Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cytoskeleton (Hoboken) ; 73(3): 145-59, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26887361

RESUMEN

The male gametophyte of the semi-aquatic fern, Marsilea vestita, produces multiciliated spermatozoids in a rapid developmental sequence that is controlled post-transcriptionally when dry microspores are placed in water. Development can be divided into two phases, mitosis and differentiation. During the mitotic phase, a series of nine successive division cycles produce 7 sterile cells and 32 spermatids in 4.5-5 h. During the next 5-6 h, each spermatid differentiates into a corkscrew-shaped motile spermatozoid with ∼140 cilia. In order to study the mechanisms that regulate spermatogenesis, we used RNAseq to generate a reference transcriptome that allowed us to assess abundance of transcripts at different stages of development. Here, we characterize transcripts present in the kinesin motor family. Over 120 kinesin-like sequences were identified in our transcriptome that represent 56 unique kinesin transcripts. Members of the kinesin-2, -4, -5, -7, -8, -9, -12, -13, and -14 families, in addition to several plant specific and 'orphan' kinesins are present. Most (91%) of these kinesin transcripts change in abundance throughout gametophyte development, with 52% of kinesin mRNAs enriched during the mitotic phase and 39% enriched during differentiation. Functional analyses of six kinesins with different patterns of transcript abundance show that the temporal regulation of these transcripts during gametogenesis correlates directly with kinesin protein function.


Asunto(s)
Gametogénesis en la Planta/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Cinesinas/biosíntesis , Marsileaceae/metabolismo , Proteínas de Plantas/biosíntesis , Polen/metabolismo , Transcriptoma/fisiología , Cinesinas/genética , Marsileaceae/citología , Marsileaceae/genética , Proteínas de Plantas/genética , Polen/citología
2.
Methods Cell Biol ; 127: 403-44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25837402

RESUMEN

Marsilea vestita is a semiaquatic fern that produces its spores (meiotic products) as it undergoes a process of natural desiccation. During the period of desiccation, the spores mature, and produce large quantities of pre-mRNA, which is partially processed and stored in nuclear speckles and can remain stable during a period of extended quiescence in the dry spore. Rehydration of the spores initiates a highly coordinated developmental program, featuring nine successive mitotic division cycles that occur at precise times and in precise planes within the spore wall to produce 39 cells, 32 of which are spermatids. The spermatids then undergo de novo basal body formation, the assembly of a massive cytoskeleton, nuclear and cell elongation, and finally ciliogenesis, before being released from the spore wall. The entire developmental program requires only 11 h to reach completion, and is synchronous in a population of spores rehydrated at the same time. Rapid development in this endosporic gametophyte is controlled posttranscriptionally, where stored pre-mRNAs, many of which are intron-retaining transcripts, are unmasked, processed, and translated under tight spatial and temporal control. Here, we describe posttranscriptional mechanisms that exert temporal and spatial control over this developmental program, which culminates in the production of ∼140 ciliary axonemes in each spermatozoid.


Asunto(s)
Cilios/genética , Marsileaceae/citología , Polen/citología , Espermidina/metabolismo , Esporas/citología , Diferenciación Celular/genética , Cilios/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas , Marsileaceae/genética , Marsileaceae/metabolismo , Morfogénesis/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Poliadenilación/genética , Interferencia de ARN , ARN Mensajero/genética , ARN de Planta/genética , ARN Interferente Pequeño , Reproducción/fisiología , Esporangios/fisiología , Transcriptoma/genética
3.
Dev Cell ; 24(5): 517-29, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23434411

RESUMEN

The utilization of stored RNA is a driving force in rapid development. Here, we show that retention and subsequent removal of introns from pre-mRNAs regulate temporal patterns of translation during rapid and posttranscriptionally controlled spermatogenesis of the fern Marsilea vestita. Analysis of RNAseq-derived transcriptomes revealed a large subset of intron-retaining transcripts (IRTs) that encode proteins essential for gamete development. Genomic and IRT sequence comparisons show that other introns have been previously removed from the IRT pre-mRNAs. Fully spliced isoforms appear at distinct times during development in a spliceosome-dependent and transcription-independent manner. RNA interference knockdowns of 17/17 IRTs produced anomalies after the time points when those transcripts would normally be spliced. Intron retention is a functional mechanism for forestalling precocious translation of transcripts in the male gametophyte of M. vestita. These results have broad implications for plant gene regulation, where intron retention is widespread.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Intrones/genética , Marsileaceae/genética , Proteínas de Plantas/genética , Polen/genética , Biosíntesis de Proteínas , Espermatogénesis/fisiología , Western Blotting , Diferenciación Celular , Técnica del Anticuerpo Fluorescente , Marsileaceae/citología , Interferencia de ARN , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Protoplasma ; 248(3): 457-73, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21487804

RESUMEN

The endosporic male gametophyte of the water fern, Marsilea vestita, provides a unique opportunity to study the mechanisms that control cell fate determination during a burst of rapid development. In this review, we show how the spatial and temporal control of development in this simple gametophyte involves several distinct modes of RNA processing that allow the translation of specific mRNAs at distinct stages during gametogenesis. During the early part of development, nine successive cell division cycles occur in precise planes within a closed volume to produce seven sterile cells and 32 spermatids. There is no cell movement in the gametophyte; so, cell position and size within the spore wall define cell fate. After the division cycles have been completed, the spermatids become sites for the de novo formation of basal bodies, for the assembly of a complex cytoskeleton, for nuclear and cell elongation, and for ciliogenesis. In contrast, the adjacent sterile cells exhibit none of these changes. The spermatids differentiate into multiciliated, corkscrew-shaped gametes that resemble no other cells in the entire plant. Development is controlled post-transcriptionally. The transcripts stored in the microspore are released (unmasked) in the gametophyte at different times during development. At the start of these studies, we identified several key mRNAs that undergo translation at specific stages of gametophyte development. We developed RNA silencing protocols that enabled us to block the translation of these proteins and thereby establish their necessity and sufficiency for the completion of specific stages of gametogenesis. In addition, RNAi enabled us to identify additional proteins that are essential for other phases of development. Since the distributions of mRNAs and the proteins they encode are not identical in the gametophyte, transcript processing is apparently important in allowing translation to occur under strict temporal and spatial control. Transcript polyadenylation occurs in the spermatogenous cells in ways that match the translation of specific mRNAs. We have found that the exon junction complex plays key roles in transcript regulation and modifications that underlie cell specification in the gametophyte. We have recently become interested in the mechanisms that control the unmasking of the stored transcripts and have linked the synthesis and redistribution of spermidine in the gametophyte to the control of mRNA release from storage during early development and later to basal body formation, cytoskeletal assembly, and nuclear and cell elongation in the differentiating spermatids.


Asunto(s)
Células Germinativas de las Plantas/metabolismo , Marsileaceae/metabolismo , Proteínas de Plantas/metabolismo , Polen/metabolismo , Diferenciación Celular/fisiología , Células Germinativas de las Plantas/citología , Marsileaceae/citología , Marsileaceae/genética , Morfogénesis , Proteínas de Plantas/genética , Polen/citología , Polen/genética
5.
Plant Cell ; 22(11): 3678-91, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21097708

RESUMEN

Here, we show that the polyamine spermidine plays a key role as a morphogenetic determinant during spermatid development in the water fern Marsilea vestita. Spermidine levels rise first in sterile jacket cells and then increase dramatically in spermatogenous cells as the spermatids mature. RNA interference and drug treatments were employed to deplete spermidine in the gametophyte at different stages of gametogenesis. Development in spermidine-depleted gametophytes was arrested before the completion of the last round of cell divisions. In spermidine-depleted spermatogenous cells, chromatin failed to condense properly, basal body positioning was altered, and the microtubule ribbon was in disarray. When cyclohexylamine, a spermidine synthase (SPDS) inhibitor, was added at the start of spermatid differentiation, the spermatid nuclei remained round, centrin failed to localize into basal bodies, thus blocking basal body formation, and the microtubule ribbon was completely abolished. In untreated gametophytes, spermidine made in the jacket cells moves into the spermatids, where it is involved in the unmasking of stored SPDS mRNAs, leading to substantial spermidine synthesis in the spermatids. We found that treating spores directly with spermidine or other polyamines was sufficient to unmask a variety of stored mRNAs in gametophytes and arrest development. Differences in patterns of transcript distribution after these treatments suggest that specific transcripts reside in different locations in the dry spore; these differences may be linked to the timing of unmasking and translation for that mRNA during development.


Asunto(s)
Diferenciación Celular/fisiología , Marsileaceae/citología , Marsileaceae/fisiología , Morfogénesis/fisiología , Polen/citología , Polen/fisiología , Espermidina/metabolismo , Ciclohexilaminas/metabolismo , Silenciador del Gen , Marsileaceae/genética , Datos de Secuencia Molecular , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espermidina Sintasa/antagonistas & inhibidores , Espermidina Sintasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA