± 1.28 g) or the content of guanidinoacetic acid in muscle and hepatopancreas whereas significantly increased muscular creatine content. Diet with 8.28 g kg-1 creatine significantly increased muscular hardness and chewiness by decreasing myofiber diameter and increasing myofiber density. Additionally, creatine downregulated the mRNA expression of fast sMyHC1, sMyHC2, sMyHC6a and upregulated slow sMyHC5 and sMyHC15 mRNA expression. Muscular protein, collagen, total amino acid and flavor amino acid contents increased with creatine supplementation. In conclusion, the diet with 8.28 g kg-1 creatine improved the flesh quality of L. vannamei.


Asunto(s)
Creatina/metabolismo , Penaeidae/metabolismo , Aminoácidos/análisis , Aminoácidos/metabolismo , Animales , Colágeno/metabolismo , Creatina/administración & dosificación , Creatina/farmacología , Suplementos Dietéticos , Regulación hacia Abajo , Agua Dulce/química , Glicina/análogos & derivados , Glicina/metabolismo , Hepatopáncreas/metabolismo , Proteínas Musculares/metabolismo , Músculos/metabolismo , Músculos/fisiología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Penaeidae/crecimiento & desarrollo , ARN Mensajero/metabolismo , Regulación hacia Arriba
6.
Ther Apher Dial ; 25(3): 304-313, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32777142

RESUMEN

Serum carnitine is decreased in hemodialysis patients, which induces muscle atrophy. Thus, we examined the different effects of l-carnitine and exercise on exercise activity and muscle status in hemodialysis patients. Twenty patients were divided into l-carnitine and cycle ergometer groups and were followed for 3 months. Muscle and fat mass, physical activities, and muscle status were evaluated by an impedance, physical function test, and magnetic resonance imaging, respectively. The l-carnitine significantly increased muscle mass (P = .023) and thigh circumference (P = .027), decreased fat mass (P = .007), and shortened chair stand-up time (P = .002) and 10-m walk test (P = .037). The fat fraction was improved by the l-carnitine (P = .047). Compared with the exercise group, l-carnitine improved the changes in 10-m walk test (P = .026), chair stand-up time (P = .014), and thigh circumference (P = .022). Baseline fibroblast growth factor-21 and myostatin levels predicted the l-carnitine-associated changes in exercise activities. l-carnitine, rather than exercise, improved physical activity and muscle status in hemodialysis patients.


Asunto(s)
Carnitina/administración & dosificación , Suplementos Dietéticos , Prueba de Esfuerzo/métodos , Ejercicio Físico/fisiología , Músculos/efectos de los fármacos , Diálisis Renal , Carnitina/sangre , Prueba de Esfuerzo/estadística & datos numéricos , Femenino , Humanos , Japón , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Músculos/diagnóstico por imagen , Músculos/fisiología , Estudios Prospectivos
7.
Cell ; 183(7): 1913-1929.e26, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33333020

RESUMEN

Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.


Asunto(s)
Corteza Cerebral/fisiología , Corteza Motora/fisiología , Organoides/fisiología , Animales , Calcio/metabolismo , Diferenciación Celular , Células Cultivadas , Vértebras Cervicales , Regulación de la Expresión Génica , Glutamatos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Músculos/fisiología , Mioblastos/metabolismo , Red Nerviosa/fisiología , Optogenética , Organoides/ultraestructura , Rombencéfalo/fisiología , Esferoides Celulares/citología , Médula Espinal/citología
8.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260845

RESUMEN

Aging is characterized by increase in reactive oxygen (ROS) and nitrogen (RNS) species, key factors of cardiac failure and disuse-induced muscle atrophy. This study focused on serum nitroproteome as a trait of longevity by adopting two complementary gel-based techniques: two-dimensional differential in gel electrophoresis (2-D DIGE) and Nitro-DIGE coupled with mass spectrometry of albumin-depleted serum of aged (A, n = 15) and centenarian (C, n = 15) versus young females (Y, n = 15). Results indicate spots differently expressed in A and C compared to Y and spots changed in A vs. C. Nitro-DIGE revealed nitrosated protein spots in A and C compared to Y and spots changed in A vs. C only (p-value < 0.01). Nitro-proteoforms of alpha-1-antitripsin (SERPINA1), alpha-1-antichimotripsin (SERPINA3), ceruloplasmin (CP), 13 proteoforms of haptoglobin (HP), and inactive glycosyltransferase 25 family member 3 (CERCAM) increased in A vs. Y and C. Conversely, nitrosation levels decreased in C vs. Y and A, for immunoglobulin light chain 1 (IGLC1), serotransferrin (TF), transthyretin (TTR), and vitamin D-binding protein (VDBP). Immunoblottings of alcohol dehydrogenase 5/S-nitrosoglutathione reductase (ADH5/GSNOR) and thioredoxin reductase 1 (TRXR1) indicated lower levels of ADH5 in A vs. Y and C, whereas TRXR1 decreased in A and C in comparison to Y. In conclusion, the study identified putative markers in C of healthy aging and high levels of ADH5/GSNOR that can sustain the denitrosylase activity, promoting longevity.


Asunto(s)
Longevidad/fisiología , Proteoma/metabolismo , Suero/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Electroforesis en Gel Bidimensional , Femenino , Humanos , Persona de Mediana Edad , Músculos/fisiología , Nitrosación , Estrés Nitrosativo , Proteómica , Tirosina/metabolismo
9.
Sci Rep ; 10(1): 21116, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273638

RESUMEN

The hand-blink reflex (HBR) is a subcortical response, elicited by the electrical stimulation of the median nerve, whose magnitude is specifically modulated according to the spatial properties of the defensive peripersonal space (DPPS) of the face. For these reasons, the HBR is commonly used as a model to assess the DPPS of the face. Little is known on the effects induced by the activation of cutaneous afferents from the face on the DPPS of the face. Therefore, we tested the effect of non-painful transcutaneous trigeminal nerve stimulation (TNS) on the amplitude of the HBR. Fifteen healthy participants underwent HBR recording before and after 20 min of sham- and real-TNS delivered bilaterally to the infraorbital nerve in two separate sessions. The HBR was recorded bilaterally from the orbicularis oculi muscles, following non-painful median nerve stimulation at the wrist. The HBR amplitude was assessed in the "hand-far" and "hand-near" conditions, relative to the hand position in respect to the face. The amplitudes of the hand-far and hand-near HBR were measured bilaterally before and after sham- and real-TNS. Real-TNS significantly reduced the magnitude of the HBR, while sham-TNS had no significant effect. The inhibitory effect of TNS was of similar extent on both the hand-far and hand-near components of the HBR, which suggests an action exerted mainly at brainstem level.


Asunto(s)
Parpadeo/fisiología , Mano/fisiología , Reflejo/fisiología , Estimulación Eléctrica Transcutánea del Nervio , Nervio Trigémino/fisiología , Adulto , Área Bajo la Curva , Femenino , Humanos , Masculino , Músculos/fisiología , Adulto Joven
10.
Nutr Res ; 84: 14-24, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33199033

RESUMEN

Vitamin D (VitD) possesses antiadipogenic and ergogenic properties that could be effective to counteract obesity-related adverse health consequences. Therefore, our overall hypothesis was that VitD could ameliorate obesity-induced insulin resistance, systemic inflammation, and loss of skeletal muscle mass and function in an obesity animal model, p62-deficient mice. Furthermore, it was hypothesized that resistance exercise training (RT) could enhance the benefits of VitD by upregulating protein expression of vitamin D receptor in skeletal muscle. Forty 24-week-old male p62-deficient mice were assigned to the following 4 groups (10/group) for a 10-week intervention: control (p62C, no treatment), VitD (VD, 1000 IU vitamin D3/kg/d), RT (ladder climbing, 3 times per week), or combined treatment (VRT, VD + RT). Serum VitD levels increased in VD and VRT (P < .05). Total body mass increased in p62C, VD, and VRT, but fat mass increased only in p62C (P < .05). Loss of skeletal muscle function was reported only in p62C (P < .05). Improved blood glucose levels and lower spleen mass were reported in RT and VRT compared to p62C (P < .05). However, the hindlimb muscle wet weights; myofiber cross-sectional area; and expression levels of the regulatory proteins for insulin signaling, inflammation, and muscle growth were not changed by any intervention. In conclusion, VitD administration attenuated the progression of obesity and preserved skeletal muscle function in p62-deficient mice. However, the obese mice improved systemic insulin sensitivity and inflammation only when the intervention involved RT.


Asunto(s)
Músculo Esquelético/fisiología , Músculos/fisiología , Obesidad/fisiopatología , Condicionamiento Físico Animal , Vitamina D/administración & dosificación , Vitaminas/administración & dosificación , Tejido Adiposo , Animales , Glucemia/análisis , Composición Corporal , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fuerza de la Mano , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/anatomía & histología , Obesidad/terapia , Corteza Sensoriomotora/fisiología , Proteína Sequestosoma-1/deficiencia , Proteína Sequestosoma-1/genética , Vitamina D/sangre
11.
Biomolecules ; 10(9)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962160

RESUMEN

Donepezil (DPZ) is an acetylcholinesterase inhibitor used for the clinical treatment of mild cognitive impairment. However, DPZ has been reported to have adverse effects, including causing abnormal cardiac rhythm, insomnia, vomiting, and muscle cramps. However, the existence of these effects in subjects without Dementia is unknown. In this study, we use zebrafish to conduct a deeper analysis of the potential adverse effects of DPZ on the short-term memory and behaviors of normal zebrafish by performing multiple behavioral and biochemical assays. Adult zebrafish were exposed to 1 ppm and 2.5 ppm of DPZ. From the results, DPZ caused a slight improvement in the short-term memory of zebrafish and induced significant elevation in aggressiveness, while the novel tank and shoaling tests revealed anxiolytic-like behavior to be caused by DPZ. Furthermore, zebrafish circadian locomotor activity displayed a higher reduction of locomotion and abnormal movement orientation in both low- and high-dose groups, compared to the control group. Biomarker assays revealed that these alterations were associated with an elevation of oxytocin and a reduction of cortisol levels in the brain. Moreover, the significant increases in reactive oxygen species (ROS) and malondialdehyde (MDA) levels in muscle tissue suggest DPZ exposure induced muscle tissue oxidative stress and muscle weakness, which may underlie the locomotor activity impairment. In conclusion, we show, for the first time, that chronic waterborne exposure to DPZ can severely induce adverse effects on normal zebrafish in a dose-dependent manner. These unexpected adverse effects on behavioral alteration should be carefully addressed in future studies considering DPZ conducted on zebrafish or other animals.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Donepezilo/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Pruebas de Toxicidad Crónica/métodos , Pez Cebra/fisiología , Animales , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Locomoción/efectos de los fármacos , Locomoción/fisiología , Malondialdehído/metabolismo , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Músculos/efectos de los fármacos , Músculos/metabolismo , Músculos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
12.
Int J Environ Health Res ; 30(6): 630-642, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31081360

RESUMEN

This study aimed to investigate the effect of red orange juice supplementation (ROJS) on performance, cardiovascular parameters, muscle damage and oxidative stress markers of athletes following exercise under polluted air. Eleven soccer players performed a Yo-Yo Intermittent Recovery Test Level-1 in polluted area (PA) and non-polluted area (NPA). Participants are invited to drink 500 ml of red orange or placebo (PLA) juice 2.5 h before the test. Blood samples were collected at rest and 3 min after each session to assess creatine kinase (CK), lactate dehydrogenase, malondialdehyde (MDA) and total antioxidant status. Our results showed that, VO2max, heart rate and systolic blood pressure post-exercise were significantly altered by pollution with both supplements, but the damage was lowered more with ROJS than PLA. Concerning muscle damage and oxidative stress markers, orange juice supplementation blunted the effect of pollution on CK levels post-exercise (p > 0.05) and decreases significantly (p < 0.05) the MDA levels post-exercise in PA and NPA compared to PLA supplementation. In conclusion, ROJS seemed to be an appropriate strategy to reduce the risk of exposure to pollution especially on muscle damage and oxidative stress markers.


Asunto(s)
Contaminación del Aire/efectos adversos , Rendimiento Atlético , Fenómenos Fisiológicos Cardiovasculares , Citrus sinensis , Suplementos Dietéticos/análisis , Jugos de Frutas y Vegetales/análisis , Sustancias Protectoras/farmacología , Atletas/estadística & datos numéricos , Biomarcadores/metabolismo , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Dieta , Humanos , Masculino , Músculos/efectos de los fármacos , Músculos/fisiología , Estrés Oxidativo , Sustancias Protectoras/análisis , Fútbol , Túnez
13.
J Dermatolog Treat ; 31(2): 200-203, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30799667

RESUMEN

Introduction: Powered muscle stimulators have been popularized in recent years due to their muscle toning effects. This study aims to describe marketing trends and reporting of adverse effects of powered muscle stimulators.Methods: We performed a cross-sectional retrospective analysis of records from the United States FDA database for 510(k) premarket approval of powered muscle stimulators between January 1, 2000 and December 31, 2018. The FDA MAUDE database was reviewed for adverse events reported with device usage.Results: One hundred and seventeen devices received 510(k) premarket approval between 2000 and 2018, with the first approval occurring in 2001. Initially, devices were marketed to assist with muscle toning and strengthening, but more recent indications include the treatment of pain, increased local muscle blood circulation, and prevention of post-surgical venous thrombosis. Thirty-six adverse event reports have been submitted and published in the MAUDE database over the past 10 years by 11% of manufacturers.Discussion: Powered muscle stimulators are growing increasingly popular amongst consumers and healthcare providers due to their ease of use and perceived esthetic, muscle strength, and pain relief benefits. Additional investigation to determine optimal treatment parameters and potential adverse effects is necessary due to the growing popularity of these devices.


Asunto(s)
Músculos/fisiología , Estimulación Eléctrica Transcutánea del Nervio/instrumentación , Estudios Transversales , Bases de Datos Factuales , Aprobación de Recursos , Estética , Humanos , Estudios Retrospectivos , Estimulación Eléctrica Transcutánea del Nervio/métodos , Estados Unidos , United States Food and Drug Administration
14.
J Appl Physiol (1985) ; 127(4): 1042-1049, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31436511

RESUMEN

Slow breathing (SLOWB) is recommended for use as an adjuvant treatment for hypertension. However, the extent to which blood pressure (BP) responses to SLOWB differ between men and women are not well-established. Therefore, we tested the hypothesis that an acute bout of SLOWB would induce larger decreases in BP in males than in females, given that males typically have higher resting BP. We also examined autonomic contributors to reduced BP during SLOWB; that is, muscle sympathetic nerve activity and spontaneous cardiovagal (sequence method) and vascular sympathetic baroreflex sensitivity. We tested normotensive females (n = 10, age: 22 ± 2 y, body mass index: 22 ± 2 kg/m2) and males (n = 12, age: 23 ± 3 y, body mass index: 26 ± 4 kg/m2). Subjects were tested at baseline and during the last 5 min of a 15-min RESPeRATE-guided SLOWB session. Overall, SLOWB reduced systolic BP by 3.2 ± 0.8 mmHg (main effect, P < 0.01). Females had lower systolic BP (main effect, P = 0.02); we observed no interaction between sex and SLOWB. SLOWB also reduced muscle sympathetic nerve activity burst incidence by -5.0 ± 1.4 bursts/100 heartbeats (main effect, P < 0.01). Although females tended to have lower burst incidence (main effect, P = 0.1), there was no interaction between sex and SLOWB. Cardiovagal baroreflex sensitivity improved during SLOWB (21.0 vs. 36.0 ms/mmHg, P = 0.03) with no effect of sex. Despite lower overall BP in females, our data support a lack of basement effect on SLOWB-induced reductions in BP, as SLOWB was equally effective in reducing BP in males and females. Our findings support the efficacy of the RESPeRATE device for reducing BP in both sexes, even in young, normotensive individuals.NEW & NOTEWORTHY We provide support for the effectiveness of device-guided slow breathing for blood pressure reduction in young normotensive women and men. Despite having lower baseline blood pressure and sympathetic nerve activity, women experienced equivalent reductions in both measures in response to RESPeRATE-guided slow breathing as men. Thus, slow breathing appears to be effective in young healthy normotensive individuals of both sexes and may be an ideal preventative therapy against future hypertension.


Asunto(s)
Presión Sanguínea/fisiología , Frecuencia Respiratoria/fisiología , Sistema Nervioso Simpático/fisiología , Adolescente , Adulto , Barorreflejo/fisiología , Determinación de la Presión Sanguínea/métodos , Ejercicios Respiratorios/métodos , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Hipertensión/fisiopatología , Hipotensión/fisiopatología , Masculino , Músculos/fisiología , Descanso/fisiología , Adulto Joven
15.
J Cell Mol Med ; 23(10): 6822-6834, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31386303

RESUMEN

Hypocretin 1 and hypocretin 2 (orexin A and B) regulate sleep, wakefulness and emotion. Tumour necrosis factor alpha (TNF-α) is an important neuroinflammation mediator. Here, we examined the effects of TNF-α treatment on hypocretin expression in vivo and behaviour in mice. TNF-α decreased hypocretin 1 and hypocretin 2 expression in a dose-dependent manner in cultured hypothalamic neurons. TNF-α decreased mRNA stability of prepro-hypocretin, the single precursor of hypocretin 1 and hypocretin 2. Mice challenged with TNF-α demonstrated decreased expression of prepro-hypocretin, hypocretin 1 and hypocretin 2 in hypothalamus. In response to TNF-α, prepro-hypocretin mRNA decay was increased in hypothalamus. TNF-α neutralizing antibody restored the expression of prepro-hypocretin, hypocretin 1 and hypocretin 2 in vivo in TNF-α challenged mice, supporting hypocretin system can be impaired by increased TNF-α through decreasing hypocretin expression. Repeated TNF-α challenge induced muscle activity during rapid eye movement sleep and sleep fragmentation, but decreased learning, cognition and memory in mice. TNF-α neutralizing antibody blocked the effects of TNF-α; in contrast, hypocretin receptor antagonist enhanced the effects of TNF-α. The data support that TNF-α is involved in the regulation of hypocretin expression, sleep and cognition. The findings shed some lights on the role of neuroinflammation in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease.


Asunto(s)
Conducta Animal , Orexinas/metabolismo , Sueño , Factor de Necrosis Tumoral alfa/farmacología , Animales , Anticuerpos Neutralizantes/farmacología , Conducta Animal/efectos de los fármacos , Células Cultivadas , Cognición/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipotálamo/metabolismo , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Músculos/efectos de los fármacos , Músculos/fisiología , Neuronas/metabolismo , Orexinas/genética , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Sueño/efectos de los fármacos , Privación de Sueño , Sueño REM/efectos de los fármacos
16.
Proc Natl Acad Sci U S A ; 116(23): 11339-11344, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31085642

RESUMEN

During their once-in-a-lifetime transoceanic spawning migration, anguillid eels do not feed, instead rely on energy stores to fuel the demands of locomotion and reproduction while they reorganize their bodies by depleting body reserves and building up gonadal tissue. Here we show how the European eel (Anguilla anguilla) breaks down its skeleton to redistribute phosphorus and calcium from hard to soft tissues during its sexual development. Using multiple analytical and imaging techniques, we characterize the spatial and temporal degradation of the skeletal framework from initial to final gonadal maturation and use elemental mass ratios in bone, muscle, liver, and gonadal tissue to determine the fluxes and fates of selected minerals and metals in the eels' bodies. We find that bone loss is more pronounced in females than in males and eventually may reach a point at which the mechanical stability of the skeleton is challenged. P and Ca are released and translocated from skeletal tissues to muscle and gonads, leaving both elements in constant proportion in remaining bone structures. The depletion of internal stores from hard and soft tissues during maturation-induced body reorganization is accompanied by the recirculation, translocation, and maternal transfer of potentially toxic metals from bone and muscle to the ovaries in gravid females, which may have direct deleterious effects on health and hinder the reproductive success of individuals of this critically endangered species.


Asunto(s)
Anguilla/metabolismo , Anguilla/fisiología , Resorción Ósea/metabolismo , Huesos/metabolismo , Huesos/fisiología , Migración Animal/fisiología , Animales , Fenómenos Biológicos , Calcio/metabolismo , Especies en Peligro de Extinción , Femenino , Gónadas/metabolismo , Gónadas/fisiología , Hígado/metabolismo , Hígado/fisiología , Masculino , Músculos/metabolismo , Músculos/fisiología , Ovario/metabolismo , Ovario/fisiología , Fósforo/metabolismo , Reproducción/fisiología
17.
Sci Rep ; 9(1): 5413, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931985

RESUMEN

The hypothalamus-pituitary-thyroid (HPT) axis plays a crucial role in the metabolism, homeostasis, somatic growth and development of teleostean fishes. Thyroid hormones regulate essential biological functions such as growth and development, regulation of stress, energy expenditure, tissue compound, and psychological processes. Teleost thyroid follicles produce the same thyroid hormones as in other vertebrates: thyroxin (T4) and triiodothyronine (T3), making the zebrafish a very useful model to study hypo- and hyperthyroidism in other vertebrate taxa, including humans. Here we investigate morphological changes in T3 hyperthyroid cases in the zebrafish to better understand malformations provoked by alterations of T3 levels. In particular, we describe musculoskeletal abnormalities during the development of the zebrafish appendicular skeleton and muscles, compare our observations with those recently done by us on the normal developmental of the zebrafish, and discuss these comparisons within the context of evolutionary developmental pathology (Evo-Devo-Path), including human pathologies.


Asunto(s)
Hipertiroidismo/fisiopatología , Músculos/fisiología , Desarrollo Musculoesquelético/fisiología , Glándula Tiroides/fisiología , Animales , Evolución Biológica , Tipificación del Cuerpo/fisiología , Embrión no Mamífero/embriología , Embrión no Mamífero/fisiología , Humanos , Hipertiroidismo/embriología , Hipertiroidismo/metabolismo , Hipotálamo/embriología , Hipotálamo/fisiología , Larva/fisiología , Modelos Animales , Músculos/embriología , Sistema Musculoesquelético/embriología , Hipófisis/embriología , Hipófisis/fisiología , Glándula Tiroides/embriología , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Pez Cebra
18.
Dysphagia ; 34(4): 529-539, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30820657

RESUMEN

Limited research in swallowing physiology has suggested that the most common existing transcutaneous electrical stimulation (TES) protocol (VitalStim) may not penetrate to layers of tissue to affect deep swallowing muscles. TES amplitude is the primary parameter that determines the depth of electrical current penetration (DECP). Preliminary work suggests that replacing a long-pulse duration with a short-pulse duration can increase maximum amplitude tolerance (MAT) within subjects' comfort level. Increasing MAT may indicate a higher DECP. The current study evaluates this premise in reference to the effects of varying pulse duration on lingual-palatal pressure during swallowing. Thirty healthy older adults (60-70 years of age) participated in this study. Each subject swallowed three trials of 10 mL pudding under three TES conditions: no stimulation, short-pulse duration, and long-pulse duration. TES was delivered using two pairs of surface electrodes on the submental muscles. MAT and perceived discomfort levels were identified separately for short and long-pulse TES conditions. Lingual-palatal peak pressure, pressure integral, and pressure duration were measured under each condition. Two-way repeated measures ANOVAs were conducted to identify within subject effects of TES condition and tongue bulb location. Lingual-palatal pressure and pressure integral were significantly reduced in the short-pulse duration condition. MAT was significantly higher in the short-pulse duration versus the long-pulse duration condition. Furthermore, MAT was significantly correlated with lingual-palatal pressure. Changing pulse duration had no significant impact on tongue pressure duration. Results suggest that a short-pulse duration may penetrate deeper into muscles involved in swallowing. The specific impact is reflected in a reduced upward pressure of the tongue on the palate during swallowing. This 'restrictive' effect of TES on tongue pressure may have the potential to be used during a resistive exercise paradigm for tongue elevation during swallowing.


Asunto(s)
Deglución , Lengua/fisiología , Estimulación Eléctrica Transcutánea del Nervio , Anciano , Deglución/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculos/fisiología , Hueso Paladar , Presión , Estimulación Eléctrica Transcutánea del Nervio/métodos
19.
Int J Colorectal Dis ; 34(3): 417-422, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30519842

RESUMEN

PURPOSE: Postoperative ileus (POI) is a common complication after abdominal surgery. Invasive stimulation of the cervical vagus nerve is known to reduce inflammatory response and ameliorated POI after surgery in a mouse model. However, the transcutaneous vagus nerve stimulation (tVNS) is a possible non-invasive approach. In this clinical study, we aimed to investigate the effect of tVNS on the activation of the stomach muscle in humans. METHODS: Patients requiring open laparotomy were screened for this prospective proof of concept clinical study. After open laparotomy, muscle activity of the stomach was measured by a free running electromyography (EMG) before and during tVNS on the ear. Frequency and amplitude of compound gastric action potentials were the electrophysiological parameters we assessed to reveal the changes in electro motor gastric activity. Gastrin levels as a surrogate marker for vagus nerve activation was analyzed before, 1 and 3 h after tVNS. RESULTS: Fourteen patients were included, no severe adverse events and no medical device related adverse events occurred. tVNS led to significant reduction of action potential frequency and significant elevation of action potential amplitude in the stomach compared to control. Gastrin levels were significantly elevated 3 h after tVNS compared to levels before tVNS. CONCLUSION: Application of tVNS is a safe and feasible procedure during surgical intervention. Our results provide evidence that tVNS activates efferent visceral vagal fibers. Therefore, this low risk and easy to perform method could be useful to prevent postoperative ileus. CLINICAL TRIAL REGISTER NUMBER: DRKS00013340.


Asunto(s)
Tracto Gastrointestinal/fisiología , Músculos/fisiología , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Presión Sanguínea , Electromiografía , Estudios de Factibilidad , Femenino , Gastrinas/sangre , Frecuencia Cardíaca , Humanos , Laparotomía , Masculino , Persona de Mediana Edad , Estimulación Eléctrica Transcutánea del Nervio/efectos adversos , Resultado del Tratamiento , Estimulación del Nervio Vago/efectos adversos
20.
Exp Gerontol ; 113: 10-17, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30248358

RESUMEN

Recent studies suggest that moderate red wine consumption may confer several health benefits, including protection against heart disease, certain cancers and multiple age-related neurological diseases such as Alzheimer's disease. These health benefits are assumed to come from a compound from grape skin called resveratrol, which has been proposed to be a pro-longevity agent. Whether resveratrol accounts for all the health benefits of grape-derived nutrients and the molecular and cellular mechanisms underlying the beneficial effects of such nutrients are not well understood. Here we investigated the effect of supplementing grape skin extract (GSE) left from red wine-production process to the daily food intake of a Drosophila melanogaster model of Parkinson's disease (PD) associated with PTEN-induced kinase 1 (PINK1) loss-of-function. Consumption of GSE resulted in rescue of mitochondrial morphological defects, improvement of indirect flight muscle function and health-span, and prolonged lifespan of the PINK1 mutant flies. Further biochemical and genetic studies revealed a link between activation of mitophagy and the beneficial effects of GSE. Our results indicate that GSE can promote autophagy activation, preserve mitochondria function, and protect against PD pathogenesis, and that the beneficial effect of GSE in mitophagy activation is not accounted for by resveratrol alone.


Asunto(s)
Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Músculos/fisiología , Enfermedad de Parkinson/terapia , Extractos Vegetales/farmacología , Vitis/química , Animales , Autofagia/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster , Longevidad , Masculino , Músculos/efectos de los fármacos , Mutación , Proteínas Serina-Treonina Quinasas/genética , Resveratrol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA