Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Glycobiology ; 24(4): 392-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24474243

RESUMEN

Congenital disorders of glycosylation (CDGs) result from mutations in various N-glycosylation genes. The most common type, phosphomannomutase-2 (PMM2)-CDG (CDG-Ia), is due to deficient PMM2 (Man-6-P → Man-1-P). Many patients die from recurrent infections, but the mechanism is unknown. We found that glycosylation-deficient patient fibroblasts have less intercellular adhesion molecule-1 (ICAM-1), and because of its role in innate immune response, we hypothesized that its reduction might help explain recurrent infections in CDG patients. We, therefore, studied mice with mutations in Mpi encoding phosphomannose isomerase (Fru-6-P → Man-6-P), the cause of human MPI-CDG. We challenged MPI-deficient mice with an intraperitoneal injection of zymosan to induce an inflammatory response and found decreased neutrophil extravasation compared with control mice. Immunohistochemistry of mesenteries showed attenuated neutrophil egress, presumably due to poor ICAM-1 response to acute peritonitis. Since phosphomannose isomerase (MPI)-CDG patients and their cells improve glycosylation when given mannose, we provided MPI-deficient mice with mannose-supplemented water for 7 days. This restored ICAM-1 expression on mesenteric endothelial cells and enhanced transendothelial migration of neutrophils during acute inflammation. Attenuated inflammatory response in glycosylation-deficient mice may result from a failure to increase ICAM-1 on the vascular endothelial surface and may help explain recurrent infections in patients.


Asunto(s)
Trastornos Congénitos de Glicosilación/metabolismo , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Animales , Células Cultivadas , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/inmunología , Suplementos Dietéticos , Glicosilación , Humanos , Inflamación/inmunología , Molécula 1 de Adhesión Intercelular/inmunología , Manosa/administración & dosificación , Manosa/sangre , Manosa/metabolismo , Manosa-6-Fosfato Isomerasa/genética , Manosa-6-Fosfato Isomerasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Peritonitis/inducido químicamente , Peritonitis/metabolismo , Peritonitis/patología , Zimosan/administración & dosificación
2.
FASEB J ; 28(4): 1854-69, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24421398

RESUMEN

Patients with congenital disorder of glycosylation (CDG), type Ib (MPI-CDG or CDG-Ib) have mutations in phosphomannose isomerase (MPI) that impair glycosylation and lead to stunted growth, liver dysfunction, coagulopathy, hypoglycemia, and intestinal abnormalities. Mannose supplements correct hypoglycosylation and most symptoms by providing mannose-6-P (Man-6-P) via hexokinase. We generated viable Mpi hypomorphic mice with residual enzymatic activity comparable to that of patients, but surprisingly, these mice appeared completely normal except for modest (~15%) embryonic lethality. To overcome this lethality, pregnant dams were provided 1-2% mannose in their drinking water. However, mannose further reduced litter size and survival to weaning by 40 and 66%, respectively. Moreover, ~50% of survivors developed eye defects beginning around midgestation. Mannose started at birth also led to eye defects but had no effect when started after eye development was complete. Man-6-P and related metabolites accumulated in the affected adult eye and in developing embryos and placentas. Our results demonstrate that disturbing mannose metabolic flux in mice, especially during embryonic development, induces a highly specific, unanticipated pathological state. It is unknown whether mannose is harmful to human fetuses during gestation; however, mothers who are at risk for having MPI-CDG children and who consume mannose during pregnancy hoping to benefit an affected fetus in utero should be cautious.


Asunto(s)
Ceguera/etiología , Suplementos Dietéticos/toxicidad , Manosa-6-Fosfato Isomerasa/metabolismo , Manosa/toxicidad , Animales , Ceguera/genética , Ceguera/metabolismo , Western Blotting , Células Cultivadas , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Ojo/embriología , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Femenino , Humanos , Inmunohistoquímica , Masculino , Manosa/sangre , Manosa/metabolismo , Manosa-6-Fosfato Isomerasa/genética , Manosafosfatos/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Placenta/efectos de los fármacos , Placenta/embriología , Placenta/metabolismo , Embarazo
3.
J Nutr ; 139(9): 1648-52, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19494026

RESUMEN

Nonglucose carbohydrates such as mannose and inositol are important in early growth and development, although little is known about their metabolism. Our aim in this study was to determine the plasma appearance rates (Ra) for mannose and inositol in newborns as an index of utilization and as an improved guide to supplementation practices. We studied late-preterm (n = 9) and term (n = 5) infants (median 34 wk gestation, range 33-41 wk) using a multiple isotope infusion start time protocol to determine Ra for each carbohydrate. The plasma mannose concentration [median (range)] was 69.83 (48.60-111.75) micromol/L and the Ra was 0.59 (0.42-0.98) micromol x kg(-1) x min(-1) (854 micromol x kg(-1) x d(-1)). The plasma inositol concentration was 175.74 (59.71-300.60) micromol/L and Ra was 1.06 (0.33-1.75) micromol x kg(-1).min(-1) (1521 micromol x kg(-1) x d(-1)). The Ra for mannose and inositol are >10-fold higher than the amounts a breast-fed infant typically ingests, which are approximately 6 micromol x kg(-1) x d(-1) mannose and 150 micromol x kg(-1) x d(-1) inositol. Thus, for both mannose and inositol, the newborn infant must produce these compounds from glucose at rates sufficient to meet nutritional requirements.


Asunto(s)
Carbohidratos de la Dieta/metabolismo , Fórmulas Infantiles/metabolismo , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido/metabolismo , Inositol/sangre , Manosa/sangre , Leche Humana/metabolismo , Glucemia/metabolismo , Lactancia Materna , Carbohidratos de la Dieta/administración & dosificación , Edad Gestacional , Humanos , Recien Nacido Prematuro/metabolismo , Infusiones Intravenosas , Inositol/administración & dosificación , Inositol/metabolismo , Manosa/administración & dosificación , Manosa/metabolismo
4.
Metabolism ; 52(8): 1019-27, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12898467

RESUMEN

Mannose is an essential hexose that is required for glycoprotein synthesis. Although circulating mannose levels are known to be influenced by metabolic disorders, how physiological levels of mannose fluctuate in normal and diabetic subjects is largely unknown. We describe a new accurate and sensitive assay for determining circulating mannose levels, which we used to measure plasma mannose levels in 273 normal and diabetic (DM) subjects. Our results revealed a clear correlation (r = 0.754) between fasting plasma mannose (FPM) and fasting plasma glucose (FPG) levels. Our mannose assay showed sensitivity and specificity comparable to that seen for hemoglobin A(1c) (HbA(1c)) assay in subjects with impaired glucose tolerance (IGT) or DM whose FPG levels were normal. Mannose levels were found to increase less than glucose levels in response to an oral glucose tolerance test (OGTT). Furthermore, plasma mannose levels did not significantly change following a meal and more closely correlated with the coefficient of variation (CV) of daily glucose levels than did glucose itself. In conclusion, the close correlation between FPM and FPG levels taken together with the small fluctuations seen in plasma mannose in response to glucose suggests that the measurement of mannose using our assay could potentially play a supplementary role in the diagnosis and screening of patients with mild DM.


Asunto(s)
Diabetes Mellitus/sangre , Intolerancia a la Glucosa/sangre , Manosa/sangre , Adulto , Anciano , Glucemia/metabolismo , Colorimetría , Colorantes , Diabetes Mellitus Tipo 2/sangre , Ingestión de Alimentos/fisiología , Ayuno/metabolismo , Femenino , Fructosamina/metabolismo , Prueba de Tolerancia a la Glucosa , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Persona de Mediana Edad
5.
Biochim Biophys Acta ; 1528(2-3): 116-26, 2001 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-11687298

RESUMEN

Dietary mannose is used to treat glycosylation deficient patients with mutations in phosphomannose isomerase (PMI), but there is little information on mannose metabolism in model systems. We chose the mouse as a vertebrate model. Intravenous injection of [2-3H]mannose shows rapid equilibration with the extravascular pool and clearance t(1/2) of 28 min with 95% of the label catabolized via glycolysis in <2 h. Labeled glycoproteins appear in the plasma after 30 min and increase over 3 h. Various organs incorporate [2-3H]mannose into glycoproteins with similar kinetics, indicating direct transport and utilization. Liver and intestine incorporate most of the label (75%), and the majority of the liver-derived proteins eventually appear in plasma. [2-3H]Mannose-labeled liver and intestine organ cultures secrete the majority of their labeled proteins. We also studied the long-term effects of mannose supplementation in the drinking water. It did not cause bloating, diarrhea, abnormal behavior, weight gain or loss, or increase in hemoglobin glycation. Organ weights, histology, litter size, and growth of pups were normal. Water intake of mice given 20% mannose in their water was reduced to half compared to other groups. Mannose in blood increased up to 9-fold (from 100 to 900 microM) and mannose in milk up to 7-fold (from 75 to 500 microM). [2-3H]Mannose clearance, organ distribution, and uptake kinetics and hexose content of glycoproteins in organs were similar in mannose-supplemented and non-supplemented mice. Mannose supplements had little effect on the specific activity of phosphomannomutase (Man-6-P<-->Man-1-P) in different organs, but specific activity of PMI in brain, intestine, muscle, heart and lung gradually increased <2-fold with increasing mannose intake. Thus, long-term mannose supplementation does not appear to have adverse effects on mannose metabolism and mice safely tolerate increased mannose with no apparent ill effects.


Asunto(s)
Manosa/farmacocinética , Administración Oral , Animales , Animales Recién Nacidos , Peso Corporal , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Femenino , Glicoproteínas/análisis , Glicoproteínas/metabolismo , Inyecciones Intravenosas , Manosa/administración & dosificación , Manosa/análisis , Manosa/sangre , Manosa-6-Fosfato Isomerasa/análisis , Ratones , Leche/química , Leche/metabolismo , Modelos Animales , Técnicas de Cultivo de Órganos , Fosfotransferasas (Fosfomutasas)/análisis , Embarazo , Factores de Tiempo , Tritio
6.
J Biol Chem ; 267(35): 25347-51, 1992 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-1460030

RESUMEN

Deficient expression of glycoinositol phospholipid (GPI) anchored proteins in affected paroxysmal nocturnal hemoglobinuria (PNH) cells has been traced to a defect in GPI anchor assembly. In a previous study (Schubert, J., Schmidt, R. E., and Medof, M. E. (1993) J. Biol. Chem., in press) we characterized the biosynthesis of putative Man-containing GPI anchor precursors in normal peripheral blood lymphocytes and investigated assembly of these intracellular GPI intermediates in CD48- affected and CD48+ unaffected T and natural killer cell lines of PNH patients. We found that affected T cells from five patients exhibited a uniform defect in which dolichol-phosphoryl-Man was synthesized but no GPI mannolipids were expressed. In this study, membranes of patients' affected T cells were labeled with UDP-[3H]GlcNAc to evaluate earlier steps in GPI synthesis, and intact cells were fused to Thy-1- murine lymphoma mutants harboring different defects in early GPI assembly to test for the presence of corresponding or complementary lesions. In all cases, affected cell membranes failed to assemble GlcNAc-inositol phospholipid, the initial precursor of GPI anchor structures, and the intact cells failed to complement class A mutants while complementing other classes. Affected polymorphonuclear leukocytes from three additional patients of different origin were then labeled with [3H]Man and the labeling patterns found to correspond to those obtained with the T lymphocytes. Taken together the data indicate that the genetic lesion in PNH cells resides in a DNA element which: 1) encodes a product required for the synthesis of GlcNAc-inositol phospholipid, 2) corresponds to that altered in class A Thy-1- murine lymphoma mutants, and 3) is commonly affected in different patients.


Asunto(s)
Acetilglucosamina/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Hemoglobinuria Paroxística/inmunología , Hemoglobinuria Paroxística/metabolismo , Linfoma/inmunología , Linfoma/metabolismo , Animales , Antígenos CD/genética , Antígeno CD48 , Membrana Celular/metabolismo , Monofosfato de Dolicol Manosa/metabolismo , Hemoglobinuria Paroxística/genética , Humanos , Células Asesinas Naturales/inmunología , Linfoma/genética , Manosa/sangre , Ratones , Mutación , Neutrófilos/inmunología , Neutrófilos/metabolismo , Trypanosoma brucei brucei/metabolismo , Uridina Difosfato N-Acetilglucosamina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA