Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.590
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Integr Cancer Ther ; 23: 15347354241247061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38641964

RESUMEN

To investigate the effect of Jiedu Xiaozheng Yin (JXY) on the polarization of macrophages in colitis-associated colon cancer (CAC). An orthotopic model of CAC was established to monitor changes in the pathological state of mice. Colon length, number of colon tumors were recorded, and indices for liver, spleen, and thymus were calculated. Hematoxylin and eosin (H&E) staining was employed to observe intestinal mucosal injury and tumor formation. Immunohistochemistry (IHC) staining was utilized to investigate the effect of JXY on M1 and M2 polarization of macrophages in the colonic mucosa of CAC mice. For in vitro experiments, RT-qPCR (Reverse Transcription-quantitative PCR) and flow cytometry were used to observe the effect of JXY on various M1-related molecules such as IL-1ß, TNF-α, iNOS, CD80, CD86, and its phagocytic function as well as M2-related molecules including Arg-1, CD206, and IL-10. Subsequently, after antagonizing the TLR4 pathway with antagonists (TAK242, PDTC, KG501, SR11302, LY294002), the expression of IL-6, TNF-α, iNOS, and IL-1ß mRNA were detected by RT-qPCR. In vivo experiments, the results showed that JXY improved the pathological condition of mice in general. And JXY treatment decreased the shortening of colon length and number of tumors as compared to non-treated CAC mice. Additionally, JXY treatment improved the lesions in the colonic tissue and induced a polarization of intestinal mucosal macrophages towards the M1 phenotype, while inhibiting polarization towards the M2 phenotype. In vitro experiments further confirmed that JXY treatment promoted the activation of macrophages towards the M1 phenotype, leading to increased expression of IL-1ß, TNF-α, iNOS, CD80, CD86, as well as enhanced phagocytic function. JXY treatment concomitantly inhibited the expression of M2-phenotype related molecules Arginase-1 (Arg-1), CD206, and IL-10. Furthermore, JXY inhibited M1-related molecules such as IL-6, TNF-α, iNOS, and IL-1ß after antagonizing the TLR4 pathway. Obviously, JXY could exhibit inhibitory effects on the development of colon tumors in mice with CAC by promoting M1 polarization through TLR4-mediated signaling and impeding M2 polarization of macrophages.


Asunto(s)
Neoplasias Asociadas a Colitis , Medicamentos Herbarios Chinos , Macrófagos , Animales , Ratones , Neoplasias Asociadas a Colitis/tratamiento farmacológico , Neoplasias Asociadas a Colitis/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Fenotipo , Receptor Toll-Like 4/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Mater Chem B ; 12(16): 3970-3983, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563351

RESUMEN

Lipoic acid (LA), which has good safety and oral absorption, is obtained from various plant-based food sources and needs to be supplemented through human diet. Moreover, substances with a disulfide structure can enter cells through dynamic covalent disulfide exchange with thiol groups on the cell membrane surface. Based on these factors, we constructed LA-modified nanoparticles (LA NPs). Our results showed that LA NPs can be internalized into intestinal epithelial cells through surface thiols, followed by intracellular transcytosis via the endoplasmic reticulum-Golgi pathway. Further mechanistic studies indicated that disulfide bonds within the structure of LA play a critical role in this transport process. In a type I diabetes rat model, the oral administration of insulin-loaded LA NPs exhibited a more potent hypoglycemic effect, with a pharmacokinetic bioavailability of 5.42 ± 0.53%, representing a 1.6 fold enhancement compared to unmodified PEG NPs. Furthermore, a significant upregulation of surface thiols in inflammatory macrophages was reported. Thus, we turned our direction to investigate the uptake behavior of inflammatory macrophages with increased surface thiols towards LA NPs. Inflammatory macrophages showed a 2.6 fold increased uptake of LA NPs compared to non-inflammatory macrophages. Surprisingly, we also discovered that the antioxidant resveratrol facilitates the uptake of LA NPs in a concentration-dependent manner. This is mainly attributed to an increase in glutathione, which is involved in thiol uptake. Consequently, we employed LA NPs loaded with resveratrol for the treatment of colitis and observed a significant alleviation of colitis symptoms. These results suggest that leveraging the variations of thiol expression levels on cell surfaces under both healthy and diseased states through an oral drug delivery system mediated by the small-molecule nutrient LA can be employed for the treatment of diabetes and certain inflammatory diseases.


Asunto(s)
Compuestos de Sulfhidrilo , Ácido Tióctico , Ácido Tióctico/química , Animales , Compuestos de Sulfhidrilo/química , Administración Oral , Ratas , Humanos , Nanopartículas/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/administración & dosificación , Sistemas de Liberación de Medicamentos , Masculino , Inflamación/tratamiento farmacológico , Ratones , Propiedades de Superficie , Portadores de Fármacos/química , Insulina/metabolismo , Ratas Sprague-Dawley , Tamaño de la Partícula , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Células RAW 264.7
3.
Proc Natl Acad Sci U S A ; 121(15): e2321255121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564632

RESUMEN

Omega-3 polyunsaturated fatty acids (PUFA) found primarily in fish oil have been a popular supplement for cardiovascular health because they can substantially reduce circulating triglyceride levels in the bloodstream to prevent atherosclerosis. Beyond this established extracellular activity, here, we report a mode of action of PUFA, regulating intracellular triglyceride metabolism and lipid droplet (LD) dynamics. Real-time imaging of the subtle and highly dynamic changes of intracellular lipid metabolism was enabled by a fluorescence lifetime probe that addressed the limitations of intensity-based fluorescence quantifications. Surprisingly, we found that among omega-3 PUFA, only docosahexaenoic acid (DHA) promoted the lipolysis in LDs and reduced the overall fat content by approximately 50%, and consequently helped suppress macrophage differentiation into foam cells, one of the early steps responsible for atherosclerosis. Eicosapentaenoic acid, another omega-3 FA in fish oil, however, counteracted the beneficial effects of DHA on lipolysis promotion and cell foaming prevention. These in vitro findings warrant future validation in vivo.


Asunto(s)
Aterosclerosis , Ácidos Grasos Omega-3 , Humanos , Lipólisis , Fluorescencia , Ácidos Grasos Omega-3/metabolismo , Aceites de Pescado/farmacología , Ácidos Docosahexaenoicos/metabolismo , Macrófagos/metabolismo , Triglicéridos
4.
Phytomedicine ; 128: 155403, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38564920

RESUMEN

BACKGROUND: Cardiovascular disease is one of the main causes of global mortality, and there is an urgent need for effective treatment strategies. Gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) promotes the development of cardiovascular diseases, and shizukaol C, a natural sesquiterpene isolated from Chloranthus multistachys with various biological activities, might exhibit beneficial role in preventing TMAO-induced vascular inflammation. PURPOSE: The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of shizukaol C on TMAO-induced vascular inflammation. METHODS: The effect and underlying mechanism of shizukaol C on TMAO-induced adhesion molecules expression, bone marrow-derived macrophages (BMDM) adhesion to VSMC were evaluated by western blot, cell adhesion assay, co-immunoprecipitation, immunofluorescence assay, and quantitative Real-Time PCR, respectively. To verify the role of shizukaol C in vivo, TMAO-induced vascular inflammation model were established using guidewire-induced injury on mice carotid artery. Changes in the intima area and the expression of GSTpi, VCAM-1, CD68 were examined using haematoxylin-eosin staining, and immunofluorescence assay. RESULTS: Our data demonstrated that shizukaol C significantly suppressed TMAO-induced adhesion molecule expression and the bone marrow-derived macrophages (BMDM) adhesion in vascular smooth muscle cells (VSMC). Mechanically, shizukaol C inhibited TMAO-induced c-Jun N-terminal kinase (JNK)-nuclear factor-kappa B (NF-κB)/p65 activation, and the JNK inhibition was dependent on the shizukaol C-mediated glutathione-S-transferase pi (GSTpi) expression. By further molecular docking and protein-binding analysis, we demonstrated that shizukaol C directly binds to Keap1 to induce Nrf2 nuclear translocation and upregulated GSTpi expression. Consistently, our in vivo experiment showed that shizukaol C elevated the expression level of GSTpi in carotid arteries and alleviates TMAO-induced vascular inflammation. CONCLUSION: Shizukaol C exerts anti-inflammatory effects in TMAO-treated VSMC by targeting Keap1 and activating Nrf2-GSTpi signaling and resultantly inhibits the downstream JNK-NF-κB/p65 activation and VSMC adhesion, and alleviates TMAO-induced vascular inflammation in vivo, suggesting that shizukaol C may be a potential drug for treating TMAO-induced vascular diseases.


Asunto(s)
Inflamación , Músculo Liso Vascular , Sesquiterpenos , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Adhesión Celular/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Metilaminas/farmacología , Ratones Endogámicos C57BL , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Sesquiterpenos/farmacología , Transducción de Señal/efectos de los fármacos , Gutatión-S-Transferasa pi/efectos de los fármacos , Gutatión-S-Transferasa pi/metabolismo
5.
J Ethnopharmacol ; 330: 118208, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636581

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zhilong Huoxue Tongyu Capsule (ZL) is clinically prescribed for acute ischemic stroke (AIS). However, only a few studies have addressed the mechanisms of ZL in treating AIS. AIM OF THE STUDY: To explore the underlying mechanism of macrophage polarization and inflammation mediated by ZL, and to provide a reference for AIS treatment. MATERIALS AND METHODS: Sixteen SD rats were fed with different dose of ZL (0, 0.4, 0.8, and 1.6 g/kg/d) for 4 days to prepare ZL serum. After 500 ng/mL lipopolysaccharide (LPS) stimulation, RAW264.7 cells were administrated with ZL serum. Then, experiments including ELISA, flow cytometry, real-time quantitative PCR and Western blot were performed to verify the effects of ZL on macrophage polarization and inflammation. Next, let-7i inhibitor was transfected in RAW264.7 cells when treated with LPS and ZL serum to verify the regulation of ZL on the let-7i/TLR9/MyD88 signaling pathway. Moreover, the interaction between let-7i and TLR9 was confirmed by the dual-luciferase assay. RESULTS: ZL serum significantly decreased the expression of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and increased the expression of IL-10 and transforming growth factor ß1 (TGF-ß1) of LPS stimulated-macrophages. Furthermore, ZL serum polarized macrophages toward M2, decreased the expressions of TLR9, MyD88, and iNOS, as well as increased the expressions of let-7i, CHIL3, and Arginase-1. It is worth mentioning that the effect of ZL serum is dose-dependent. However, let-7i inhibitor restored all the above effects in LPS stimulated-macrophages. In addition, TLR9 was the target of let-7i. CONCLUSIONS: ZL targeted let-7i to inhibit TLR9 expression, thereby inhibiting the activation of the TLR9/MyD88 pathway, promoting the M2 polarization, and inhibiting the development of inflammation in AIS.


Asunto(s)
Medicamentos Herbarios Chinos , Macrófagos , MicroARNs , Factor 88 de Diferenciación Mieloide , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 9 , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Ratones , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Receptor Toll-Like 9/metabolismo , Medicamentos Herbarios Chinos/farmacología , MicroARNs/metabolismo , Ratas , Masculino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos , Antiinflamatorios/farmacología
6.
Free Radic Biol Med ; 219: 215-230, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636715

RESUMEN

Selenium (Se) is indispensable in alleviating various types of intestinal injuries. Here, we thoroughly investigated the protective effect of Se on the regulation of the epithelial cell-M2 macrophages pathway in deoxynivalenol (DON)-induced intestinal damage. In the present study, Se has positive impacts on gut health by improving gut barrier function and reducing the levels of serum DON in vivo. Furthermore, our study revealed that Se supplementation increased the abundances of GPX4, p-PI3K, and AKT, decreased the levels of 4-HNE and inhibited ferroptosis. Moreover, when mice were treated with DON and Fer-1(ferroptosis inhibitor), ferroptosis was suppressed and PI3K/AKT pathway was activated. These results indicated that GPX4-PI3K/AKT-ferroptosis was a predominant pathway in DON-induced intestinal inflammation. Interestingly, we discovered that both the number of M2 anti-inflammatory macrophages and the levels of CSF-1 decreased while the pro-inflammatory cytokine IL-6 increased in the intestine and MODE-K cells supernatant. Therefore, Se supplementation activated the CSF-1-M2 macrophages axis, resulting in a decrease in IL-6 expression and an enhancement of the intestinal anti-inflammatory capacity. This study provides novel insights into how intestinal epithelial cells regulate the CSF-1-M2 macrophage pathway, which is essential in maintaining intestinal homeostasis confer to environmental hazardous stimuli.


Asunto(s)
Células Epiteliales , Mucosa Intestinal , Macrófagos , Selenio , Tricotecenos , Animales , Tricotecenos/toxicidad , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Selenio/farmacología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Activación de Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo
7.
J Steroid Biochem Mol Biol ; 240: 106508, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521361

RESUMEN

Mastitis is one the most widespread and serious diseases in dairy cattle. Recurrent and chronic infections are often attributable to certain pathogenicity mechanisms in mastitis-causing pathogens such as Staphylococcus spp. These include growing in biofilm and invading cells, both of which make it possible to resist or evade antimicrobial therapies and the host's immune system. This study tested the effects of active vitamin D3 (i.e., calcitriol or 1,25-dihydroxyvitamin D3) on the internalization and phagocytosis of biofilm-forming Staphylococcus spp. isolated from animals with mastitis. Two established bovine cell lines were used: MAC-T (mammary epithelial cells) and BoMac (macrophages). Calcitriol (0-200 nM) did not affect the viability of MAC-T cells nor that of BoMac cells after 24 and 72 h. Concentrations of 0-100 mM for 24 h upregulated the expression of 24-hydroxylase in MAC-T cells, but did not alter that of VDR. Pre-treatment of the cells with calcitriol for 24 h decreased the internalization of S. aureus V329 into MAC-T cells (0-100 nM), and stimulated the phagocytosis of the same strain and of S. xylosus 4913 (0-10 nM). Calcitriol and two conditioned media, obtained by treating the cells with 25-200 nM of the metabolite for 24 h, were also assessed in terms of their antimicrobial and antibiofilm activity. Neither calcitriol by itself nor the conditioned media affected staphylococcal growth or biofilm formation (0-200 nM for 12 and 24 h, respectively). In contrast, the conditioned media (0-100 nM for 24 h) decreased the biomass of preformed non-aureus staphylococcal biofilms and killed the bacteria within them, without affecting metabolic activity. These effects may be mediated by reactive oxygen species and proteins with antimicrobial and/or antibiofilm activity. In short, calcitriol could make pathogens more accessible to antimicrobial therapies and enhance bacterial clearance by professional phagocytes. Moreover, it may modulate the host's endogenous defenses in the bovine udder and help combat preformed non-aureus staphylococcal biofilms (S. chromogenes 40, S. xylosus 4913, and/or S. haemolyticus 6). The findings confirm calcitriol's potential as an adjuvant to prevent and/or treat intramammary infections caused by Staphylococcus spp., which would in turn contribute to reducing antibiotic use on dairy farms.


Asunto(s)
Biopelículas , Inmunidad Innata , Mastitis Bovina , Fagocitosis , Staphylococcus , Animales , Bovinos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Femenino , Mastitis Bovina/microbiología , Mastitis Bovina/inmunología , Inmunidad Innata/efectos de los fármacos , Staphylococcus/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Calcitriol/farmacología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/tratamiento farmacológico , Línea Celular , Glándulas Mamarias Animales/microbiología , Glándulas Mamarias Animales/inmunología , Macrófagos/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo
8.
Phytomedicine ; 128: 155446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518643

RESUMEN

BACKGROUND: Influenza viral pneumonia is a common complication after influenza virus infection. Xijiao Dihuang Decoction combined with Yinqiao Powder (XDY) is effective on improving influenza viral pneumonia. PURPOSE: This study further explores the anti-inflammatory mechanism of XDY in the treatment of influenza viral pneumonia. STUDY DESIGN: The effects of XDY on inflammation, autophagy, NACHT-LRR-PYD-containing protein 3 (NLRP3) inflammasome and pyroptosis were assessed in the mice with influenza viral pneumonia. In addition, the mouse macrophage cell line (J774A.1) infected with influenza virus was adopted to decode the in vitro effects of XDY on autophagy, reactive oxygen species (ROS), NLRP3 inflammasome and pyroptosis. We analyzed the XDY-induced autophagy, especially the mitophagy-related ROS clearance, and the subsequent inhibition of ROS/NLRP3 inflammasome/pyroptosis signaling in the infected macrophages by different assays based on quantitative polymerase chain reaction, western blot, flow cytometry, immunofluorescence and enzyme-linked immunosorbent assay. RESULTS: In vivo, XDY could effectively improve the lung inflammatory response in the mice with influenza virus pneumonia, due to an intact autophagy flux-promoting effect and the inhibiting roles on NLRP3 inflammasome and pyroptosis. Notably, in vitro, compared with the infected macrophages treated by the NLRP3 inflammasome agonist (Monosodium urate) or the mitochondrial-targeted antioxidant agent, the XDY-dependent treating could inhibit pyroptosis by negatively regulating the signaling axis of ROS/NLRP3 inflammasome/pyroptosis in the influenza virus-infected macrophages. More interestingly, XDY could promote an intact autophagy flux, inducing mitophagy eliminating the damaged mitochondria to reduce the intracellular ROS accumulation, and thus decrease the oxidative stress in the infected macrophages. Especially, the inhibitor of autophagy inition, 3-Methyladenine, could reverse the inhibitory effect of XDY on ROS-NLRP3 inflammasome-mediated pyroptosis, indicating an XDY-promoted mitophagy-dependent ROS scavenging. CONCLUSION: XDY can promote an intact autophagy flux to eliminate damaged mitochondria, namely mitophagy, which reduces the intracellular ROS accumulation contributing to NLRP3 inflammasome activation, restricting pyroptosis and eventually alleviating the influenza virus-induced inflammatory lesions. The obtained results provide new insights into the mechanism of action of XDY in alleviating influenza virus pneumonia, especially the roles of XDY in anti-oxidation, anti-inflammation and anti-pyroptosis, with potential therapeutic targets for future application in integrative medicine.


Asunto(s)
Autofagia , Medicamentos Herbarios Chinos , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Especies Reactivas de Oxígeno , Animales , Medicamentos Herbarios Chinos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratones , Autofagia/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Línea Celular , Ratones Endogámicos C57BL , Masculino , Pulmón/efectos de los fármacos , Pulmón/virología
9.
Cells ; 13(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474420

RESUMEN

NAD+ boosting via nicotinamide riboside (NR) confers anti-inflammatory effects. However, its underlying mechanisms and therapeutic potential remain incompletely defined. Here, we showed that NR increased the expression of CC-chemokine receptor 7 (CCR7) in human M1 macrophages by flow cytometric analysis of cell surface receptors. Consequently, chemokine ligand 19 (CCL19, ligand for CCR7)-induced macrophage migration was enhanced following NR administration. Metabolomics analysis revealed that prostaglandin E2 (PGE2) was increased by NR in human monocytes and in human serum following in vivo NR supplementation. Furthermore, NR-mediated upregulation of macrophage migration through CCL19/CCR7 was dependent on PGE2 synthesis. We also demonstrated that NR upregulated PGE2 synthesis through SIRT3-dependent post-transcriptional regulation of cyclooxygenase 2 (COX-2). The NR/SIRT3/migration axis was further validated using the scratch-test model where NR and SIRT3 promoted more robust migration across a uniformly disrupted macrophage monolayer. Thus, NR-mediated metabolic regulation of macrophage migration and wound healing may have therapeutic potential for the topical management of chronic wound healing.


Asunto(s)
Dinoprostona , Niacinamida/análogos & derivados , Compuestos de Piridinio , Sirtuina 3 , Humanos , Dinoprostona/metabolismo , Ligandos , Receptores CCR7/metabolismo , Macrófagos/metabolismo
10.
J Ethnopharmacol ; 327: 118006, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442806

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hawthorn leaves are a combination of the dried leaves of the Rosaceae plants, i.e., Crataegus pinnatifida Bge. or Crataegus pinnatifida Bge. var. major N. E. Br., is primarily cultivated in East Asia, North America, and Europe. hawthorn leaf flavonoids (HLF) are the main part of extraction. The HLF have demonstrated potential in preventing hypertension, inflammation, hyperlipidemia, and atherosclerosis. However, the potential pharmacological mechanism behind its anti-atherosclerotic effect has yet to be explored. AIM OF THE STUDY: The in vivo and in vitro effects of HLF on lipid-mediated foam cell formation were investigated, with a specific focus on the levels of secreted phospholipase A2 type IIA (sPLA2-II A) in macrophage cells. MATERIALS AND METHODS: The primary constituents of HLF were analyzed using ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. In vivo, HLF, at concentrations of 5 mg/kg, 20 mg/kg, and 40 mg/kg, were administered to apolipoprotein E knockout mice (ApoE-/-) fed by high-fat diet (HFD) for 16 weeks. Aorta and serum samples were collected to identify lesion areas and lipids through mass spectrometry analysis to dissect the pathological process. RAW264.7 cells were incubated with oxidized low-density lipoprotein (ox-LDL) alone, or ox-LDL combined with different doses of HLF (100, 50, and 25 µg/ml), or ox-LDL plus 24-h sPLA2-IIA inhibitors, for cell biology analysis. Lipids and inflammatory cytokines were detected using biochemical analyzers and ELISA, while plaque size and collagen content of plaque were assessed by HE and the Masson staining of the aorta. The lipid deposition in macrophages was observed by Oil Red O staining. The expression of sPLA2-IIA and SCAP-SREBP2-LDLR was determined by RT-qPCR and Western blot analysis. RESULTS: The chemical profile of HLF was studied using UPLC-Q-TOF-MS/MS, allowing the tentative identification of 20 compounds, comprising 1 phenolic acid, 9 flavonols and 10 flavones, including isovitexin, vitexin-4″-O-glucoside, quercetin-3-O-robibioside, rutin, vitexin-2″-O-rhamnoside, quercetin, etc. HLF decreased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels in ApoE-/- mice (P < 0.05), reduced ox-LDL uptake, inhibited level of inflammatory factors, such as IL-6, IL-8, TNF-α, and IL-1ꞵ (P < 0.001), and alleviated aortic plaques with a thicker fibrous cap. HLF effectively attenuated foam cell formation in ox-LDL-treated RAW264.7 macrophages, and reduced levels of intracellular TC, free cholesterol (FC), cholesteryl ester (CE), IL-6, TNF-α, and IL-1ß (P < 0.001). In both in vivo and in vitro experiments, HLF significantly downregulated the expression of sPLA2-IIA, SCAP, SREBP2, LDLR, HMGCR, and LOX-1 (P < 0.05). Furthermore, sPLA2-IIA inhibitor effectively mitigated inflammatory release in RAW264.7 macrophages and regulated SCAP-SREBP2-LDLR signaling pathway by inhibiting sPLA2-IIA secretion (P < 0.05). CONCLUSION: HLF exerted a protective effect against atherosclerosis through inhibiting sPLA2-IIA to diminish SCAP-SREBP2-LDLR signaling pathway, to reduce LDL uptake caused foam cell formation, and to slow down the progression of atherosclerosis in mice.


Asunto(s)
Aterosclerosis , Crataegus , Fosfolipasas A2 Secretoras , Placa Aterosclerótica , Ratones , Animales , Crataegus/química , Quercetina/uso terapéutico , Fosfolipasas A2 Secretoras/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Espectrometría de Masas en Tándem , Aterosclerosis/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Flavonoides/uso terapéutico , Lipoproteínas LDL/metabolismo , Transducción de Señal , Colesterol/metabolismo , Ratones Noqueados , Apolipoproteínas E/genética
11.
J Ethnopharmacol ; 328: 118005, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38508433

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Reyanning (RYN) mixture is a traditional Chinese medicine composed of Taraxacum, Polygonum cuspidatum, Scutellariae Barbatae and Patrinia villosa and is used for the treatment of acute respiratory system diseases with significant clinical efficacy. AIM OF THE STUDY: Acute lung injury (ALI) is a common clinical disease characterized by acute respiratory failure. This study was conducted to evaluate the therapeutic effects of RYN on ALI and to explore its mechanism of action. MATERIALS AND METHODS: Ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the chemical components of RYN. 7.5 mg/kg LPS was administered to induce ALI in rats. RYN was administered by gavage at doses of 2 ml/kg, 4 ml/kg or 8 ml/kg every 8 h for a total of 6 doses. Observations included lung histomorphology, lung wet/dry (W/D) weight ratio, lung permeability index (LPI), HE staining, Wright-Giemsa staining. ELISA was performed to detect the levels of TNF-α, IL-6, IL-10, Arg-1,UDPG. Immunohistochemical staining detected IL-6, F4/80 expression. ROS, MDA, SOD, GSH/GSSG were detected in liver tissues. Multiple omics techniques were used to predict the potential mechanism of action of RYN, which was verified by in vivo closure experiments. Immunofluorescence staining detected the co-expression of CD86 and CD206, CD86 and P2Y14, CD86 and UGP2 in liver tissues. qRT-PCR detected the mRNA levels of UGP2, P2Y14 and STAT1, and immunoblotting detected the protein expression of UGP2, P2Y14, STAT1, p-STAT1. RESULTS: RYN was detected to contain 1366 metabolites, some of the metabolites with high levels have anti-inflammatory, antibacterial, antiviral and antioxidant properties. RYN (2, 4, and 8 ml/kg) exerted dose-dependent therapeutic effects on the ALI rats, by reducing inflammatory cell infiltration and oxidative stress damage, inhibiting CD86 expression, decreasing TNF-α and IL-6 levels, and increasing IL-10 and Arg-1 levels. Transcriptomics and proteomics showed that glucose metabolism provided the pathway for the anti-ALI properties of RYN and that RYN inhibited lung glycogen production and distribution. Immunofluorescence co-staining showed that RYN inhibited CD86 and UGP2 expressions. In vivo blocking experiments revealed that blocking glycogen synthesis reduced UDPG content, inhibited P2Y14 and CD86 expressions, decreased P2Y14 and STAT1 mRNA and protein expressions, reduced STAT1 protein phosphorylation expression, and had the same therapeutic effect as RYN. CONCLUSION: RYN inhibits M1 macrophage polarization to alleviate ALI. Blocking glycogen synthesis and inhibiting the UDPG/P2Y14/STAT1 signaling pathway may be its molecular mechanism.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Ratas , Animales , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Cromatografía Liquida , Interleucina-6/metabolismo , Uridina Difosfato Glucosa/metabolismo , Uridina Difosfato Glucosa/farmacología , Uridina Difosfato Glucosa/uso terapéutico , Espectrometría de Masas en Tándem , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Pulmón , Macrófagos/metabolismo , ARN Mensajero/metabolismo
12.
J Ethnopharmacol ; 328: 118057, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38518965

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic fatty liver disease (NAFLD) represents a burgeoning challenge for public health with potential progression to malignant liver diseases. PANoptosis, an avant-garde conceptualization of cell deaths, is closely associated with mitochondrial damage and linked to multiple liver disorders. Si-Wu-Tang (SWT), a traditional Chinese herbal prescription renowned for regulating blood-related disorders and ameliorating gynecological and hepatic diseases, has been demonstrated to alleviate liver fibrosis by regulating bile acid metabolism and immune responses. AIM OF THE STUDY: However, the mechanisms by which mtDNA is released from PANoptotic hepatocytes, triggering macrophage activation and hepatitis and whether this process can be reversed by SWT remain unclear. MATERIALS AND METHODS: Here, sophisticated RNA-sequencing complemented by molecular approaches were applied to explore the underlying mechanism of SWT against NAFLD in methionine/choline-deficient diet (MCD)-induced mice and relative in vitro models. RESULTS: We revealed that SWT profoundly repaired mitochondrial dysfunction, blocked mitochondrial permeability transition and mtDNA released to the cytoplasm, subsequently reversing hepatocyte PANoptosis and macrophage polarization both in MCD-stimulated mice and in vitro. Mechanically, loaded lipids dramatically promoted the opening of mPTP and oligomerization of VDAC2 to orchestrate mtDNA release, which was combined with ZBP1 to promote hepatocyte PANoptosis and also taken by macrophages to trigger M1 polarization via the FSTL1 and PKM2 combination. SWT effectively blocked NOXA signaling and reversed all these detrimental outcomes. CONCLUSION: Our findings show that SWT protects against hepatitis-mediated hepatocyte PANoptosis and macrophage M1 polarization by influencing intrahepatic synthesis, release and intercellular transfer of mtDNA, suggesting a potential therapeutic strategy for ameliorating NAFLD.


Asunto(s)
Medicamentos Herbarios Chinos , Hepatitis , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ADN Mitocondrial/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Metionina/metabolismo , Hepatitis/metabolismo , Ratones Endogámicos C57BL
13.
J Ethnopharmacol ; 328: 118123, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38554854

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium, recognized as "Shihu" in traditional Chinese medicine, holds a rich history of medicinal utilization documented in the Chinese Pharmacopoeia. Ancient texts like "Shen Nong Ben Cao Jing" extol Dendrobium's virtues as a superior herbal medicine fortifying "Yin" and invigorating the five viscera. Dendrobium is extensively employed for the treatment of gastrointestinal inflammatory disorders, showcasing significant therapeutic efficacy, particularly against ulcerative colitis (UC), within the realm of Chinese ethnopharmacology. Dendrobium plays crucial pharmacological roles due to its rich content of polysaccharides, alkaloids, phenanthrenes, and bibenzyls. Gigantol, a prominent bibenzyl compound, stands out as one of the most vital active constituents within Dendrobium, the gigantol content of Dendrobium leaves can reach approximately 4.79 µg/g. Its significance lies in being recognized as a noteworthy anti-inflammatory compound derived from Dendrobium. AIM OF THE STUDY: Given the pivotal role of gigantol as a primary active substance in Dendrobium, the therapeutic potential of gigantol for gastrointestinal diseases remains enigmatic. Our present investigation aimed to evaluate the therapeutic effects of gigantol on dextran sulfate sodium (DSS)-induced colitis and reveal its potential mechanism in countering UC activity. MATERIALS AND METHODS: The protective efficacy of gigantol against colitis was assessed by examining the histopathological changes and conducting biochemical analyses of colon from DSS-challenged mice. Assessments focused on gigantol's impact on improving the intestinal epithelial barrier and its anti-inflammatory effects in colonic tissues of colitis mice. Investigative techniques included the exploration of the macrophage inflammatory signaling pathway via qPCR and Western blot analyses. In vitro studies scrutinized macrophage adhesion, migration, and chemotaxis utilizing transwell and Zigmond chambers. Furthermore, F-actin and Rac1 activation assays detailed cellular cytoskeletal remodeling. The potential therapeutic target of gigantol was identified and validated through protein binding analysis, competitive enzyme-linked immunosorbent assay (ELISA), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay. The binding sites between gigantol and its target were predicted via molecular docking. RESULTS: Gigantol ameliorated symptoms of DSS-induced colitis, rectified damage to the intestinal barrier, and suppressed the production of pro-inflammatory cytokines in colonic tissues. Intriguingly, gigantol significantly curtailed NF-κB signaling activation in the colons of DSS-induced colitis mice. Notably, gigantol impaired the ß2 integrin-dependent adhesion and migratory capacity of RAW264.7 cells. Moreover, gigantol notably influenced the cytoskeleton remodeling of RAW264.7 cells by suppressing Vav1 phosphorylation and Rac1 activation. Mechanistically, gigantol interacted with ß2 integrin, subsequently diminishing binding affinity with intercellular adhesion molecule-1 (ICAM-1). CONCLUSIONS: In conclusion, these findings elucidate that gigantol ameliorates DSS-induced colitis by antagonizing ß2 integrin-mediated macrophage adhesion, migration, and chemotaxis, thus it may impede macrophage recruitment and infiltration into colonic tissues. This study suggests that gigantol shows promise as a viable candidate for clinical colitis therapy.


Asunto(s)
Bibencilos , Colitis Ulcerosa , Colitis , Guayacol/análogos & derivados , Ratones , Animales , Antígenos CD18/metabolismo , Antígenos CD18/uso terapéutico , Colon , Quimiotaxis , Simulación del Acoplamiento Molecular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Bibencilos/farmacología , Antiinflamatorios/efectos adversos , Macrófagos/metabolismo , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , FN-kappa B/metabolismo
14.
J Nanobiotechnology ; 22(1): 87, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429776

RESUMEN

Bone defects remain a significant challenge in clinical orthopedics, but no targeted medication can solve these problems. Inspired by inflammatory targeting properties of macrophages, inflammatory microenvironment of bone defects was exploited to develop a multifunctional nanocarrier capable of targeting bone defects and promoting bone regeneration. The avidin-modified black phosphorus nanosheets (BP-Avidin, BPAvi) were combined with biotin-modified Icaritin (ICT-Biotin, ICTBio) to synthesize Icaritin (ICT)-loaded black phosphorus nanosheets (BPICT). BPICT was then coated with macrophage membranes (MMs) to obtain MMs-camouflaged BPICT (M@BPICT). Herein, MMs allowed BPICT to target bone defects area, and BPICT accelerated the release of phosphate ions (PO43-) and ICT when exposed to NIR irradiation. PO43- recruited calcium ions (Ca2+) from the microenvironment to produce Ca3(PO4)2, and ICT increased the expression of osteogenesis-related proteins. Additionally, M@BPICT can decrease M1 polarization of macrophage and expression of pro-inflammatory factors to promote osteogenesis. According to the results, M@BPICT provided bone growth factor and bone repair material, modulated inflammatory microenvironment, and activated osteogenesis-related signaling pathways to promote bone regeneration. PTT could significantly enhance these effects. This strategy not only offers a solution to the challenging problem of drug-targeted delivery in bone defects but also expands the biomedical applications of MMs-camouflaged nanocarriers.


Asunto(s)
Avidina , Osteogénesis , Avidina/metabolismo , Avidina/farmacología , Biotina , Fototerapia , Macrófagos/metabolismo , Regeneración Ósea , Fósforo/farmacología , Fosfatos
15.
Cell Rep ; 43(4): 113981, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520688

RESUMEN

Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1ß (IL-1ß), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1ß production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1ß production, indicating that IRE1α is required for CT- or CTB-induced IL-1ß production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.


Asunto(s)
Toxina del Cólera , Estrés del Retículo Endoplásmico , Endorribonucleasas , Interleucina-1beta , Proteínas Serina-Treonina Quinasas , Interleucina-1beta/metabolismo , Animales , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Toxina del Cólera/farmacología , Toxina del Cólera/metabolismo , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Lipopolisacáridos/farmacología , Retículo Endoplásmico/metabolismo
16.
Toxicol Appl Pharmacol ; 485: 116908, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513841

RESUMEN

Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.


Asunto(s)
Acetilcisteína , Metabolismo Energético , Lesión Pulmonar , Mecloretamina , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Acetilcisteína/farmacología , Mecloretamina/toxicidad , Masculino , Metabolismo Energético/efectos de los fármacos , Ratas , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratas Sprague-Dawley , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Sustancias para la Guerra Química/toxicidad
17.
Phytomedicine ; 128: 155417, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518642

RESUMEN

BACKGROUND: The role of the glioblastoma (GBM) microenvironment is pivotal in the development of gliomas. Discovering drugs that can traverse the blood-brain barrier and modulate the tumor microenvironment is crucial for the treatment of GBM. Dioscin, a steroidal saponin derived from various kinds of plants and herbs known to penetrate the blood-brain barrier, has shown its powerful anti-tumor activity. However, little is known about its effects on GBM microenvironment. METHODS: Bioinformatics analysis was conducted to assess the link between GBM patients and their prognosis. Multiple techniques, including RNA sequencing, immunofluorescence staining, Western blot analysis, RNA-immunoprecipitation (RIP) assays, and Chromatin immunoprecipitation (CHIP) analysis were employed to elucidate the mechanism through which Dioscin modulates the immune microenvironment. RESULTS: Dioscin significantly impaired the polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages in vitro and in vivo. A strong correlation between high expression of RBM47 in GBM and a detrimental prognosis for patients was demonstrated. RNA-sequencing analysis revealed an association between RBM47 and the immune response. The inhibition of RBM47 significantly impaired the recruitment and polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages. Moreover, RBM47 could stabilize the mRNA of inflammatory genes and enhance the expression of these genes by activating the NF-κB pathway. In addition, NF-κB acts as a transcription factor that enhances the transcriptional activity of RBM47. Notably, we found that Dioscin could significantly inhibit the activation of NF-κB and then downregulate the expression of RBM47 and inflammatory genes protein. CONCLUSION: Our study reveals that the positive feedback loop between RBM47 and NF-κB could promote immunosuppressive microenvironment in GBM. Dioscin effectively inhibits M2 polarization in GBM by disrupting the positive feedback loop between RBM47 and NF-κB, indicating its potential therapeutic effects in GBM treatment.


Asunto(s)
Diosgenina , Diosgenina/análogos & derivados , FN-kappa B , Microambiente Tumoral , Diosgenina/farmacología , Humanos , FN-kappa B/metabolismo , Microambiente Tumoral/efectos de los fármacos , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Glioma/tratamiento farmacológico , Glioma/metabolismo , Ratones , Línea Celular Tumoral , Proteínas de Unión al ARN/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Retroalimentación Fisiológica/efectos de los fármacos
18.
Phytomedicine ; 127: 155467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447360

RESUMEN

The death and disability caused by myocardial infarction is a health problem that needs to be addressed worldwide, and poor cardiac repair and fibrosis after myocardial infarction seriously affect patient recovery. Postmyocardial infarction repair by M2 macrophages is of great significance for ventricular remodeling. Quercitrin (Que) is a common flavonoid in fruits and vegetables that has antioxidant, anti-inflammatory, antitumor and other effects, but whether it has a role in the treatment of myocardial infarction is unclear. In this study, we constructed a mouse myocardial infarction model and administered Que. We found through cardiac ultrasound that Que administration improved cardiac ejection fraction and reduced ventricular remodeling. Staining of heart sections and detection of fibrosis marker protein levels revealed that Que administration slowed fibrosis after myocardial infarction. Flow cytometry showed that the proportion of M2 macrophages in the mouse heart was increased and that the expression levels of M2 macrophage markers were increased in the Que-treated group. Finally, we identified by metabolomics that Que reduces glycolysis, increases aerobic phosphorylation, and alters arginine metabolic pathways, polarizing macrophages toward the M2 phenotype. Our research lays the foundation for the future application of Que in myocardial infarction and other cardiovascular diseases.


Asunto(s)
Infarto del Miocardio , Quercetina/análogos & derivados , Remodelación Ventricular , Ratones , Animales , Humanos , Reprogramación Metabólica , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Macrófagos/metabolismo , Fibrosis , Miocardio/metabolismo
19.
Immunology ; 172(2): 295-312, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38453210

RESUMEN

Hyperactivation of the cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway has been shown to be associated with the development of a variety of inflammatory diseases, and the discovery of an inhibitor of the cGAS-STING signalling pathway holds great promise in the therapeutic interventions. Epimedium flavonoid (EF), a major active ingredient isolated from the medicinal plant Epimedium, has been reported to have good anti-inflammatory activity, but its exact mechanism of action remains unclear. In the present study, we found that EF in mouse bone marrow-derived macrophages (BMDMs), THP-1 (Tohoku Hospital Pediatrics-1) as well as in human peripheral blood mononuclear cells (hPBMC) inhibited the activation of the cGAS-STING signalling pathway, which subsequently led to a decrease in the expression of type I interferon (IFN-ß, CXCL10 and ISG15) and pro-inflammatory cytokines (IL-6 and TNF-α). Mechanistically, EF does not affect STING oligomerization, but inhibits the formation of functional STING signalosome by attenuating the interaction of interferon regulatory factor 3 (IRF3) with STING and TANK-binding kinase 1 (TBK1). Importantly, in vivo experiments, EF has shown promising therapeutic effects on inflammatory diseases mediated by the cGAS-STING pathway, which include the agonist model induced by DMXAA stimulation, the autoimmune inflammatory disease model induced by three prime repair exonuclease 1 (Trex1) deficiency, and the non-alcoholic steatohepatitis (NASH) model induced by a pathogenic amino acid and choline deficiency diet (MCD). To summarize, our study suggests that EF is a potent potential inhibitor component of the cGAS-STING signalling pathway for the treatment of inflammatory diseases mediated by the cGAS-STING signalling pathway.


Asunto(s)
Epimedium , Flavonoides , Proteínas de la Membrana , Nucleotidiltransferasas , Transducción de Señal , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Humanos , Ratones , Flavonoides/farmacología , Epimedium/química , Factor 3 Regulador del Interferón/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Citocinas/metabolismo , Células THP-1 , Proteínas Serina-Treonina Quinasas/metabolismo , Antiinflamatorios/farmacología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/efectos de los fármacos
20.
Sci China Life Sci ; 67(5): 1010-1026, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38489007

RESUMEN

Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.


Asunto(s)
Pérdida de Hueso Alveolar , Berberina , Regeneración Ósea , Factor Estimulante de Colonias de Macrófagos , Macrófagos , Células Madre Mesenquimatosas , Berberina/farmacología , Humanos , Animales , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Regeneración Ósea/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratas , Factor Estimulante de Colonias de Macrófagos/metabolismo , Pérdida de Hueso Alveolar/metabolismo , Masculino , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Células Cultivadas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA