Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Food Res Int ; 178: 113970, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309916

RESUMEN

Yam bean is an important source of dietary fiber and other components that comprise the total indigestible fraction (TIF), which can be fermented by the colonic microbiota and produce metabolites with beneficial health effects. Therefore, the objective of this study was to evaluate the in vitro colonic fermentation of yam bean TIF and the changes caused by the addition of a polyphenolic extract of mango seed and the lactic acid bacteria Pediococcus acidilactici. The mango seed extract was obtained by ultrasound-assisted extraction, and the microbial growth rate and viability of P. acidilactici were determined using a Neubauer chamber. Yam bean TIF was isolated by triple enzymatic hydrolysis and subjected to in vitro colonic fermentation in combination with treatments with mango seed extract and P. acidilactici suspensions. Changes in pH, total soluble phenols (TSP), and antioxidant capacity (AOX) were evaluated. Furthermore, the production of metabolites was quantified by HPLC-DAD-MS and GC-MS. The Growth rate of P. acidilactici was 0.1097 h-1 with 97.5 % viability at 7 h of incubation. All TIF treatments showed a high capacity of fermentation, and the addition of mango seed extract increased the TSP content and AOX in DPPH and FRAP assays. A total of Forty-six volatile metabolites were detected, with highlighting the presence of esters, benzenes, aldehydes, and short-chain fatty acids. Five phenolic compounds associated with mango by-products were quantified during all fermentation process, despite the concentration of the extract. P. acidilactici did not substantially modify the fermentative profile of TIF. However, further studies such as the evaluation of the abundance of microbial communities may be necessary to observe whether it can generate changes during colonic fermentation.


Asunto(s)
Mangifera , Pachyrhizus , Pediococcus acidilactici , Polifenoles/farmacología , Fermentación , Mangifera/química , Fenoles/análisis , Semillas/química , Extractos Vegetales/farmacología
2.
Food Chem ; 425: 136474, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295215

RESUMEN

Mango (Mangifera indica L.) has been an important plant in traditional medicine for over 4000 years, probably because of its remarkable antioxidant activity. In this study, an aqueous extract from mango red leaves (M-RLE) was evaluated for its polyphenol profile and antioxidant activity. The extract was used as brine replacement (at 5%, 10% and 20% v/v) in fresh mozzarella cheese for improving its functional properties. During storage (12 d at 4 ± °C), compositional analysis performed on mozzarella has shown a progressive increase of iriflophenone 3-C-glucoside and mangiferin, the compounds most present in the extract, with a noticeable preference for the benzophenone. At the same time, the antioxidant activity of mozzarella peaked at 12 d of storage, suggesting a binding action of that matrix for the M-RLE bioactive compounds. Moreover, the use of the M-RLE has not negatively influenced the Lactobacillus spp. population of mozzarella, even at the highest concentration.


Asunto(s)
Queso , Mangifera , Antioxidantes , Mangifera/química , Extractos Vegetales
3.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239906

RESUMEN

This study investigated the health-promoting effects and prebiotic functions of mango peel powder (MPP) both as a plain individual ingredient and when incorporated in yoghurt during simulated digestion and fermentation. The treatments included plain MPP, plain yoghurt (YA), yoghurt fortified with MPP (YB), and yoghurt fortified with MPP and lactic acid bacteria (YC), along with a blank (BL). The identification of polyphenols in the extracts of insoluble digesta and phenolic metabolites after the in vitro colonic fermentation were performed employing LC-ESI-QTOF-MS2. These extracts were also subjected to pH, microbial count, production of SCFA, and 16S rRNA analyses. The characterisation of phenolic profiles identified 62 phenolic compounds. Among these compounds, phenolic acids were the major compounds that underwent biotransformation via catabolic pathways such as ring fission, decarboxylation, and dehydroxylation. Changes in pH indicated that YC and MPP reduced the media pH from 6.27 and 6.33 to 4.50 and 4.53, respectively. This decline in pH was associated with significant increases in the LAB counts of these samples. The Bifidobacteria counts were 8.11 ± 0.89 and 8.02 ± 1.01 log CFU/g in YC and MPP, respectively, after 72 h of colonic fermentation. Results also showed that the presence of MPP imparted significant variations in the contents and profiles of individual short chain fatty acids (SCFA) with more predominant production of most SCFA in the MPP and YC treatments. The 16s rRNA sequencing data indicated a highly distinctive microbial population associated with YC in terms of relative abundance. These findings suggested MPP as a promising ingredient for utilisation in functional food formulations aiming to enhance gut health.


Asunto(s)
Mangifera , Probióticos , Mangifera/química , ARN Ribosómico 16S/metabolismo , Polvos , Fermentación , Yogur/microbiología , Fenoles , Ácidos Grasos Volátiles/metabolismo , Digestión , Biotransformación , Extractos Vegetales
4.
Molecules ; 28(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985439

RESUMEN

Shigellosis is a serious foodborne diarrheal disease caused by the Shigella species. It is a critical global health issue. In developing countries, shigellosis causes most of the mortality in children below 5 years of age. Globally, around 165 million cases of diarrhea caused by Shigella are reported, which accounts for almost 1 million deaths, in which the majority are recorded in Third World nations. In this study, silver nanoparticles were synthesized using Mangifera indica kernel (MK-AgNPs) seed extracts. The biosynthesized M. indica silver nanoparticles (MK-AgNPs) were characterized using an array of spectroscopic and microscopic tools, such as UV-Vis, scanning electron microscopy, particle size analyzer, Fourier transform infrared spectroscopy, and X-ray diffractometer. The nanoparticles were spherical in shape and the average size was found to be 42.7 nm. The MK-AgNPs exhibited remarkable antibacterial activity against antibiotic-resistant clinical Shigella sp. The minimum inhibitory concentration (MIC) value of the MK-AgNPs was found to be 20 µg/mL against the multi-drug-resistant strain Shigella flexneri. The results clearly demonstrate that MK-AgNPs prepared using M. indica kernel seed extract exhibited significant bactericidal action against pathogenic Shigella species. The biosynthesized nanoparticles from mango kernel could possibly prove therapeutically useful and effective in combating the threat of shigellosis after careful investigation of its toxicity and in vivo efficacy.


Asunto(s)
Disentería Bacilar , Mangifera , Nanopartículas del Metal , Shigella , Niño , Humanos , Mangifera/química , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Disentería Bacilar/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Semillas
5.
Nutr Res ; 111: 73-89, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36841190

RESUMEN

Mango has long been an attractive source of nutrition and pharmacological therapeutics. The mango plant (Mangifera indica L.) contains bioactive compounds that may have antidiabetic properties. This systematic review investigated the evidence for antidiabetic properties of the different parts of the mango plant in managing type 2 diabetes mellitus in animal models and humans. The electronic databases PubMed, FSTA, Web of Science, CINAHL, MEDLINE, and Cochrane Library were systematically searched to identify articles with clear objectives and methodologies available in the English language with publication date limits up to December 2020. Twenty-eight of 1001 animal and human studies met the inclusion criteria that investigated antidiabetic properties of mango from leaf (31%), flesh (38%), seed-kernel (7%), peel (14%), stem-bark (7%), and by-product (3%). Results support the glucose-lowering properties of mango in both animals and human. Proposed antidiabetic mechanisms of action include inhibition of α-amylase and α-glucosidase, improved antioxidant status, improved insulin sensitivity, facilitated glucose uptake, and gene regulation of glucose transporter type 4, insulin receptor substrate 1, and phosphoinositide 3-kinase. The animal and randomized control trial findings suggest that mango may be beneficial as an antidiabetic agent. Although these studies hold promise, additional observational studies and randomized control trials are required because human studies are significantly fewer in number, use mango flesh almost exclusively, and had modest blood glucose effects. Additional research gaps include identifying the mechanisms of action for the different components of the mango plant.


Asunto(s)
Diabetes Mellitus Tipo 2 , Mangifera , Animales , Humanos , Mangifera/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fosfatidilinositol 3-Quinasas , Frutas/química , Modelos Animales
6.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 851-863, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36656353

RESUMEN

Mangiferin (1,3,6,7-tetrahydroxy-2-[3,4,5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] xanthen-9-one) is a bioactive component derived primarily from the mango tree. Belonging to the Xanthone family, its structure allows it to engage with a variety of pharmacological targets. The symmetric linked core of xanthones has a heterogeneous biogenetic background. The carbon atoms are designated in a biochemical order, which reveals the reason of ring A (C1-C4) being referred to as acetate originated, and ring B (C5-C8) is referred to as shikimate originated. The antibacterial, hypocholesterolemic, antiallergic, cardiotonic, antidiabetic, anti-neoplastic, neuroprotective, antioxidant and immunomodulatory properties have all been demonstrated for the secondary metabolite. This study assessed and explained the important medical properties of mangiferin available in published literature, as well as its natural source, biosynthesis, absorption and bioavailability; multiple administration routes; metabolism; nanotechnology for enhanced efficacy of mangiferin and its toxicity, to aid the anticipated on-going potential of mangiferin as a novel diagnostic treatment.


Asunto(s)
Mangifera , Xantonas , Xantonas/farmacología , Xantonas/uso terapéutico , Hipoglucemiantes/uso terapéutico , Extractos Vegetales/farmacología , Mangifera/química
7.
Pharmacol Res ; 182: 106283, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35662629

RESUMEN

In the context of inflammation and immunity, there are fragmented and observational studies relating to the pharmacological activity of Mangifera indica L. and its main active component, mangiferin. Therefore, we aimed to analyze the potential beneficial effects of this plant extract (MIE, 90 % in mangiferin) in a mouse model of gouty arthritis, to allow the evaluation of cellular immune phenotypes and the biochemical mechanism/s beyond MIE activity. Gouty arthritis was induced by the intra-articular administration of MSU crystals (200 µg 20 µl-1), whereas MIE (0.1-10 mg kg-1) or corresponding vehicle (DMSO/saline 1:3) were orally administrated concomitantly with MSU (time 0), 6 and 12 h after the stimulus. Thereafter, knee joint score and oedema were evaluated in addition to western blot analysis for COX-2/mPGES-1 axis. Moreover, the analysis of pro/anti-inflammatory cyto-chemokines coupled with the phenotyping of the cellular infiltrate was performed. Treatment with MIE revealed a dose-dependent reduction in joint inflammatory scores with maximal inhibition observed at 10 mg kg-1. MIE significantly reduced leukocyte infiltration and activation and the expression of different pro-inflammatory cyto-chemokines in inflamed tissues. Furthermore, biochemical analysis revealed that MIE modulated COX-2/mPGES-1 and mPGDS-1/PPARγ pathways. Flow cytometry analysis also highlighted a prominent modulation of inflammatory monocytes (CD11b+/CD115+/LY6Chi), and Treg cells (CD4+/CD25+/FOXP3+) after MIE treatment. Collectively, the results of this study demonstrate a novel function of MIE to positively affect the local and systemic inflammatory/immunological perturbance in the onset and progression of gouty arthritis.


Asunto(s)
Artritis Gotosa , Mangifera , Extractos Vegetales , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Ciclooxigenasa 2/metabolismo , Mangifera/química , Ratones , Extractos Vegetales/farmacología , Linfocitos T Reguladores , Células Th17
8.
J Food Biochem ; 46(10): e14266, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35652286

RESUMEN

Hot water treatment (HT) induces chilling injury (CI) tolerance in mango, but prolonged exposure to HT causes softening. In this sense, calcium salts stabilize the cell wall. Nevertheless, there is little information on the effect of HT combined with calcium salts (HT-Ca) on calcium absorption and cell wall stability during storage of mango at CI temperature. We evaluated the effect of quarantine HT in combination with calcium chloride (CaCl2 ), calcium citrate (CaCit), or calcium lactate (CaLac) on calcium absorption, CI tolerance, and cell wall stabilization. HT and HT-CaCl2 had the lowest CI development. HT increased firmness loss and electrolyte leakage, and HT-Ca counteracted this effect. Overall, HT-Ca treatments had a similar effect on the cell wall degrading enzymes. HT-CaCl2 was the best treatment and did not present alterations on the epicuticular wax as observed on HT. HT-CaCl2 is a useful technology to stabilize cell wall and preserve mango during chilling storage. PRACTICAL APPLICATIONS: The addition of calcium salts in an established hot water quarantine procedure for mango exportation represents a viable alternative to counteract the negative effects of this thermal treatment upon cell microstructure, maintaining its positive effect of tolerance to chilling injury. In this sense, mango producers and packers can use a HT-CaCl2 treatment to reduce the presence of chilling injury and extent the fruit shelf life and improve its commercialization. Furthermore, technical and infrastructure changes are not necessary for the packaging chain.


Asunto(s)
Mangifera , Purificación del Agua , Calcio , Cloruro de Calcio/análisis , Cloruro de Calcio/farmacología , Citrato de Calcio/análisis , Citrato de Calcio/farmacología , Pared Celular , Frío , Frutas/química , Mangifera/química , Cuarentena , Sales (Química)/análisis , Sales (Química)/farmacología , Temperatura
9.
PLoS One ; 17(5): e0265566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35552543

RESUMEN

The present study assessed nutritional status, antioxidant activity, and total phenolic content in fruits, i.e., mango (Mangifera indica), apple (Malus domestica), and vegetable, i.e., bottle gourd (Lagenaria siceraria), and ridge gourd (Luffa acutangula) peels. The antioxidant activity and total phenolic content (TPC) were evaluated by using methanol extracts along with 2, 2-diphenyl-1-picrylhydrazyl (DPPH), Folin-Ciocalteu (FC) assay, respectively having Butylated hydroxytoluene (BHT) and Gallic acid (GA) as standard. The TPC and antioxidant activity in the peels ranged from 20 mg GAE/g to 525 mg GAE/g and 15.02% to 75.95%, respectively, which revealed that investigated fruit and vegetable peels are rich source of phytochemical constituents. Bottle gourd peels exhibited the highest value of DPPH compared to the rest of the peels included in the study. Likewise, mango peels had the highest TPC as compared to the rest of the fruit peels. This research showed that the utilization of agricultural wastes should be promoted at commercial level to achieve the nutritional benefit at zero cost and minimize the generation of biological waste.


Asunto(s)
Malus , Mangifera , Antioxidantes/química , Frutas/química , Mangifera/química , Estado Nutricional , Fenoles/química , Extractos Vegetales/química , Verduras
10.
Ultrason Sonochem ; 86: 106045, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35617886

RESUMEN

In this study, eco-friendly deep eutectic solvents (DESs) were used as extracting agents for the first time in the extraction of pectins from mango peel. Two novel green solvents including betaine-citric acid (Bet-CA) and choline chloride-malic acid (ChCl-MaA) were screened, and the extraction conditions were further optimized by full factor design experimental along with RSM. In addition, ultrasound treatment also had an influence on extraction yield, structural and physicochemical properties of extracted pectins. Two DES-extracted pectins had significantly higher yield, larger molecular weight and particles size than HCl-extracted pectin. High intensity ultrasound power enhanced the yield of low-ester pectins, but decreased the molecular weight and particles size of the pectins extracted. Monosaccharide compositions analysis showed that higher content of galacturonic acid (GalA) and larger HG region were observed in two DESs-extracted pectins. Fourier transform infrared spectra (FT-IR) of all pectins extracted were similar, with slight differences. Two DESs-extracted pectins exhibited higher DE values than HCl-extracted pectin. Thermal analysis and zeta potential results showed that HCl-extracted pectin had better stability than ChCl-MaA-extracted pectin. Additionally, HCl-extracted pectin had higher viscosity properties than two DESs-extracted pectins or commercial pectin (CP). Moreover, it was found that HCl-extracted pectin was in a colloid state, while two DESs-extracted pectins or CP were in a flow state. Ultrasound treatment significantly improved the yields of pectin/low-ester pectin. Additionally, ultrasound treatment remarkably decreased the viscosity and viscoelastic properties of the pectins extracted. The results were conducive to our understanding of the relationship between extraction conditions and physicochemical properties of the pectins extracted, which provides theoretical basis for the functional application of mango peel pectins in the food and pharmaceutical industry.


Asunto(s)
Mangifera , Disolventes Eutécticos Profundos , Ésteres , Mangifera/química , Pectinas/química , Sonicación , Espectroscopía Infrarroja por Transformada de Fourier
11.
Food Chem ; 390: 133168, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35569394

RESUMEN

The processing and consumption of mango (Mangifera indica) generate a sizeable amount of kernel waste with enormous and largely unexplored potential, while by-products from njangsa (Ricinodendron heudelotii) seed and bush mango (Irvingia gabonensis) kernel oil extraction are often discarded. This study aims to repurpose these kernels and seed wastes into added/high-value products and evaluate the ethanolic and methanolic extracts of their pressed marcs for polyphenolic content and potential antioxidant activity. The total phenolic content (TPC) and total flavonoid content (TFC) in the marc extracts ranged between 47.87 and 376.0 mg GAE/g and 4.85 and 13.70 mg Rutin/g, respectively. Both mango kernel marc extracts showed higher potent reducing power, ABTS+ radical and DPPH radical scavenging activities with half effective concentration (EC50) values (0.20-0.22 mg/mL) comparable to the reference compound; ascorbic acid (0.20 mg/mL). The TPC and TFC of the marc extracts generally strongly correlated with antioxidant activity. Relatively higher contents of xanthophyll and ß-carotene were detected in bush mango kernel methanolic extract than in the other extracts. Extraction solvent affected the composition and content of bioactives in pressed marcs of njangsa seed and mango kernel.


Asunto(s)
Antioxidantes , Mangifera , Antioxidantes/química , Flavonoides/análisis , Frutas/química , Mangifera/química , Fenoles/análisis , Extractos Vegetales/química , Semillas/química
12.
Sci Rep ; 12(1): 3072, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197512

RESUMEN

The post-treatment status of breast cancer survivors has become a concern because of the toxicity induced by chemotherapeutic agents in the brain tissues resulting in cognitive deficits, which is generally referred as chemobrain. The aim of this study was to assess the effect of a proprietary ayurvedic formulation Mulmina Mango against chemotherapy-induced cognitive impairment (CICI). Mammary carcinoma was induced by subcutaneously inoculating 4T1 cells into the mammary fat pad of the animals. Intraperitoneal administration of Cyclophosphamide, Methotrexate, 5-Fluorouracil (CMF) regimen was carried out once a week for three weeks. Treatment of Mulmina began one week before chemotherapy and continued till the end of the chemotherapy cycle. After three cycles of chemotherapy, cognitive decline was assessed by Morris water maze task followed by assessment of locomotor activity by open-field test. Tumor progression was evaluated by measurement of tumor volume. Oxidative and neuroinflammatory markers were also evaluated from the isolated brain samples. CMF treatment resulted in a considerable reduction in tumour volume. We found chemotherapy negatively affected behavioral and biochemical parameters in animals and Mulmina treatment ameliorated these cognitive impairments by restoring antioxidant and maintaining cytokine levels. The combination of phytochemicals in Mulmina proved its possible ability to alleviate CICI without affecting chemotherapeutic efficiency and could pave the way for identifying treatment strategies to combat chemobrain.


Asunto(s)
Antineoplásicos/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/prevención & control , Mangifera/química , Medicina Ayurvédica , Fitoquímicos/administración & dosificación , Fitoterapia , Extractos Vegetales/administración & dosificación , Animales , Antioxidantes/metabolismo , Disfunción Cognitiva/diagnóstico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratones , Fitoquímicos/farmacología , Extractos Vegetales/farmacología
13.
Artículo en Inglés | MEDLINE | ID: mdl-35162887

RESUMEN

Both acute and chronic kidney diseases substantially contribute to the morbidities and mortality of patients worldwide. The existing therapeutics, which are mostly developed from synthetic sources, present some unexpected effects in patients, provoking researchers to explore potential novel alternatives. Natural products that have protective effects against various renal pathologies could be potential drug candidates for kidney diseases. Mangiferin is a natural polyphenol predominantly isolated from Mangifera indica and possesses multiple health benefits against various human ailments, including kidney disease. The main objective of this review is to update the renoprotective potentials of mangiferin with underlying molecular pharmacology and to highlight the recent development of mangiferin-based therapeutics toward kidney problems. Literature published over the past decade suggests that treatment with mangiferin attenuates renal inflammation and oxidative stress, improves interstitial fibrosis and renal dysfunction, and ameliorates structural alteration in the kidney. Therefore, mangiferin could be used as a multi-target therapeutic candidate to treat renal diseases. Although mangiferin-loaded nanoparticles have shown therapeutic promise against various human diseases, there is limited information on the targeted delivery of mangiferin in the kidney. Further research is required to gain insight into the molecular pharmacology of mangiferin targeting kidney diseases and translate the preclinical results into clinical use.


Asunto(s)
Mangifera , Xantonas , Humanos , Mangifera/química , Estrés Oxidativo , Extractos Vegetales/farmacología , Xantonas/química , Xantonas/farmacología , Xantonas/uso terapéutico
14.
Molecules ; 27(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35011491

RESUMEN

Mangifera indica can generate up to 60% of polluting by-products, including peels. However, it has been shown that flavonoids and mangiferin are mainly responsible for the antioxidant, anti-inflammatory, and antibacterial activities closely related to the wound-healing process. The chemical composition of MEMI (methanolic extract of M. indica) was analyzed by HPLC-DAD, as well as concentrations of total phenol (TPC) and flavonoids (TFC) and antioxidant activity (SA50). Wound-healing efficacy was determined by measurements of wound contraction, histological analysis, and tensiometric method; moreover, anti-inflammatory, antibacterial, and acute dermal toxicity (OECD 402) were also evaluated. Phenol, resorcinol, conjugated resorcinol, and mangiferin were detected. TPC, TFC, and SA50 were 136 mg GAE/g, 101.66 mg QE/g, and 36.33 µg/mL, respectively. Tensile strength and wound contraction closure did not show significant differences between MEMI and dexpanthenol groups. Histological analysis (after 14 days) shows a similar architecture between MEMI treatment and normal skin. MEMI exhibits a reduction in edema. Staphylococcus epidermidis had an MIC of 2 mg/mL, while Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli reached 4 mg/mL. The MEMI showed no signs of toxicity. Therefore, this study demonstrates multiple targets that flavonoids and mangiferin of MEMI may present during the healing process.


Asunto(s)
Mangifera/química , Extractos Vegetales , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones , Animales , Modelos Animales de Enfermedad , Flavonoides/química , Flavonoides/farmacología , Masculino , Ratones , Extractos Vegetales/química , Extractos Vegetales/farmacología , Heridas y Lesiones/tratamiento farmacológico , Heridas y Lesiones/metabolismo , Heridas y Lesiones/microbiología , Xantonas/química , Xantonas/farmacología
15.
Biomed Res Int ; 2021: 1401945, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917680

RESUMEN

OBJECTIVE: Mangifera indica Linn, Bridelia ferruginea Benth, and Alstonia boonei De Wild are three plants commonly used in the traditional treatment of urinary tract infections in Benin. This study sets out to assess the cytotoxic and teratogenic effects of extracts of these plants on Artemia salina larvae and hen embryos. METHODS AND RESULTS: The aqueous and ethanolic extracts were obtained by maceration of the powders in solvents. Larval cytotoxicity was performed on Artemia salina larvae. The teratogenic effect of these plants was evaluated on chick embryos at 100 mg/kg and 300 mg/kg. The extracts were injected on the 7th and 14th days of incubation. The quality of the hatched chicks was evaluated by the Tona score followed by the hematological and the biochemical parameter assays. The extracts did not show cytotoxicity on the larvae. The eggs treated with plant extracts at 300 mg/kg significantly lowered the hatchability rate, except for the Mangifera indica Linn. The chicks obtained were all at the very good quality. Then, no significant variation was observed between hematological parameters except white blood cells. For the biochemical parameters, only ASAT showed some significant variations for a few extracts. It would be important to assess the genotoxicity of the plant extracts to determine more broader toxicity. These data justify the use of these medicinal plants in traditional Beninese medicine and constitute in fact a source of production of anti-infectious drugs.


Asunto(s)
Larva/efectos de los fármacos , Medicina Tradicional/efectos adversos , Plantas Medicinales/efectos adversos , Plantas Medicinales/química , Teratogénesis/efectos de los fármacos , Infecciones Urinarias/tratamiento farmacológico , Animales , Antiinfecciosos/efectos adversos , Antiinfecciosos/farmacología , Benin , Embrión de Pollo , Pollos , Leucocitos/efectos de los fármacos , Mangifera/química , Pruebas de Mutagenicidad/métodos , Extractos Vegetales/efectos adversos , Extractos Vegetales/farmacología
16.
Molecules ; 26(24)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34946598

RESUMEN

Phenolic compounds from mango (M. indica) seed kernels (MSK) var. Sugar were obtained using supercritical CO2 and EtOH as an extraction solvent. For this purpose, a central composite design was carried out to evaluate the effect of extraction pressure (11-21 MPa), temperature (40-60 °C), and co-solvent contribution (5-15% w/w EtOH) on (i) extraction yield, (ii) oxidative stability (OS) of sunflower edible oil (SEO) with added extract using the Rancimat method, (iii) total phenolics content, (iv) total flavonoids content, and (v) DPPH radical assay. The most influential variable of the supercritical fluid extraction (SFE) process was the concentration of the co-solvent. The best OS of SEO was reached with the extract obtained at 21.0 MPa, 60 °C and 15% EtOH. Under these conditions, the extract increased the OS of SEO by up to 6.1 ± 0.2 h (OS of SEO without antioxidant, Control, was 3.5 h). The composition of the extract influenced the oxidative stability of the sunflower edible oil. By SFE it was possible to obtain extracts from mango seed kernels (MSK) var. Sugar that transfer OS to the SEO. These promissory extracts could be applied to foods and other products.


Asunto(s)
Antioxidantes/farmacología , Mangifera/química , Fenoles/farmacología , Extractos Vegetales/farmacología , Aceites de Plantas/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Compuestos de Bifenilo/antagonistas & inhibidores , Cromatografía con Fluido Supercrítico , Fenoles/química , Fenoles/aislamiento & purificación , Picratos/antagonistas & inhibidores , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
17.
Molecules ; 26(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34946715

RESUMEN

The green synthesis of iron oxide nanoparticles (FeO NP) has been investigated using the extract in absolute ethanolic and alcoholic solvents 96% from the peel of the mango fruit (Mangifera indica), thus evaluating the influence of the type of solvent on the extraction of reducing metabolites. A broad approach to characterization initially controlled by UV-vis spectrophotometry has been directed, the formation mechanism was evaluated by Fourier transform infrared spectroscopy (FTIR), the magnetic properties by characterization by Physical Property Measurement System (PPSM), in addition to a large number of techniques such as X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (DRX), transmission electron microscopy (TEM/STEM), electron energy loss spectroscopy (EELS), and Z potential to confirm the formation of FeO NP. The results suggest better characteristics for FeO NP synthesized using 96% alcoholic solvent extract. The successful synthesis was directly proven in the removal of metals (Cr-VI, Cd, and Pb) as a potential alternative in the remediation of agricultural soils.


Asunto(s)
Compuestos Férricos/química , Tecnología Química Verde , Mangifera/química , Nanopartículas/química , Extractos Vegetales/química , Suelo/química , Producción de Cultivos
18.
Int J Biol Macromol ; 193(Pt B): 1138-1150, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34717979

RESUMEN

The objective of the study was to prepare active films based on pectin and polyphenol-rich extracts from Tommy Atkins mango peels. Aqueous and methanolic extracts showed a variety of phenolic compounds that were identified by UPLC-MS analysis, and a high content of total phenolics that were quantified by the Folin-Ciocalteau method. The methanolic extract showed better results in antioxidant tests and was more effective in inhibiting the growth of Gram-positive and Gram-negative bacteria. The pectin extracted from mango peels showed good thermal stability and a degree of methoxylation of 58.3% by 1H NMR. The films containing the phenolic extracts showed lower water vapor permeability when compared to the control film (without any phenolic extracts). The incorporation of the extracts led to an increase in elongation (ε) and a decrease in tensile strength (σ) and modulus of elasticity (Y). The films with aqueous or methanolic extracts showed higher antioxidant activity in terms of inhibition of the DPPH radical. Therefore, the films developed in this work are presented as a promising alternative for food packaging and/or coating applications.


Asunto(s)
Antioxidantes/química , Embalaje de Alimentos , Mangifera/química , Membranas Artificiales , Pectinas/química
19.
Int J Biol Macromol ; 188: 678-688, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343590

RESUMEN

As high-efficiency, safe, and low-drug resistant antibacterial agents, silver nanoparticles (AgNPs) have been widely applied in food and biomedicine. AgNPs was prepared using mango peel extract (MPE) as green and cheap reducing agent and stabilizer. In addition, a novel of preservative film material was developed with polylactic acid (PLA) as protective and substrate. AgNPs was characterized by XPS, XRD and TEM, and the size of AgNPs were in the range of 2.5-6.5 nm. The addition of AgNPs improved the mechanical properties of the film and its barrier ability to water vapor and oxygen. The film exhibited excellent antibacterial properties, and the inhibition rate against Escherichia coli and Staphylococcus aureus were above 95%. Furthermore, in terms of safety, the silver migration and cytotoxicity of the film met the relevant standards, and the shelf life of strawberries was significantly extended.


Asunto(s)
Embalaje de Alimentos , Mangifera/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Poliésteres/química , Plata/química , Animales , Compuestos de Bifenilo/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Óxidos N-Cíclicos/química , Escherichia coli/efectos de los fármacos , Fragaria , Humanos , Imidazoles/química , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Espectroscopía de Fotoelectrones , Picratos/química , Plata/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Termogravimetría , Agua/química , Difracción de Rayos X
20.
Molecules ; 26(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201400

RESUMEN

Mango peels are usually discarded as waste; however, they contain phytochemicals and could provide functional properties to food and promote human health. This study aimed to determine the optimal lactic acid bacteria for fermentation of mango peel and evaluate the effect of mango peel on neuronal protection in Neuron-2A cells against amyloid beta (Aß) treatment (50 µM). Mango peel can be fermented by different lactic acid bacteria species. Lactobacillus acidophilus (BCRC14079)-fermented mango peel produced the highest concentration of lactic acid bacteria (exceeding 108 CFU/mL). Mango peel and fermented mango peel extracts upregulated brain-derived neurotrophic factor (BDNF) expression for 1.74-fold in Neuron-2A cells. Furthermore, mango peel fermented products attenuated oxidative stress in Aß-treated neural cells by 27%. Extracts of L. acidophilus (BCRC14079)-fermented mango peel treatment decreased Aß accumulation and attenuated the increase of subG1 caused by Aß induction in Neuron-2A cells. In conclusion, L. acidophilus (BCRC14079)-fermented mango peel acts as a novel neuronal protective product by inhibiting oxidative stress and increasing BDNF expression in neural cells.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Fermentación/fisiología , Frutas/química , Mangifera/química , Neuronas/efectos de los fármacos , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Lactobacillales , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA