Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 34(4): 949-957, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38480002

RESUMEN

There has been a growing interest in skin beauty and antimelanogenic products. Melanogenesis is the process of melanin synthesis whereby melanocytes are activated by UV light or hormone stimulation to produce melanin. Melanogenesis is mediated by several enzymes, such as tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1), and TRP-2. In this study, we investigated the effect of Tuber himalayense extract on melanin synthesis in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 melanoma cells. We confirmed that T. himalayense extract was not toxic to α-MSH-treated B16F10 melanoma cells and exhibited a significant inhibitory effect on melanin synthesis at concentrations of 25, 50, and 100 µg/ml. Additionally, the T. himalayense extract inhibited melanin, TRP-1, TRP-2, tyrosinase, and MITF, which are enzymes involved in melanin synthesis, in a concentration-dependent manner. Furthermore, T. himalayense extract inhibited the mitogen-activated protein kinase (MAPK) pathways, such as extracellular signal-regulated kinase-1/2 (ERK), c-Jun N-terminal kinase (JNK), and p38. Therefore, we hypothesized that various components of T. himalayense extract affect multiple factors involved in melanogenesis in B16F10 cells. Our results indicate that T. himalayense extract could potentially be used as a new material for preparing whitening cosmetics.


Asunto(s)
Melaninas , Factor de Transcripción Asociado a Microftalmía , Monofenol Monooxigenasa , Extractos Vegetales , Melaninas/biosíntesis , Melaninas/metabolismo , Animales , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Línea Celular Tumoral , República de Corea , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Oxidorreductasas Intramoleculares/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Melanoma Experimental/metabolismo , Oxidorreductasas/metabolismo , Tubérculos de la Planta/química , Glicoproteínas de Membrana/metabolismo , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Supervivencia Celular/efectos de los fármacos
2.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108635

RESUMEN

Pearl powder is a famous traditional Chinese medicine that has a long history in treating palpitations, insomnia, convulsions, epilepsy, ulcers, and skin lightining. Recently, several studies have demonstrated the effects of pearl extracts on protection of ultraviolet A (UVA) induced irritation on human skin fibroblasts and inhibition of melanin genesis on B16F10 mouse melanoma cells. To further explore the effect we focused on the whitening efficacy of pearl hydrolyzed conchiolin protein (HCP) on human melanoma MNT-1 cells under the irritation of alpha-melanocyte-stimulating hormone (α-MSH) or endothelin 1 (ET-1) to evaluate the intracellular tyrosinase and melanin contents, as well as the expression levels of tyrosinase (TYR), tyrosinase related protein 1 (TRP-1), and dopachrome tautomerase (DCT) genes and related proteins. We found that HCP could decrease the intracellular melanin content by reducing the activity of intracellular tyrosinase and inhibiting the expression of TYR, TRP-1, DCT genes and proteins. At the same time, the effect of HCP on melanosome transfer effect was also investigated in the co-culture system of immortalized human keratinocyte HaCaT cells with MNT-1. The result indicated that HCP could promote the transfer of melanosomes in MNT-1 melanocytes to HaCaT cells, which might accelerate the skin whitening process by quickly transferring and metabolizing melanosomes during keratinocyte differentiation. Further study is needed to explore the mechanism of melanosome transfer with depigmentation.


Asunto(s)
Melanoma Experimental , Melanoma , Animales , Ratones , Humanos , Melaninas/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Monofenol Monooxigenasa/metabolismo , Endotelina-1/metabolismo , Línea Celular Tumoral , Melanocitos/metabolismo , Melanoma/metabolismo , Hidrolisados de Proteína/metabolismo , Melanoma Experimental/metabolismo
3.
Transpl Immunol ; 76: 101766, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36464219

RESUMEN

Melanocyte damage, innate immune response, adaptive immune response, and immune inflammatory microenvironment disorders are involved in the development of the immunological pathogenic mechanism of vitiligo. Mesenchymal stem cells are considered an ideal type of cells for the treatment of vitiligo owing to their low immunogenicity, lower rates of transplant rejection, and ability to secrete numerous growth factors, exosomes, and cytokines in vivo. The regulation of signaling pathways related to oxidative stress and immune imbalance in the immunological pathogenesis of vitiligo can improve the immune microenvironment of tissue injury sites. In addition, co-transplantation with melanocytes can reverse the progression of vitiligo. Therefore, continuous in-depth research on the immunopathogenic mechanism involved in this disease and mesenchymal stem cell-based therapy is warranted for the treatment of vitiligo in the future.


Asunto(s)
Enfermedades del Sistema Inmune , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Vitíligo , Humanos , Vitíligo/terapia , Vitíligo/metabolismo , Melanocitos/metabolismo , Melanocitos/patología , Estrés Oxidativo , Enfermedades del Sistema Inmune/metabolismo , Células Madre Mesenquimatosas/patología
4.
Molecules ; 27(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235295

RESUMEN

Plant saponins are abundant and diverse natural products with a great potential for use in drug-discovery research. Here, we evaluated extracts of saponins-rich fractions of argan leaves and argan oil extraction byproducts (shell, pulp, press cake) for their effect on melanogenesis. Results show that from among the samples tested, only the saponins-rich fraction from leaves (ALS) inhibited melanin production in B16 murine melanoma (B16) cells. The mechanism of the melanogenesis inhibition was elucidated by determining the protein and mRNA expression of melanogenesis-associated enzymes tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT), and microphthalmia-associated transcription factor (MITF), and performing DNA microarray analysis. Results showed that 10 µg/mL ALS significantly inhibited melanogenesis in B16 cells and human epidermal melanocytes by 59% and 48%, respectively, without cytotoxicity. The effect of ALS on melanogenesis can be attributed to the decrease in TYR, TRP1, and MITF expression at the protein and mRNA levels. MITF inhibition naturally led to the downregulation of the expression of Tyr and Trp1 genes. Results of the DNA microarray analysis revealed the effect on melanogenesis-associated cAMP and Wnt signaling pathways' genes. The results of this study suggest that ALS may be used in cosmeceuticals preparations for hyperpigmentation treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral , Cosmecéuticos , Melanoma Experimental , Saponinas , Sapotaceae , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Cosmecéuticos/farmacología , ADN/metabolismo , Humanos , Melaninas , Melanocitos/metabolismo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Hojas de la Planta/metabolismo , ARN Mensajero/metabolismo , Saponinas/metabolismo , Saponinas/farmacología , Sapotaceae/metabolismo
5.
J Food Biochem ; 46(10): e14353, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35986572

RESUMEN

Glucosylceramides (GlcCer), which are present in many edible plants, suppress melanin production in mouse melanocytes. Rice GlcCer consist of multiple molecules that comprise different types of sphingoid bases as well as diverse lengths and stereotypes of free fatty acids. Adjacent to the GlcCer fraction, there are free ceramides (Cer) as minor constituents. However, the anti-melanogenic activities of individual GlcCer and Cer remain unknown. Therefore, we herein isolated 13 GlcCer and elasticamide, a Cer [AP] from the gummy by-products of rice bran oil, and examined their anti-melanogenic activities. In theophylline-induced melanogenesis in B16 melanoma cells, GlcCer [d18:2(4E,8Z)/18:0], GlcCer [d18:2(4E,8Z)/20:0], and elasticamide significantly suppressed melanin production with IC50 values of 6.6, 5.2, and 3.9 µM, respectively. Elasticamide, but not GlcCer [d18:2 (4E,8Z)/20:0], suppressed melanogenesis in human 3D-cultured melanocytes and the expression of tyrosinase-related protein 1 in normal human melanocytes. Based on these results, we conducted a clinical trial on the effects of rice ceramide extract (Oryza ceramide®), containing 1.2 mg/day of GlcCer and 56 µg/day of elasticamide, on UV-B-induced skin pigmentation. The ingestion of Oryza ceramide® for 8 weeks significantly suppressed the accumulation of melanin 7 days after UV irradiation (1288 and 1546 mJ/cm2 ·S). Rice-derived GlcCer and elasticamide, which exhibited anti-melanogenic activities, were suggested to contribute to the suppressive effects of Oryza ceramide® on UV-induced skin pigmentation. Although the mechanisms underlying the anti-melanogenic activities of GlcCer remain unclear, elasticamide was identified as a promising Cer that exhibits anti-melanogenic activity. PRACTICAL APPLICATIONS: The anti-melanogenic activities of rice-derived GlcCer and elasticamide currently remain unclear. We herein demonstrated the inhibitory effects of individual GlcCer and elasticamide on melanogenesis in melanoma cells, melanocytes, and human skin.


Asunto(s)
Melanoma , Oryza , Alcanos , Amidas , Animales , Ceramidas/metabolismo , Ceramidas/farmacología , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos no Esterificados/farmacología , Glucosilceramidas/farmacología , Humanos , Melaninas , Melanocitos/metabolismo , Melanocitos/efectos de la radiación , Melanoma/tratamiento farmacológico , Ratones , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/farmacología , Aceite de Salvado de Arroz/metabolismo , Aceite de Salvado de Arroz/farmacología , Teofilina/metabolismo , Teofilina/farmacología
6.
J Med Food ; 25(8): 818-827, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35914025

RESUMEN

Ultraviolet (UV) radiation generates a range of biological effects in the skin, which includes premature skin aging, hyperpigmentation, and cancer. Therefore, the development of new effective agents for UV-related skin damage remains a challenge in the pharmaceutical industry. This study aims to test the inhibitory effect of crocodile white blood cell (cWBC) extract, a rich source of bioactive peptides, on ultraviolet B (UVB)-induced melanocyte pigmentation. The results showed that cWBC (6.25-400 µg/mL) could inhibit tyrosinase without adduct formation by 12.97 ± 4.20% on average. cWBC pretreatment (25-100 µg/mL) had no cytotoxicity and reduced intracellular melanin to 111.17 ± 5.20% compared with 124.87 ± 7.43 for UVB condition. The protective role of cWBC pretreatment against UVB was exhibited by the promotion of cell proliferation and the prevention of UVB-induced morphological change as observed from F actin staining. The decrease of microphthalmia-associated transcription factor expression levels after cWBC pretreatment might be a mechanism by which cWBC suppresses UVB-induced pigmentation. These results suggest that cWBC could be beneficial for the prevention of UVB-induced skin pigmentation.


Asunto(s)
Caimanes y Cocodrilos , Caimanes y Cocodrilos/metabolismo , Animales , Leucocitos , Melaninas/metabolismo , Melanocitos/metabolismo , Melanocitos/efectos de la radiación , Monofenol Monooxigenasa/metabolismo , Rayos Ultravioleta/efectos adversos
7.
Molecules ; 27(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35889231

RESUMEN

Plants are a rich source of secondary metabolites that exhibit numerous desired properties. The compounds may influence the biology of melanocytes, pigment cells that produce melanin, by modulating numerous signaling pathways, including cAMP/PKA, MAPKs and PI3K/AKT. Its downstream target is microphthalmia-associated transcription factor, responsible for the expression of the tyrosinase enzyme, which plays a major role in melanogenesis. Therefore, this literature review aims to provide insights related to melanogenesis modulation mechanisms of plant extracts and isolated plant compounds in B16 cells. Database searches were conducted using online-based library search instruments from 2012 to 2022, such as NCBI-PubMed and Google Scholar. Upregulation or downregulation of signaling pathways by phytochemicals can influence skin hypo- and hyperpigmentation by changing the level of melanin production, which may pose a significant cosmetic issue. Therefore, plant extracts or isolated plant compounds may be used in the therapy of pigmentation disorders.


Asunto(s)
Melaninas , Melanoma Experimental , Animales , Línea Celular Tumoral , Melanocitos/metabolismo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Monofenol Monooxigenasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología
8.
J Food Biochem ; 46(10): e14301, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35765891

RESUMEN

Vitiligo is a skin disease characterized by lack of functional melanocytes. Lycium barbarum polysaccharide (LBP) has been demonstrated to preserve keratinocytes and fibroblasts against oxidative stress. This study aimed to explore the efficacy and underlying mechanisms of LBP on autophagy in H2 O2 -damaged human melanocytes. Cellular viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and annexin V-fluorescein isothiocyanate/propidium iodide double staining. Reverse transcription-polymerase chain reaction, western blotting and electron microscopy were performed to detect autophagy. The protein expression level of Nrf2 and p62 were assessed by western blotting. Plasmid transfection and lentiviral infection were used to overexpress and silence Nrf2 in PIG1 cells. LBP promoted the proliferation and inhibited apoptosis of H2 O2 -damaged PIG1 cells. LBP increased the proliferation of H2 O2 -damaged PIG1 cells via induction of autophagy, and Nrf2 shRNA experiment confirmed that LBP activated the Nrf2/p62 signal pathway. These results suggest that LBP may be used for the treatment of vitiligo. PRACTICAL APPLICATIONS: Goji berry is the mature and dried fruit of Lycium barbarum L., which is a common food with a long history in China, as well as a Traditional Chinese Medicine. Our previous research found that LBP could activated the Nrf2/ARE pathway in an ultraviolet (UV)-induced photodamage model of keratinocytes, and increase the levels of phase II detoxification and antioxidant enzymes. We firstly confirmed the anti-vitiligo effects of L. barbarum polysaccharide (LBP) by inducing autophagy and promoted proliferation of human melanocytes, and LBP induced autophagy via activating the Nrf2/p62 signaling pathway in this study. These results proved that LBP can be an effective therapy for vitiligo treatment.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Anexina A5/metabolismo , Anexina A5/farmacología , Antioxidantes/farmacología , Autofagia , Proliferación Celular , Medicamentos Herbarios Chinos , Fluoresceínas/farmacología , Humanos , Isotiocianatos/farmacología , Melanocitos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Polisacáridos/farmacología , Propidio/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Transducción de Señal
9.
Drug Discov Ther ; 16(1): 43-46, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264474

RESUMEN

PAK1-deficient mutant of C. elegans lives 60% longer than the wild-type. Interestingly, PAK1-deficient mutant of melanocytes produces less melanin (only a half compared with the wild-type) in the presence of either serum (PDGF) or α-MSH (alpha-melanocyte stimulating hormone). These observations indicate that the major "pathogenic" kinase PAK1 is responsible for both shortening the healthy lifespan, and PDGF/α-MSH-dependent melanogenesis. For screening of PAK1-blocking probiotic bacteria or their products, their anti-melanogenic as well as longevity promoting properties were examined. Recently it was found that C. elegans fed with Lactobacillus rhamnosus in Xinjiang cheese lives 40% longer than the worm fed with the standard E. coli. Interestingly, a Chinese traditional medicine called "ChiBai" fermented with the Lactobacillus rhamnosus also inhibited the α-MSH-induced melanogenesis, and this bacteria itself produces butyric acid that blocks the oncogenic HDAC (histone deacetylase)-PAK1 signaling pathway. These findings strongly suggest, if not proven, that anti-melanogenic activity of Lactobacillus and many other probiotic bacteria might serve as a reliable indicator for their longevity promoting activity. In this context, a popular Japanese Lactobacillus-fermented milk drink called "Calpis", developed a century ago, and recently proven to inhibit the melanogenesis by suppressing the PAK1-dependent tyrosinase gene expression, may potentially prolong our healthy lifespan.


Asunto(s)
Melaninas , Probióticos , Quinasas p21 Activadas , Animales , Caenorhabditis elegans/metabolismo , Escherichia coli/metabolismo , Longevidad , Melaninas/metabolismo , Melanocitos/metabolismo , Monofenol Monooxigenasa/metabolismo , Probióticos/farmacología
10.
Mol Med Rep ; 25(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34751410

RESUMEN

Skin cancer is the most common human malignancy worldwide and solar ultraviolet (UV) radiation is known to serve an important role in its pathogenesis. Natural candidate compounds with antioxidant, photoprotective and anti­melanogenic effects were investigated against the background of skin photoprotective and anti­melanogenic properties. Gomisin D, J and O are dibenzocyclooctadiene lignans present in Kadsura medicinal plants and possess several pharmacological activities. In this study, the functions and mechanisms underlying the effects of gomisin D, J and O in UVA­and UVB­irradiated keratinocytes and α­melanocyte stimulating hormone (α­MSH)­stimulated melanocytes were explored. Following UVA and UVB irradiation, keratinocytes were treated with gomisin D, J and O, and keratinocyte viability, lactate dehydrogenase (LDH) release, intracellular reactive oxygen species (ROS) production and apoptosis were examined. The results demonstrated that gomisin D and J improved keratinocyte viability and reduced LDH release under UVA and UVB irradiation. Intracellular ROS production induced by UVA and UVB irradiation was suppressed by gomisin D and J. In addition, Annexin V and TUNEL staining analysis indicated that gomisin D and J have significant anti­apoptotic effects on UVA­and UVB­irradiated keratinocytes. After α­MSH stimulation, melanocytes were treated with gomisin D, J and O, and the changes in melanocyte viability, intracellular melanin content, intracellular tyrosinase activity, and mechanisms underlying these changes were examined. Gomisin D markedly inhibited the α­MSH­induced increase in intracellular melanin content and tyrosinase activity. Mechanistically, gomisin D reduced the protein and mRNA expression levels of microphthalmia­associated transcription factor (MITF), tyrosinase, tyrosinase­related protein (TRP)­1 and TRP­2 in α­MSH­stimulated melanocytes. In addition, gomisin D markedly downregulated α­MSH­induced phosphorylation of protein kinase A and cAMP response element binding protein, which are known to be present upstream of the MITF, tyrosinase, TRP­1 and TRP­2 genes. Overall, gomisin D has photoprotective and anti­melanogenic effects; these findings provide a basis for the production of potential brightening and photoprotective agents using natural compounds such as gomisin D.


Asunto(s)
Dioxoles/farmacología , Lignanos/farmacología , Compuestos Policíclicos/farmacología , Protectores contra Radiación/farmacología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , China , Células HaCaT , Humanos , Kadsura/metabolismo , Queratinocitos/metabolismo , Melaninas/metabolismo , Melanocitos/metabolismo , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/metabolismo
11.
J Cosmet Dermatol ; 21(3): 1234-1242, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33960120

RESUMEN

BACKGROUND: French maritime pine bark (Pinus pinaster) extract (PBE), the registered trade name of which is Pycnogenol® , has been studied for its depigmenting action due to its antioxidant, anti-inflammatory, and anti-melanogenic activity. However, the mechanisms through which PBE are still not fully clear. OBJECTIVE: Evaluate the impact of PBE on four in vitro parameters closely associated with cutaneous pigmentation, including melanin synthesis, tyrosinase activity, endothelin-1 (ED1), and production of peroxisome proliferator-activated receptor α, δ, and γ (PPAR α, δ, and γ), by studying the modulation of action of ultraviolet radiation A (UVA)/ultraviolet radiation B (UVB), infrared-A (IR-A), visible light (VL), and association of UVA/UVB, IR-A, and VL (ASS). METHODS: Human melanocytes were incubated in a dry extract solution of PBE, exposed to UVA/UVB, IR-A, VL, and ASS for subsequent quantification of melanin, ED1, and PPAR α, δ, and γ. The effects of PBE on inhibition of tyrosinase activity were also performed by monophenolase activity assay. RESULTS: UVA/UVB, IR-A, VL, and ASS radiation caused significant increases in the synthesis of melanin, ED1, and PPAR α, δ, and γ when compared to baseline control. However, PBE significantly reduced the production of melanin, ED1, and PPAR α, δ, and γ, as well as reducing about 66.5% of the tyrosinase activity. CONCLUSIONS: PBE reduces in vitro melanin production by downregulating tyrosinase and reducing pigmentation-related mediators, such as ED1 and PPAR α, δ, and γ, therefore contributing to the inhibition of pathways associated with skin hyperpigmentation.


Asunto(s)
Melaninas , Monofenol Monooxigenasa , Endotelina-1/metabolismo , Endotelina-1/farmacología , Humanos , Melanocitos/metabolismo , Monofenol Monooxigenasa/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/farmacología , Corteza de la Planta/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Rayos Ultravioleta
12.
Molecules ; 26(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34641584

RESUMEN

Despite its classification as a non-life-threatening disease, increased skin pigmentation adversely affects quality of life and leads to loss of self-confidence. Until now, there are no recommended remedies with high efficacy and human safety for hyperpigmentation. This study aimed to investigate anti-melanogenic activity and underlying mechanism of cajanin, an isoflavonoid extracted from Dalbergia parviflora Roxb. (Leguminosae) in human melanin-producing cells. Culture with 50 µM cajanin for 48-72 h significantly suppressed proliferation in human melanoma MNT1 cells assessed via MTT viability assay. Interestingly, cajanin also efficiently diminished melanin content in MNT1 cells with the half maximum inhibitory concentration (IC50) at 77.47 ± 9.28 µM. Instead of direct inactivating enzymatic function of human tyrosinase, down-regulated mRNA and protein expression levels of MITF and downstream melanogenic enzymes, including tyrosinase, TRP-1 and Dct (TRP-2) were observed in MNT1 cells treated with 50 µM cajanin for 24-72 h. Correspondingly, treatment with cajanin modulated the signaling pathway of CREB and ERK which both regulate MITF expression level. Targeted suppression on MITF-related proteins in human melanin-producing cells strengthens the potential development of cajanin as an effective treatment for human hyperpigmented disorders.


Asunto(s)
Isoflavonas/farmacología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/efectos de los fármacos , Factor de Transcripción Asociado a Microftalmía/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dalbergia/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Hiperpigmentación/tratamiento farmacológico , Interferón Tipo I/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Isoflavonas/química , Melaninas/biosíntesis , Melanocitos/efectos de los fármacos , Melanocitos/enzimología , Melanocitos/metabolismo , Melanoma/enzimología , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/farmacología , Proteínas Gestacionales/metabolismo , Calidad de Vida
13.
Biomed Res Int ; 2021: 8463161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34337053

RESUMEN

Meso-Xanthin (Meso-Xanthin F199™) is a highly active antiaging injection drug of the latest generation. The main acting compound is fucoxanthin, supplemented with several growth factors, vitamins, and hyaluronic acid. Previous examination of fucoxanthin on melanocytes showed its ability to inhibit skin pigmentation through different signaling pathways focused on suppression of melanogenic-stimulating receptors. In turn, the anticancer property of fucoxanthin is realized through MAPK and PI3K pathways. We aimed to evaluate the effect of fucoxanthin and supplemented growth factors on melanocyte growth and transformation at a proteomic level. The effect of fucoxanthin on melanocytes cultivated in three-dimensional (3D) condition was examined using high-throughput proteomic and system biology approaches to disclose key molecular events of the targeted action. Our results demonstrated significant inhibition of cell differentiation and ubiquitination processes. We found that the negative regulation of PSME1 and PTGIS largely determines the inhibition of NF-κB and MAPK2. Besides, fucoxanthin selectively inhibits cell differentiation via negative regulation of Raf signaling and the upstream activation of IL-1 signaling. It is assumed that inhibition of Raf influences the Notch-4 signaling and switches off the MAPK/MAPK2 cascade. Blockage of MAPK/MAPK2 is feasible due to suppression of Ras and NF-κB by the addressed action of IKKB, IKK2, and TRAF6. Suggestively, Meso-Xanthin F199™ can manage processes of proliferative activity and inhibition of apoptosis due to composition of fucoxanthin and growth-stimulating factors, which may increase the risk of skin cancer development under certain condition.


Asunto(s)
Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula , Sistema de Señalización de MAP Quinasas , Melanocitos/citología , Melanocitos/metabolismo , Receptores Notch/metabolismo , Xantina/farmacología , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanocitos/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteoma/metabolismo
14.
Cells ; 10(8)2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34440826

RESUMEN

Sanqi, a traditional Chinese herb, is widely used for cardiovascular diseases, and its neuroprotective effects against oxidative stress were recently discovered. The purpose of this study was to investigate whether Sanqi-derived compound K (Sanqi-CK), an active metabolite of Sanqi, could protect melanocytes from oxidative stress. Cultured human primary skin epidermal melanocytes (HEMn-MPs) were treated with hydrogen peroxide (H2O2) in the presence or absence of Sanqi-CK. Sanqi-CK exhibited protective effects against H2O2-induced cell death by reducing oxidative stress. In addition, treatment with Sanqi-CK reversed the decreased glutathione reductase activity and decreased ratio of reduced glutathione (GSH)/oxidized glutathione (GSSG) seen in H2O2-treated melanocytes. Furthermore, topical application of Sanqi-CK alleviated leukoderma in guinea pigs, a disorder characterized by melanocyte cell death resulting from rhododendrol-induced oxidative stress. Taken together, these data suggest that Sanqi-CK protects melanocytes against oxidative stress, and its protective effects are associated with modulating the redox balance between GSH and GSSG and activating glutathione reductase. Thus, Sanqi-CK may be a good candidate for preventing melanocyte loss in oxidative-stress-associated pigmentary disorders.


Asunto(s)
Medicamentos Herbarios Chinos/química , Ginsenósidos/farmacología , Hipopigmentación/tratamiento farmacológico , Melanocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Butanoles/toxicidad , Muerte Celular/efectos de los fármacos , Células Cultivadas , Ginsenósidos/administración & dosificación , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Cobayas , Humanos , Peróxido de Hidrógeno/farmacología , Hipopigmentación/inducido químicamente , Melaninas/metabolismo , Melanocitos/metabolismo , Oxidación-Reducción
15.
Int J Mol Sci ; 22(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072104

RESUMEN

Melanoma, the malignancy originating from pigment-producing melanocytes, is the most aggressive form of skin cancer and has a poor prognosis once the disease starts to metastasize. The process of melanin synthesis generates an immunosuppressive and mutagenic environment, and can increase melanoma cell resistance to different treatment modalities, including chemo-, radio- or photodynamic therapy. Recently, we have shown that the presence of melanin pigment inhibits the melanoma cell response to bioactive components of Coriolus versicolor (CV) Chinese fungus. Herein, using the same human melanoma cell line in which the level of pigmentation can be controlled by the L-tyrosine concentration in culture medium, we tested the effect of suppression of melanogenesis on the melanoma cell response to CV extract and investigated the cell death pathway induced by fungus extract in sensitized melanoma cells. Our data showed that susceptibility to CV-induced melanoma cell death is significantly increased after cell depigmentation. To the best of our knowledge, we are the first to demonstrate that CV extract can induce RIPK1/RIPK3/MLKL-mediated necroptosis in depigmented melanoma cells. Moreover, using the co-culture system, we showed that inhibition of the tyrosinase activity in melanoma cells modulates cytokine expression in co-cultured mononuclear cells, indicating that depigmentation of melanoma cells may activate immune cells and thereby influence a host anticancer response.


Asunto(s)
Leucocitos Mononucleares/metabolismo , Melanocitos/metabolismo , Melanoma/metabolismo , Extractos Vegetales/farmacología , Polyporaceae/química , Transducción de Señal/efectos de los fármacos , Pigmentación de la Piel , Biomarcadores , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Melaninas/biosíntesis , Melanocitos/patología , Melanoma/patología , Necroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
16.
Molecules ; 26(5)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804361

RESUMEN

When skin is exposed to UV radiation, melanocytes produce melanin. Excessive melanin production leads to skin pigmentation, which causes various cosmetic and health problems. Therefore, the development of safe, natural therapeutics that inhibit the production of melanin is necessary. Elaeagnus umbellata (EU) has long been widely used as a folk medicinal plant because of pharmacological properties that include anti-ulcer, antioxidant, and anti-inflammatory properties. In this study, we investigated the antioxidant activity and melanogenesis inhibitory effects of EU fractions in B16-F10 melanoma cells. EU fractions showed a dose-dependent increase in antioxidant activity in radical scavenging activity. In addition, we evaluated the effect of EU fractions on tyrosinase activity and melanogenesis in α-melanocyte-stimulating hormone-induced B16-F10 melanoma cells. EU was noncytotoxic at 12.5-50 µg/mL. EU fractions effectively inhibited tyrosinase activity and melanogenesis, suppressed the phosphorylation of CREB and ERK involved in the melanogenesis pathway, and down-regulated expression of melanogenesis-related proteins. Interestingly, the anti-melanogenesis effect was most effective at a concentration of 50 µg/mL EU, and the effects of the fractions were superior to those of the extract. Therefore, our study suggests that EU has potential as a safe treatment for excessive pigmentation or as a natural ingredient in cosmetics.


Asunto(s)
Elaeagnaceae/química , Melaninas/metabolismo , Melanocitos/citología , Melanoma Experimental/tratamiento farmacológico , Monofenol Monooxigenasa/antagonistas & inhibidores , Extractos Vegetales/farmacología , alfa-MSH/farmacología , Animales , Antioxidantes/farmacología , Supervivencia Celular , Hormonas/farmacología , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanoma Experimental/patología , Ratones , Fosforilación , Pigmentación de la Piel/efectos de los fármacos
17.
J Ethnopharmacol ; 264: 113272, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32810622

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Zulu and Xhosa people of South Africa use the stem bark of Cassipourea flanaganii as a skin-lightning cosmetic. AIM OF THE STUDY: To isolate and identify compounds responsible for the skin lightning properties from the stem bark of Cassipourea flanaganii and to evaluate their cytotoxicity towards skin cells. MATERIALS AND METHODS: Extracts from the stem bark of Cassipourea flanaganii were isolated using chromatographic methods and structures were determined using NMR, IR and MS analysis. The tyrosinase inhibitory activity and the ability to inhibit the production of melanin were determined using human primary epidermal melanocyte cells. Cytoxicity was established using the same melanocytes and a neutral red assay. RESULTS: One previously undescribed compound, ent-atis-16-en-19-al (1) along with the known ent-atis-16-en-19-oic acid (2), ent-atis-16-en-19-ol (3), ent-kaur-16-en-19-oic acid (4), ent-kaur-16-en-19-al (5), ent-manoyl oxide (6), guinesine A (7), guinesine B (8), guinesine C (9), lichenxanthone (10), 2,4-dihydroxy-3,6-dimethyl benzoic acid methyl ester (11), lynoside (12), lupeol (13), ß-amyrin (14), docosyl ferulate (15), stigmasterol, sitosterol and sitosterol-O-glucoside were isolated in this investigation. An impure fraction containing compound 3 was acetylated to obtain 19-acetoxy-ent-atis-16-ene (3a). Compounds 10 and 11 are usually isolated from lichen, hence they are possible contaminants of lichen harvested with the bark. Compounds 1, 3a, 5-14 were not significantly cytotoxic to the primary epidermal melanocyte cells (P > 0.05) when compared to the negative and positive controls (DMSO, 0.1% and hydrogen peroxide, 30 wt% in water). Inhibition of tyrosinase was significantly greater with respect to the negative control (P < 0.001) for compounds 3a, 5-8 and 9-10 at 10 µM and for compounds 5-8 and 9-10 at 100 µM. Compared to hydroquinone (the positive control) at 10 µM, the level of inhibition was comparable or to that of compounds 3a, 5, 6, and 8-10 at 10 µM, with 9 and 10 showing a greater level of inhibition. Inhibition of melanin was both concentration and time dependent for all compounds tested with higher melanin content at 24 h compared to 48 h s and at 10 mM compared to100 mM at both time points; melanin content was significantly lower for hydroquinone at both time points and concentrations. CONCLUSIONS: Compounds 1, 5-14, isolated from Cassipourea flanaganii and the derivative 3a showed low cytotoxicity. All compounds had a clear time and concentration dependent effect on melanin content which did not appear to be dependent on their inhibition of tyrosinase.


Asunto(s)
Melaninas/antagonistas & inhibidores , Melanocitos/efectos de los fármacos , Monofenol Monooxigenasa/antagonistas & inhibidores , Extractos Vegetales/farmacología , Rhizophoraceae , Preparaciones para Aclaramiento de la Piel/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Melaninas/metabolismo , Melanocitos/metabolismo , Monofenol Monooxigenasa/metabolismo , Corteza de la Planta , Extractos Vegetales/aislamiento & purificación , Tallos de la Planta , Preparaciones para Aclaramiento de la Piel/aislamiento & purificación
18.
Lasers Med Sci ; 36(1): 139-146, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32607713

RESUMEN

Phototherapy is an effective therapeutic option in the treatment of vitiligo; however, responses varied among the different types. The underlying mechanism has scarcely been investigated. To investigate and compare the effects of phototherapy on the mutation of melanocyte lineage differentiated from human scalp-derived neural crest stem cells (HS-NCSCs) with p75 neurotrophin receptor expression positive and p75 neurotrophin receptor expression negative group in vitro, the HS-NCSCs were isolated from fetal scalp tissue, which is identified by immunofluorescent staining. The p75(+) and p75(-) cells from HS-NCSCs were isolated by magnetic cell sorting, respectively. The embryonic neural crest stem cell biomarkers were detected by RT-PCR. Narrow-band UVB (NB-UVB) was used to irradiate the cells. Cell proliferation was evaluated by cell count. Tyrosinase, Tyrp1, and Tyrp2 gene expression were measured by quantitative RT-PCR. Tyrosinase and GRCR protein levels were investigated by Western blot analysis. The electrophoretic strip showed that Sox2, Oct4, Sox10, and Nestin of p75(+) HS-NCSCs were brighter than the p75(-) HS-NCSCs. After the same dose radiation with NB-UVB, the cell proliferation of p75(+) group showed less inhibitory rate compared with the p75(-) HS-NCSCs. The tyrosinase mRNA and protein expression of differentiated melanocytes increased significantly in the group of p75(+) HS-NCSCs compared with the p75(-) group. The melanocytic mutation of p75(+) HS-NCSCs increased significantly compared with the p75(-) HS-NCSCs under NB-UVB, which indicated there were more melanocyte precursors in the differentiated cells from p75(+) HS-NCSCs. This may provide new insights for the different repigmentation efficacy of segmental and non-segmental vitiligo.


Asunto(s)
Linaje de la Célula/efectos de la radiación , Melanocitos/citología , Melanocitos/efectos de la radiación , Cresta Neural/citología , Fototerapia , Receptor de Factor de Crecimiento Nervioso/metabolismo , Cuero Cabelludo/citología , Células Madre/citología , Biomarcadores/metabolismo , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Humanos , Melanocitos/metabolismo , Mutación/genética , Células Madre/efectos de la radiación , Terapia Ultravioleta
19.
J Agric Food Chem ; 68(50): 14863-14873, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33280383

RESUMEN

Chili pepper belongs to the genus Capsicum of Solanaceae family. Capsaicin is the primary capsaicinoid in placenta and flesh of chili pepper fruit, which has been shown to have various pharmacological functions, including gastric protection, anti-inflammation, and obesity treatment. Here, we revealed that capsaicin as well as chilli extract was able to inhibit synthesis of melanin in melanocytes. In cultured melanocytes, the melanin content was reduced to 54 ± 6.55% and 42 ± 7.41% with p < 0.001 under treatment of 50 µM capsaicin for 24 and 72 h, respectively. In parallel, the protein levels of tyrosinase and tyrosinase-related protein-1 were reduced to 62 ± 8.35% and 48 ± 8.92% with p < 0.001. Such an inhibitory effect of capsaicin was mediated by activation of transient receptor potential vanilloid 1-induced phosphorylation of extracellular signal-regulated kinase. This resulted in a degradation of microphthalmia-associated transcription factor, leading to reduction of melanogenic enzymes and melanin. These results revealed that capsaicin could be an effective inhibitor for skin melanogenesis. Hence, chili pepper, as our daily food, has potential in dermatological application, and capsaicin should be considered as a safe agent in treating hyperpigmentation problems.


Asunto(s)
Capsaicina/farmacología , Melaninas/biosíntesis , Melanocitos/efectos de los fármacos , Extractos Vegetales/farmacología , Canales Catiónicos TRPV/metabolismo , Animales , Capsicum/química , Línea Celular , Frutas/química , Humanos , Melanocitos/enzimología , Melanocitos/metabolismo , Ratones , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fosforilación , Piel/efectos de los fármacos , Piel/enzimología , Piel/metabolismo , Canales Catiónicos TRPV/genética
20.
PLoS Genet ; 16(12): e1009244, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33301440

RESUMEN

The genetic origin of human skin pigmentation remains an open question in biology. Several skin disorders and diseases originate from mutations in conserved pigmentation genes, including albinism, vitiligo, and melanoma. Teleosts possess the capacity to modify their pigmentation to adapt to their environmental background to avoid predators. This background adaptation occurs through melanosome aggregation (white background) or dispersion (black background) in melanocytes. These mechanisms are largely regulated by melanin-concentrating hormone (MCH) and α-melanocyte-stimulating hormone (α-MSH), two hypothalamic neuropeptides also involved in mammalian skin pigmentation. Despite evidence that the exogenous application of MCH peptides induces melanosome aggregation, it is not known if the MCH system is physiologically responsible for background adaptation. In zebrafish, we identify that MCH neurons target the pituitary gland-blood vessel portal and that endogenous MCH peptide expression regulates melanin concentration for background adaptation. We demonstrate that this effect is mediated by MCH receptor 2 (Mchr2) but not Mchr1a/b. mchr2 knock-out fish cannot adapt to a white background, providing the first genetic demonstration that MCH signaling is physiologically required to control skin pigmentation. mchr2 phenotype can be rescued in adult fish by knocking-out pomc, the gene coding for the precursor of α-MSH, demonstrating the relevance of the antagonistic activity between MCH and α-MSH in the control of melanosome organization. Interestingly, MCH receptor is also expressed in human melanocytes, thus a similar antagonistic activity regulating skin pigmentation may be conserved during evolution, and the dysregulation of these pathways is significant to our understanding of human skin disorders and cancers.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Hormonas Hipofisarias/metabolismo , Pigmentación de la Piel/genética , Animales , Hormonas Hipotalámicas/genética , Hipotálamo/citología , Hipotálamo/metabolismo , Melaninas/genética , Hormonas Estimuladoras de los Melanocitos/genética , Hormonas Estimuladoras de los Melanocitos/metabolismo , Melanocitos/metabolismo , Neuronas/metabolismo , Hormonas Hipofisarias/genética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA