Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901845

RESUMEN

Malate dehydrogenase (MDH) genes play vital roles in developmental control and environmental stress tolerance in sessile plants by modulating the organic acid-malic acid level. However, MDH genes have not yet been characterized in gymnosperm, and their roles in nutrient deficiency are largely unexplored. In this study, 12 MDH genes were identified in Chinese fir (Cunninghamia lanceolata), namely, ClMDH-1, -2, -3, …, and -12. Chinese fir is one of the most abundant commercial timber trees in China, and low phosphorus has limited its growth and production due to the acidic soil of southern China. According to the phylogenetic analysis, MDH genes were classified into five groups, and Group 2 genes (ClMDH-7, -8, -9, and 10) were only found to be present in Chinese fir but not in Arabidopsis thaliana and Populus trichocarpa. In particular, the Group 2 MDHs also had specific functional domains-Ldh_1_N (malidase NAD-binding functional domain) and Ldh_1_C (malate enzyme C-terminal functional domain)-indicating a specific function of ClMDHs in the accumulation of malate. All ClMDH genes contained the conserved MDH gene characteristic functional domains Ldh_1_N and Ldh_1_C, and all ClMDH proteins exhibited similar structures. Twelve ClMDH genes were identified from eight chromosomes, involving fifteen ClMDH homologous gene pairs, each with a Ka/Ks ratio of <1. The analysis of cis-elements, protein interactions, and transcription factor interactions of MDHs showed that the ClMDH gene might play a role in plant growth and development, and in response to stress mechanisms. The results of transcriptome data and qRT-PCR validation based on low-phosphorus stress showed that ClMDH1, ClMDH6, ClMDH7, ClMDH2, ClMDH4, ClMDH5, ClMDH10 and ClMDH11 were upregulated under low-phosphorus stress and played a role in the response of fir to low-phosphorus stress. In conclusion, these findings lay a foundation for further improving the genetic mechanism of the ClMDH gene family in response to low-phosphorus stress, exploring the potential function of this gene, promoting the improvement of fir genetics and breeding, and improving production efficiency.


Asunto(s)
Cunninghamia , Malato Deshidrogenasa , Malato Deshidrogenasa/metabolismo , Cunninghamia/genética , Cunninghamia/metabolismo , Malatos/metabolismo , Filogenia , Fitomejoramiento , Perfilación de la Expresión Génica , Fósforo/metabolismo
2.
BMC Plant Biol ; 22(1): 503, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36289454

RESUMEN

BACKGROUND: Bermudagrass (Cynodon dactylon L.) is an important warm-season turfgrass species with well-developed stolons, which lay the foundation for the fast propagation of bermudagrass plants through asexual clonal growth. However, the growth and development of bermudagrass stolons are still poorly understood at the molecular level. RESULTS: In this study, we comprehensively analyzed the acetylation and succinylation modifications of proteins in fast-growing stolons of the bermudagrass cultivar Yangjiang. A total of 4657 lysine acetylation sites on 1914 proteins and 226 lysine succinylation sites on 128 proteins were successfully identified using liquid chromatography coupled to tandem mass spectrometry, respectively. Furthermore, 78 proteins and 81 lysine sites were found to be both acetylated and succinylated. Functional enrichment analysis revealed that acetylated proteins regulate diverse reactions of carbohydrate metabolism and protein turnover, whereas succinylated proteins mainly regulate the citrate cycle. These results partly explained the different growth disturbances of bermudagrass stolons under treatment with sodium butyrate and sodium malonate, which interfere with protein acetylation and succinylation, respectively. Moreover, 140 acetylated proteins and 42 succinylated proteins were further characterized having similarly modified orthologs in other grass species. Site-specific mutations combined with enzymatic activity assays indicated that the conserved acetylation of catalase and succinylation of malate dehydrogenase both inhibited their activities, further implying important regulatory roles of the two modifications. CONCLUSION: In summary, our study implied that lysine acetylation and succinylation of proteins possibly play important regulatory roles in the fast growth of bermudagrass stolons. The results not only provide new insights into clonal growth of bermudagrass but also offer a rich resource for functional analyses of protein lysine acetylation and succinylation in plants.


Asunto(s)
Cynodon , Proteoma , Acetilación , Proteoma/metabolismo , Cynodon/genética , Lisina/metabolismo , Malato Deshidrogenasa/metabolismo , Catalasa/metabolismo , Ácido Butírico/metabolismo , Procesamiento Proteico-Postraduccional , Malonatos/metabolismo , Sodio/metabolismo , Citratos/metabolismo
3.
Nat Chem Biol ; 18(10): 1087-1095, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35879546

RESUMEN

Oncogenic Kras-activated pancreatic ductal adenocarcinoma (PDAC) cells highly rely on an unconventional glutamine catabolic pathway to sustain cell growth. However, little is known about how this pathway is regulated. Here we demonstrate that Kras mutation induces cellular O-linked ß-N-acetylglucosamine (O-GlcNAc), a prevalent form of protein glycosylation. Malate dehydrogenase 1 (MDH1), a key enzyme in the glutamine catabolic pathway, is positively regulated by O-GlcNAcylation on serine 189 (S189). Molecular dynamics simulations suggest that S189 glycosylation on monomeric MDH1 enhances the stability of the substrate-binding pocket and strengthens the substrate interactions by serving as a molecular glue. Depletion of O-GlcNAcylation reduces MDH1 activity, impairs glutamine metabolism, sensitizes PDAC cells to oxidative stress, decreases cell proliferation and inhibits tumor growth in nude mice. Furthermore, O-GlcNAcylation levels of MDH1 are elevated in clinical PDAC samples. Our study reveals that O-GlcNAcylation contributes to pancreatic cancer growth by regulating the metabolic activity of MDH1.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Acetilglucosamina/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Glutamina/metabolismo , Malato Deshidrogenasa/metabolismo , Ratones , Ratones Desnudos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Serina/metabolismo , Neoplasias Pancreáticas
4.
Bioorg Med Chem ; 50: 116458, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34687983

RESUMEN

Parasitic diseases remain a major public health concern for humans, claiming millions of lives annually. Although different treatments are required for these diseases, drug usage is limited due to the development of resistance and toxicity, which necessitate alternative therapies. It has been shown in the literature that parasitic lactate dehydrogenases (LDH) and malate dehydrogenases (MDH) have unique pharmacological selective and specificity properties compared to other isoforms, thus highlighting them as viable therapeutic targets involved in aerobic and anaerobic glycolytic pathways. LDH and MDH are important therapeutic targets for invasive parasites because they play a critical role in the progression and development of parasitic diseases. Any strategy to impede these enzymes would be fatal to the parasites, paving the way to develop and discover novel antiparasitic agents. This review aims to highlight the importance of parasitic LDH and MDH as therapeutic drug targets in selected obligate apicoplast parasites. To the best of our knowledge, this review presents the first comprehensive review of LDH and MDH as potential antiparasitic targets for drug development studies.


Asunto(s)
Antiparasitarios/farmacología , Desarrollo de Medicamentos , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/antagonistas & inhibidores , Animales , Antiparasitarios/síntesis química , Antiparasitarios/química , Cryptosporidium parvum/efectos de los fármacos , Cryptosporidium parvum/enzimología , Humanos , L-Lactato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium/efectos de los fármacos , Plasmodium/enzimología , Schistosoma/efectos de los fármacos , Schistosoma/enzimología , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/enzimología
5.
Nutr Res ; 92: 99-108, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34284270

RESUMEN

A large number of studies have shown that polyphenols can regulate skeletal muscle fiber type transformation through AMPK signal. However, the effects and mechanism of naringin (a natural polyphenol) on muscle fiber type transformation still remains unclear. Thus, we hypothesized that naringin would induce the transformation of skeletal muscle fibers from type II to type I by AMPK signaling. C2C12 myotubes and BALB/c mice models were used to test this hypothesis. We found that naringin significantly increased the protein expression of slow myosin heavy chain (MyHC), myoglobin and troponin I type I slow skeletal (Troponin I-SS) and the activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH), and significantly decreased fast MyHC protein expression and lactate dehydrogenase (LDH) activity, accompanied by the activation of AMPK and the activity of peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) in mice and C2C12 myotubes. Further inhibition of AMPK activity by compound C showed that the above effects were significantly inhibited in C2C12 myotubes. In conclusion, naringin promotes the transformation of skeletal muscle fibers from type II to type I through AMPK/PGC-1α signaling pathway, which not only enriches the nutritional and physiological functions of naringin, but also provides a theoretical basis for the regulation of muscle fiber type transformation by nutritional approaches.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Citrus/química , Flavanonas/farmacología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Extractos Vegetales/farmacología , Animales , L-Lactato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/metabolismo , Masculino , Ratones Endogámicos BALB C , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/metabolismo , PPAR gamma/metabolismo , Distribución Aleatoria , Transducción de Señal , Succinato Deshidrogenasa/metabolismo , Troponina/metabolismo
6.
J Inherit Metab Dis ; 44(4): 792-808, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33990986

RESUMEN

Over the last few years, various inborn disorders have been reported in the malate aspartate shuttle (MAS). The MAS consists of four metabolic enzymes and two transporters, one of them having two isoforms that are expressed in different tissues. Together they form a biochemical pathway that shuttles electrons from the cytosol into mitochondria, as the inner mitochondrial membrane is impermeable to the electron carrier NADH. By shuttling NADH across the mitochondrial membrane in the form of a reduced metabolite (malate), the MAS plays an important role in mitochondrial respiration. In addition, the MAS maintains the cytosolic NAD+ /NADH redox balance, by using redox reactions for the transfer of electrons. This explains why the MAS is also important in sustaining cytosolic redox-dependent metabolic pathways, such as glycolysis and serine biosynthesis. The current review provides insights into the clinical and biochemical characteristics of MAS deficiencies. To date, five out of seven potential MAS deficiencies have been reported. Most of them present with a clinical phenotype of infantile epileptic encephalopathy. Although not specific, biochemical characteristics include high lactate, high glycerol 3-phosphate, a disturbed redox balance, TCA abnormalities, high ammonia, and low serine, which may be helpful in reaching a diagnosis in patients with an infantile epileptic encephalopathy. Current implications for treatment include a ketogenic diet, as well as serine and vitamin B6 supplementation.


Asunto(s)
Aspartato Aminotransferasas/deficiencia , Ácido Aspártico/metabolismo , Malato Deshidrogenasa/deficiencia , Malatos/metabolismo , Errores Innatos del Metabolismo/patología , Mitocondrias/patología , Animales , Aspartato Aminotransferasas/genética , Respiración de la Célula , Humanos , Lactante , Malato Deshidrogenasa/genética , Errores Innatos del Metabolismo/etiología , Errores Innatos del Metabolismo/metabolismo , Mitocondrias/metabolismo , Espasmos Infantiles/etiología
7.
Biomed Khim ; 67(2): 144-149, 2021 Mar.
Artículo en Ruso | MEDLINE | ID: mdl-33860771

RESUMEN

An increase in the activity and the appearance of a new isoform of NAD-dependent malate dehydrogenase (MDH; EC 1.1.1.37) has been detected in the liver of rats with alloxan diabetes was revealed. This confirms the possibility of MDH involvement in the adaptive reaction of the body under oxidative tress caused by biochemical changes in diabetic animals. The increase in the hepatic MDH activity in rats with experimental type I diabetes mellitus (T1DM) is associated with the formation of an additional MDH isoform in peroxisomes. Data on the expression of the MDH encoding genes mdh1 and mdh2 confirm that in T1DM the increase in MDH activity occurs at the level of transcription of MDH encoding genes. The use of the extract of Helianthus tuberosus led to a marked decrease in the blood glucose concentration of rats with alloxan diabetes, abolished by the change in transcriptional activity of the studied genes and blocked the formation of new MDH isoforms in rats with experimental alloxan diabetes. This suggest that extract of H. tuberosus may be of considerable interest from the point of view of pharmacological correction of metabolic changes during the development of pathologies of this kind.


Asunto(s)
Diabetes Mellitus Experimental , Helianthus , Aloxano , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Hígado , Malato Deshidrogenasa/genética , Extractos Vegetales/farmacología , Ratas
8.
Oxid Med Cell Longev ; 2021: 6626286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763170

RESUMEN

Photobiomodulation with 808 nm laser light electively stimulates Complexes III and IV of the mitochondrial respiratory chain, while Complexes I and II are not affected. At the wavelength of 1064 nm, Complexes I, III, and IV are excited, while Complex II and some mitochondrial matrix enzymes seem to be not receptive to photons at that wavelength. Complex IV was also activated by 633 nm. The mechanism of action of wavelengths in the range 900-1000 nm on mitochondria is less understood or not described. Oxidative stress from reactive oxygen species (ROS) generated by mitochondrial activity is an inescapable consequence of aerobic metabolism. The antioxidant enzyme system for ROS scavenging can keep them under control. However, alterations in mitochondrial activity can cause an increment of ROS production. ROS and ATP can play a role in cell death, cell proliferation, and cell cycle arrest. In our work, bovine liver isolated mitochondria were irradiated for 60 sec, in continuous wave mode with 980 nm and powers from 0.1 to 1.4 W (0.1 W increment at every step) to generate energies from 6 to 84 J, fluences from 7.7 to 107.7 J/cm2, power densities from 0.13 to 1.79 W/cm2, and spot size 0.78 cm2. The control was equal to 0 W. The activity of the mitochondria's complexes, Krebs cycle enzymes, ATP production, oxygen consumption, generation of ROS, and oxidative stress were detected. Lower powers (0.1-0.2 W) showed an inhibitory effect; those that were intermediate (0.3-0.7 W) did not display an effect, and the higher powers (0.8-1.1 W) induced an increment of ATP synthesis. Increasing the power (1.2-1.4 W) recovered the ATP production to the control level. The interaction occurred on Complexes III and IV, as well as ATP production and oxygen consumption. Results showed that 0.1 W uncoupled the respiratory chain and induced higher oxidative stress and drastic inhibition of ATP production. Conversely, 0.8 W kept mitochondria coupled and induced an increase of ATP production by increments of Complex III and IV activities. An augmentation of oxidative stress was also observed, probably as a consequence of the increased oxygen consumption and mitochondrial isolation experimental conditions. No effect was observed using 0.5 W, and no effect was observed on the enzymes of the Krebs cycle.


Asunto(s)
Láseres de Semiconductores , Terapia por Luz de Baja Intensidad , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Bovinos , Respiración de la Célula/efectos de la radiación , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Isocitrato Deshidrogenasa/metabolismo , Peroxidación de Lípido/efectos de la radiación , Malato Deshidrogenasa/metabolismo , Masculino , Fosforilación Oxidativa/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , ATPasas de Translocación de Protón/metabolismo , Superóxidos/metabolismo , Temperatura
9.
Physiol Plant ; 172(3): 1739-1749, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33665852

RESUMEN

Light regulates anthocyanins synthesis in plants. Upon exposure to visible light, the inhibition of photosynthetic electron transfer significantly lowered the contents of anthocyanins and the expression levels of key genes involved in anthocyanins synthesis in plum fruit peel. Meanwhile, the expression levels of PsmMDH2 (encoding the malate dehydrogenase in mitochondria) and PschMDH (encoding the malate dehydrogenase in chloroplasts) decreased significantly. The contents of anthocyanins and the levels of the key genes involved in anthocyanin synthesis decreased significantly with the treatment of 1-MCP (an inhibitor of ethylene perception) but were enhanced by the exogenous application of ethylene. The ethylene treatment could also recover the anthocyanin synthesis capacity lowered by the photosynthetic electron transfer inhibition. Silencing PsmMDH2 and PschMDH significantly lowered the contents of anthocyanins in plum fruit. At low temperature, visible light irradiation induced anthocyanin accumulation in Arabidopsis leaves. However, the mmdh, chmdh, and etr1-1 mutants had significantly lower anthocyanins content and expressions of the key genes involved in anthocyanins synthesis compared to wild type. Overall, the present study demonstrates that both photosynthesis and respiration were involved in the regulation of anthocyanin synthesis in visible light. The visible light regulates anthocyanin synthesis by controlling the malate metabolism via MDHs and the ethylene signaling pathway.


Asunto(s)
Prunus domestica , Antocianinas , Etilenos , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Luz , Malato Deshidrogenasa/genética , Malatos , Transducción de Señal
10.
J Sci Food Agric ; 101(12): 5116-5123, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33583040

RESUMEN

BACKGROUND: Ferulic acid (FA) is a common polyphenolic compound. The purpose of this study was to explore the effect of dietary FA supplementation on growth performance and muscle fiber type conversion in weaned piglets. In this study, eighteen 21-day-old DLY (Duroc × Landrace × Yorkshire) weaned piglets were randomly divided into control, 0.05% FA, and 0.45% FA groups. RESULTS: Our study showed that dietary FA supplementation had no effect on growth performance, but it could upregulate the expression of slow myosin heavy chain (MyHC) protein, increase the activities of succinic dehydrogenase and malate dehydrogenase, and downregulate the expression of fast MyHC protein. Dietary FA supplementation also increased the expression levels of phosphorylated AMP-activated protein kinase, sirtuin 1 (Sirt1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), myocyte enhancer factor 2C, and troponin I-SS, increased the proportion of slow-twitch fiber, and decreased the proportion of fast-twitch fiber. In addition, our results showed that dietary FA supplementation increased the messenger RNA abundance of mitochondrial nuclear transcription genes, including ATP synthase membrane subunit c locus 1, cytochrome oxidase subunit 1, nuclear respiratory factor 1, mitochondrial transcription factor A, mitochondrial transcription factor B1, and cytochrome c. CONCLUSION: We provided the first evidence that FA could promote muscle fiber type conversion from fast-twitch to slow-twitch via the Sirt1/AMP-activated protein kinase/PGC-1α signaling pathway and could improve the mitochondrial function in weaned piglets. This means that FA can be used as a dietary supplement to improve the quality of pork. © 2021 Society of Chemical Industry.


Asunto(s)
Ácidos Cumáricos/administración & dosificación , Suplementos Dietéticos/análisis , Fibras Musculares Esqueléticas/efectos de los fármacos , Porcinos/crecimiento & desarrollo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Fosforilación , Transducción de Señal/efectos de los fármacos , Porcinos/genética , Porcinos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Destete
11.
Nat Metab ; 3(1): 75-89, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33462516

RESUMEN

NADPH has long been recognized as a key cofactor for antioxidant defence and reductive biosynthesis. Here we report a metabolism-independent function of NADPH in modulating epigenetic status and transcription. We find that the reduction of cellular NADPH levels, achieved by silencing malic enzyme or glucose-6-phosphate dehydrogenase, impairs global histone acetylation and transcription in both adipocytes and tumour cells. These effects can be reversed by supplementation with exogenous NADPH or by inhibition of histone deacetylase 3 (HDAC3). Mechanistically, NADPH directly interacts with HDAC3 and interrupts the association between HDAC3 and its co-activator nuclear receptor corepressor 2 (Ncor2; SMRT) or Ncor1, thereby impairing HDAC3 activation. Interestingly, NADPH and the inositol tetraphosphate molecule Ins(1,4,5,6)P4 appear to bind to the same domains on HDAC3, with NADPH having a higher affinity towards HDAC3 than Ins(1,4,5,6)P4. Thus, while Ins(1,4,5,6)P4 promotes formation of the HDAC3-Ncor complex, NADPH inhibits it. Collectively, our findings uncover a previously unidentified and metabolism-independent role of NADPH in controlling epigenetic change and gene expression by acting as an endogenous inhibitor of HDAC3.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , NADP/farmacología , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/metabolismo , Acetilación , Animales , Línea Celular Tumoral , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasas/biosíntesis , Histona Desacetilasas/genética , Histonas/metabolismo , Humanos , Fosfatos de Inositol/farmacología , Malato Deshidrogenasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Células 3T3 NIH , Co-Represor 1 de Receptor Nuclear/biosíntesis , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/biosíntesis , Co-Represor 2 de Receptor Nuclear/genética
12.
Braz J Biol ; 81(2): 387-391, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32490897

RESUMEN

Poor storage conditions provide favorable environment to stored grain pests for their growth. The bio-pesticides are the best alternatives to synthetic pesticides. Present study was conducted to compare toxicity of Rubus fruticosus and Valeriana jatamansi against granary weevil, Sitophilus granarius and subsequent changes in enzyme activity responsible for grain damage. In current research 5 g of R. fruticosus fruit and V. jatamansi rhizome powders were tested separately against S. granarius, in 50 g wheat whole grains for seven days in comparison with the control. The enzymatic activity of malate dehydrogenase and α-amylase was observed in the cellular extracts of S. granarius. The insects were crushed and homogenized in phosphate-buffer solution and centrifuged at 10000 rpm for 5 minutes. For the enzymatic measurement supernatant was tested; the spectrophotometer was adjusted at 340 nm. The reagents were mixed and incubated at 25 °C for five minutes. The cuvettes were placed in the experimental and reference sites of spectrophotometer and recorded the change in absorbance for 3-4 minutes. There was 5.60% and 14.92% reduction in the activity of malate dehydrogenase in R. fruticosus and V. jatamansi, treated insects, respectively. The alpha amylase enzyme activity was 6.82% reduced and 63.63% increase in R. fruticosus and V. jatamansi, treated insects, respectively. Present study addresses that both plant powders are effective against granary weevil by altering enzyme activities so both the plant powders can be used as bio-pesticides against the stored grains pests.


Asunto(s)
Rubus , Valeriana , Gorgojos , Animales , Malato Deshidrogenasa , alfa-Amilasas
13.
Environ Sci Pollut Res Int ; 28(20): 25116-25123, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-30341759

RESUMEN

The objective of this research is to investigate the enzymatic activities between protein disulfide isomerase (PDI) found in animals and plants and the properties found in a commonly used Chinese medicine called Sijunzi Tang. During the investigation, PDI, which is a monomer with a molecular mass of 57.0 kDa, was used to reactivate malate dehydrogenase (MDH). However, with the interference of polycyclic aromatic hydrocarbons (PAHs), evidence indicates that such chemicals are carcinogenic, mutagenic, and toxic to humans. The enzymatic activity of PDI found in animal's liver and plant was 1657 folds of purification; 0.284 unit/mg of enzyme activity, and 5694.4 folds of purification; 1.00 unit/mg of enzyme activity, respectively. PDI extracted in treated animal and plant tissue revealed 2.40% and 80.44% of regaining MDH enzymatic activity, respectively. Although in its initial phase of investigation, it is assumed that the properties found in Sijunzi Tang can help regain enzymatic activity in those affected by xenobiotic substances, thus, making it a potential ingredient in assisting with PDI functions.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Proteína Disulfuro Isomerasas , Animales , Estudios de Factibilidad , Humanos , Malato Deshidrogenasa , Medicina Tradicional China
14.
Braz. j. biol ; 81(2): 387-391, 2021. tab, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1153349

RESUMEN

Poor storage conditions provide favorable environment to stored grain pests for their growth. The bio-pesticides are the best alternatives to synthetic pesticides. Present study was conducted to compare toxicity of Rubus fruticosus and Valeriana jatamansi against granary weevil, Sitophilus granarius and subsequent changes in enzyme activity responsible for grain damage. In current research 5 g of R. fruticosus fruit and V. jatamansi rhizome powders were tested separately against S. granarius, in 50 g wheat whole grains for seven days in comparison with the control. The enzymatic activity of malate dehydrogenase and α-amylase was observed in the cellular extracts of S. granarius. The insects were crushed and homogenized in phosphate-buffer solution and centrifuged at 10000 rpm for 5 minutes. For the enzymatic measurement supernatant was tested; the spectrophotometer was adjusted at 340 nm. The reagents were mixed and incubated at 25 °C for five minutes. The cuvettes were placed in the experimental and reference sites of spectrophotometer and recorded the change in absorbance for 3-4 minutes. There was 5.60% and 14.92% reduction in the activity of malate dehydrogenase in R. fruticosus and V. jatamansi, treated insects, respectively. The alpha amylase enzyme activity was 6.82% reduced and 63.63% increase in R. fruticosus and V. jatamansi, treated insects, respectively. Present study addresses that both plant powders are effective against granary weevil by altering enzyme activities so both the plant powders can be used as bio-pesticides against the stored grains pests.


As más condições de armazenamento proporcionam um ambiente favorável às pragas armazenadas para o crescimento. Os biopesticidas são as melhores alternativas aos pesticidas sintéticos. O presente estudo foi conduzido para comparar a toxicidade de Rubus fruticosus e Valeriana jatamansi contra gorgulhos, Sitophilus granarius e subsequentes alterações na atividade enzimática responsáveis ​​por danos aos grãos. Na pesquisa atual, 5 g de frutos de R. fruticosus e pós de rizoma de V. jatamansi foram testados separadamente contra S. granarius, em 50 g de grãos integrais de trigo por sete dias, em comparação com o controle. A atividade enzimática da malato desidrogenase e α-amilase foi observada nos extratos celulares de S. granarius. Os insetos foram esmagados e homogeneizados em solução tampão fosfato e centrifugados a 10000 rpm por 5 minutos. Para a medição enzimática, o sobrenadante foi testado; o espectrofotômetro foi ajustado a 340 nm. Os reagentes foram misturados e incubados a 25 °C por cinco minutos. As cubetas foram colocadas nos locais experimentais e de referência do espectrofotômetro e registradas as alterações na absorbância por 3-4 minutos. Houve redução de 5,60% e 14,92% na atividade da malato desidrogenase em R. fruticosus e V. jatamansi, insetos tratados, respectivamente. A atividade da enzima alfa amilase foi reduzida em 6,82% e aumento de 63,63% em R. fruticosus e V. jatamansi, insetos tratados, respectivamente. O presente estudo aborda que ambos os pós de plantas são eficazes contra o gorgulho do celeiro, alterando as atividades enzimáticas, de modo que ambos os pós de plantas possam ser usados ​​como biopesticidas contra pragas de grãos armazenados.


Asunto(s)
Animales , Valeriana/toxicidad , Gorgojos , Agentes de Control Biológico/administración & dosificación , Rubus/toxicidad , Control Biológico de Vectores/métodos , alfa-Amilasas , Almacenamiento de Alimentos/normas , Malato Deshidrogenasa
15.
PLoS One ; 15(12): e0240338, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33306682

RESUMEN

Thyroid hormones are important modulators of metabolic activity in mammals and alter cholesterol and fatty acid levels through activation of the nuclear thyroid hormone receptor (THR). Currently, there are several THRß agonists in clinical trials for the treatment of non-alcoholic steatohepatitis (NASH) that have demonstrated the potential to reduce liver fat and restore liver function. In this study, we tested three THRß-agonism-based NASH treatment candidates, GC-1 (sobetirome), MGL-3196 (resmetirom), and VK2809, and compared their selectivity for THRß and their ability to modulate the expression of genes specific to cholesterol and fatty acid biosynthesis and metabolism in vitro using human hepatic cells and in vivo using a rat model. Treatment with GC-1 upregulated the transcription of CPT1A in the human hepatocyte-derived Huh-7 cell line with a dose-response comparable to that of the native THR ligand, triiodothyronine (T3). VK2809A (active parent of VK2809), MGL-3196, and VK2809 were approximately 30-fold, 1,000-fold, and 2,000-fold less potent than T3, respectively. Additionally, these relative potencies were confirmed by quantification of other direct gene targets of THR, namely, ANGPTL4 and DIO1. In primary human hepatocytes, potencies were conserved for every compound except for VK2809, which showed significantly increased potency that was comparable to that of its active counterpart, VK2809A. In high-fat diet fed rats, a single dose of T3 significantly reduced total cholesterol levels and concurrently increased liver Dio1 and Me1 RNA expression. MGL-3196 treatment resulted in concentration-dependent decreases in total and low-density lipoprotein cholesterol with corresponding increases in liver gene expression, but the compound was significantly less potent than T3. In conclusion, we have implemented a strategy to rank the efficacy of THRß agonists by quantifying changes in the transcription of genes that lead to metabolic alterations, an effect that is directly downstream of THR binding and activation.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Receptores beta de Hormona Tiroidea/agonistas , Transcripción Genética/efectos de los fármacos , Acetatos/farmacología , Acetatos/uso terapéutico , Proteína 4 Similar a la Angiopoyetina/metabolismo , Animales , Línea Celular Tumoral , LDL-Colesterol/sangre , LDL-Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Hepatocitos , Humanos , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Masculino , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Organofosfonatos/farmacología , Organofosfonatos/uso terapéutico , Fenoles/farmacología , Fenoles/uso terapéutico , Cultivo Primario de Células , Piridazinas/farmacología , Piridazinas/uso terapéutico , Ratas , Uracilo/análogos & derivados , Uracilo/farmacología , Uracilo/uso terapéutico
16.
Med Arch ; 74(3): 168-171, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32801429

RESUMEN

INTRODUCTION: Pre-diabetic precedes the development of full diabetes. Studying and identification changes in pre-diabetic conditions can give the possibility to decline the development of diabetes and treat conditions associated with diabetes such as cardiovascular diseases. AIM: The main objectives of the present study were to investigate the potential of using Urtica pilulifera in treating the pre-diabetic rat model and to investigate its anti-oxidant impact. METHODS: The pre-diabetic model was induced in rats through daily giving high sucrose diet (35%) for 30 days. The extraction of U. pilulifera leaves was made as described by previous studies. Thirty male Wistar rats were randomly divided into three groups, control group (n=10), pre-diabetic group (n=10), and treated group with the extract of U. pilulifera (n=10). Control group rats received standard diet; pre-diabetic group rats received standard diet and high sucrose (35%) in drinking water, treated group rats received the same conditions as a pre-diabetic group, with intra-peritoneal injection of U. pilulifera injection on daily basis. After one month experiment, blood samples were taken from all rats and tested for glucose, triglycerides, cholesterol, GSH, TAC, and MDA. RESULTS: Both glucose and triglycerides levels were significantly increased in pre-diabetic groups, and significantly reduced in the treated group by the extract of U.pilulifera. The cholesterol level was not significantly changed in all groups. The levels of GSH were significantly reduced in the pre-diabetic group compared with the control group. Treatment with the extract of U. pilulifera increased the levels of GSH significantly compared with the pre-diabetic group. The levels of TAC were not significantly changed between the control group and the pre-diabetic group, but significantly increased in the treated group compared with the pre-diabetic group. The levels of MDA significantly increased in the pre-diabetic group compared with the control group, and significantly reduced in the treated group compared with the control group. CONCLUSION: High sucrose pre-diabetic model is a good model to study diabetes at early stages, and the treatment using U. pilulifera has several benefits in reducing glucose and lipid profile lipids as well as combating oxidative stress.


Asunto(s)
Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Estado Prediabético/sangre , Estado Prediabético/tratamiento farmacológico , Urticaceae , Animales , Antioxidantes/metabolismo , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Colesterol/sangre , Modelos Animales de Enfermedad , Glutatión/sangre , Inyecciones Intraperitoneales , Malato Deshidrogenasa/sangre , Masculino , Extractos Vegetales/uso terapéutico , Distribución Aleatoria , Ratas , Ratas Wistar , Triglicéridos/sangre
17.
Biochemistry (Mosc) ; 85(1): 27-39, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32079515

RESUMEN

To study the mechanisms of the non-coenzyme action of thiamine and its diphosphate (ThDP) on brain proteins, proteins of acetone extract of bovine brain synaptosomes or the homogenate of rat brain cortex were subjected to affinity chromatography on thiamine-modified Sepharose. In the step-wise eluates by thiamine (at pH 7.4 or 5.6), NaCl, and urea, the occurrence of glutamate dehydrogenase (GDH) and isoenzymes of malate dehydrogenase (MDH) along with the influence of thiamine and/or ThDP on the enzymatic activities were characterized using mass spectrometry and kinetic experiments. Maximal activation of the malate dehydrogenase reaction by thiamine is observed after the protein elution with the acidic thiamine solution, which does not elute the MDH1 isoenzyme. Effects of exogenous thiamine or ThDP on the GDH activity may depend on endogenous enzyme regulators. For example, thiamine and/or ThDP activate the brain GDH in eluates from thiamine-Sepharose but inhibit the enzyme in the crude preparations applied to the sorbent. Inhibition of GDH by ThDP is observed using the ADP-activated enzyme. Compared to the affinity chromatography employing the elution by thiamine at pH 7.4, the procedure at pH 5.6 decreases the activation of GDH by thiamine (but not ThDP) in the eluates with NaCl and urea. Simultaneously, the MDH2 content and total GDH activity are higher after the affinity elution at pH 5.6 than at pH 7.4, suggesting the role of the known interaction of GDH with MDH2 in stabilizing the activity of GDH and in the regulation of GDH by thiamine. The biological potential of thiamine-dependent regulation of the brain GDH is confirmed in vivo by demonstration of changes in regulatory properties of GDH after administration of a high dose of thiamine to rats. Bioinformatics analysis of the thiamine-eluted brain proteins shows a specific enrichment of their annotation terms with "phosphoprotein", "acetylation", and "methylation". The relationship between thiamine and the posttranslational modifications in brain may contribute to the neuroprotective effects of high doses of thiamine, including the regulation of oxidation of the major excitatory neurotransmitter in brain - glutamate.


Asunto(s)
Encéfalo/enzimología , Glutamato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/metabolismo , Tiamina Pirofosfato/farmacología , Tiamina/farmacología , Animales , Bovinos , Activación Enzimática , Oxidación-Reducción , Ratas , Ratas Wistar
18.
Br J Nutr ; 123(10): 1117-1126, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32077406

RESUMEN

The study of polyphenols' effects on health has been gaining attention lately. In addition to reacting with important enzymes, altering the cell metabolism, these substances can present either positive or negative metabolic alterations depending on their consumption levels. Naringenin, a citrus flavonoid, already presents diverse metabolic effects. The objective of this work was to evaluate the effect of maternal naringenin supplementation during pregnancy on the tricarboxylic acid cycle activity in offspring's cerebellum. Adult female Wistar rats were divided into two groups: (1) vehicle (1 ml/kg by oral administration (p.o.)) or (2) naringenin (50 mg/kg p.o.). The offspring were euthanised at 7th day of life, and the cerebellum was dissected to analyse citrate synthase, isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH) and malate dehydrogenase (MDH) activities. Molecular docking used SwissDock web server and FORECASTER Suite, and the proposed binding pose image was created on UCSF Chimera. Data were analysed by Student's t test. Naringenin supplementation during pregnancy significantly inhibited IDH, α-KGDH and MDH activities in offspring's cerebellum. A similar reduction was observed in vitro, using purified α-KGDH and MDH, subjected to pre-incubation with naringenin. Docking simulations demonstrated that naringenin possibly interacts with dehydrogenases in the substrate and cofactor binding sites, inhibiting their function. Naringenin administration during pregnancy may affect cerebellar development and must be evaluated with caution by pregnant women and their physicians.


Asunto(s)
Cerebelo/enzimología , Ciclo del Ácido Cítrico/efectos de los fármacos , Suplementos Dietéticos , Flavanonas/administración & dosificación , Fenómenos Fisiologicos Nutricionales Maternos , Animales , Citrato (si)-Sintasa/efectos de los fármacos , Femenino , Isocitrato Deshidrogenasa/efectos de los fármacos , Complejo Cetoglutarato Deshidrogenasa/efectos de los fármacos , Malato Deshidrogenasa/efectos de los fármacos , Simulación del Acoplamiento Molecular , Embarazo , Ratas , Ratas Wistar
19.
J Biophotonics ; 12(9): e201900101, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31033186

RESUMEN

Photobiomodulation (PBM) is a non-plant-cell manipulation through a transfer of energy by means of light sources at the non-ablative or thermal intensity. Authors showed that cytochrome-c-oxidase (complex IV) is the specific chromophore's target of PBM at the red (600-700 nm) and NIR (760-900 nm) wavelength regions. Recently, it was suggested that the infrared region of the spectrum could influence other chromospheres, despite the interaction by wavelengths higher than 900 nm with mitochondrial chromophores was not clearly demonstrated. We characterized the interaction between mitochondria respiratory chain, malate dehydrogenase, a key enzyme of Krebs cycle, and 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in the ß-oxidation (two mitochondrial matrix enzymes) with the 1064 nm Nd:YAG (100mps and 10 Hz frequency mode) irradiated at the average power density of 0.50, 0.75, 1.00, 1.25 and 1.50 W/cm2 to generate the respective fluences of 30, 45, 60, 75 and 90 J/cm2 . Our results show the effect of laser light on the transmembrane mitochondrial complexes I, III, IV and V (adenosine triphosphate synthase) (window effects), but not on the extrinsic mitochondrial membrane complex II and mitochondria matrix enzymes. The effect is not due to macroscopical thermal change. An interaction of this wavelength with the Fe-S proteins and Cu-centers of respiratory complexes and with the water molecules could be supposed.


Asunto(s)
Transporte de Electrón , Láseres de Estado Sólido , Mitocondrias/patología , Membranas Mitocondriales/efectos de la radiación , 3-Hidroxiacil-CoA Deshidrogenasa/metabolismo , Adenosina Trifosfato/química , Ciclo del Ácido Cítrico , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Terapia por Luz de Baja Intensidad , Malato Deshidrogenasa/química , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Membranas Mitocondriales/patología , Oxígeno/química , Fotoquímica , Espectroscopía Infrarroja Corta , Temperatura
20.
PLoS One ; 14(4): e0215472, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30990828

RESUMEN

Early ripening apples are usually used for fresh marketing because of short storage life, although they are with high acid and low sugar contents. Understanding the malate metabolism in fleshy fruit and underpinning process during ripening is crucial for particular crop improvement where acidity is a concern for direct consumption or further processing. In this research, a traditional Chinese apple cultivar 'Hongyu', which belongs to early ripening apple cultivar, were freshly harvested at commercial maturity stage (120 Days after full bloom) and used for different storage temperature (4°C, 20°C) and UV-C treatment (following storage at 20°C after treatment). Simple sugars (glucose, sucrose, and fructose) and organic acids (malic, and oxalic) were assessed after 14 d of storage. Compared to fruits stored at 20°C, the malate content in fruits stored at 4°C significantly higher, while it was decreased significantly in UV-C treated fruits stored at 20°C after 14 d of storage. The sugar content was almost similar throughout the UV-C-treated fruits and fruits stored at different temperature. The higher ratios of total sugars to total organic acids in UV-C treated fruits after 14 d suggest that UV-C treatment has the potential to improve the taste of early ripening apple cultivars. Considering the significant difference in malate the samples at 14 d of storage were subjected for RNA-seq analysis. Transcriptome analysis revealed that the phenomena underlying this change were governed by metabolism of malate by the regulation of NADP-malic enzyme (NADP-ME) and phosphoenolpyruvate carboxylase kinase (PEPCK) in apple during postharvest storage. This transcriptome profiling results have specified the transcript regulation of malate metabolism and lead to possible taste improvement without affecting the other fruit quality attributes.


Asunto(s)
Almacenamiento de Alimentos , Frutas/crecimiento & desarrollo , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Malato Deshidrogenasa/biosíntesis , Malatos/metabolismo , Malus/crecimiento & desarrollo , Proteínas de Plantas/biosíntesis , Rayos Ultravioleta , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA