Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Fitoterapia ; 175: 105881, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38438054

RESUMEN

Two previously undescribed cholestanol saponins, parpetiosides F - G (1-2), and six known analogs (3-8) were isolated from the rhizomes of Paris fargesii var. petiolata. Their structures were elucidated by extensive spectroscopic data analysis and chemical methods. Compound 1 was a rare 6/6/6/5/5 fused-rings cholestanol saponin with disaccharide moiety linked at C-26 of aglycone which was hardly seen in genus Paris. All of these compounds were discovered in this plant for the first time. In addition, the cytotoxicities of saponins (1-8) against three human cancer cell lines (U87, HepG2 and SGC-7901) were evaluated by CCK-8 method, and saponins 5-8 displayed certain cytotoxicities. The strong interactions between saponins 5-8 and SCUBE3, an oncogene for glioma cells, were displayed by molecular docking.


Asunto(s)
Antineoplásicos Fitogénicos , Colestanol , Simulación del Acoplamiento Molecular , Rizoma , Saponinas , Rizoma/química , Humanos , Saponinas/aislamiento & purificación , Saponinas/farmacología , Saponinas/química , Estructura Molecular , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Colestanol/farmacología , Colestanol/química , Colestanol/aislamiento & purificación , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Melanthiaceae/química , China , Liliaceae/química
2.
J Ethnopharmacol ; 319(Pt 3): 117272, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37820995

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Paris polyphylla var. Yunnanensis (Franch.) Hand.-Mazz., a perennial medicinal herb commonly known as "Chonglou" in Chinese, is mainly effective against innominate toxin swelling, insect sting, snake bite, traumatic injuries and various inflammatory. It is also recorded with mild toxicity. The rare species Paris luquanensis H. Li has been also used as folk medicine in Yunnan province for the same effects. Compared with P. polyphylla var. Yunnanensis (35-100 cm in height), this species has variegated leaves, and grows slower and is therefore shorter (6-23 cm in height). There are a number of different cultivars based on the shape of the petal and the height of Paris plant. However, currently, investigations into the differences of the chemical profiling of these cultivars are lacking. AIM OF THE STUDY: This study aims to: (1) examine metabolites variations in Paris polyphylla var. Yunnanensis cultivars and Paris luquanensis; (2) investigate the different metabolite accumulation patterns between rhizomes and leaves and provide more useful information for the application of P. polyphylla var. Yunnanensis leaves; (3) compare in vivo effects on the recruitment of reactive oxygen species (ROS) and Neutrophils and toxic effects in zebrafish model between leaves and rhizomes of P. polyphylla var. Yunnanensis and P. luquanensis. MATERIALS AND METHODS: The change patterns of metabolites in the leaves and rhizomes of four P. polyphylla var. Yunnanensis cultivars and one P. luquanensis cultivar were analyzed using an UPLC-ESI-MS/MS system. The total phenolic acid, total flavonoid, total saponin components and in vitro antioxidant activities were determined by spectrophotometric methods. The in vivo toxicity and their effects on the recruitment of ROS and neutrophils in zebrafish model were performed. RESULTS: The widely targeted metabolomics method detected 695 metabolites in tested samples and classified as 15 known classes according to structures of the metabolites. By overall-comparing the SDMs discerned between leaves and rhizomes of each samples, 161 metabolites were substantially altered in all the cultivars. There are 62 and 64 SDMs showing constitutive differential accumulation between leaves and rhizomes of P. polyphylla var. Yunnanensis (samples A-D) and P. luquanensis (sample E), respectively. The levels of TSC, TPC and TFC decreased significantly in leaves as compared to rhizomes for all cultivars, with the exception of TPC in cultivar A, which is almost the same in leave and rhizome. The DPPH scavenging property and FRAP values of rhizomes are higher than those of leaves for all cultivars. However, there is no distinct different between leaves and rhizomes of different sample extracts for in vivo effects on the recruitment of ROS and neutrophils in zebrafish model. BL extracts showed high toxicity to the developing embryos. CONCLUSION: As far as we are concerned, this study analyzes the P. polyphylla var. Yunnanensis and P. luquanensis variegation from the perspective of the metabolites pattern for the first time. The results give a valuable insight into the specie metabolic profiling and in vivo anti-oxidant, anti-inflammatory and toxic effects of these Paris plants.


Asunto(s)
Ascomicetos , Escarabajos , Liliaceae , Melanthiaceae , Humanos , Animales , Especies Reactivas de Oxígeno , Espectrometría de Masas en Tándem , Pez Cebra , China , Metaboloma , Antioxidantes/farmacología
3.
J Ethnopharmacol ; 323: 117642, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38151180

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Paris polyphylla, as a traditional Chinese herbal medicine, was often used to relieve inflammation and pain. Rhizoma Paridis saponins (RPS) as the main active components of Paris polyphylla have excellent analgesic effects. AIM OF THE STUDY: Determine the analgesic material basis of RPS. MATERIALS AND METHODS: LC-MS/MS was used to analyze RPS, plasma after intravenous injection of RPS, and oral administration of RPS. H22 plantar pain model was established to explore the analgesic material basis of RPS. Moreover, correlation analysis, network pharmacology, RT-PCR and molecular docking were applied in this research. RESULTS: RPS had dose-dependently analgesic effects in acetic acid- and formalin-induced pain models. LC-MS/MS detection indicated that diosgenin as the metabolite of RPS mainly distributed in brain tissues. The addition of antibiotics increased the anti-tumor effect of RPS, but reduced its analgesic effect. Network pharmacology, RT-PCR and molecular docking showed that diosgenin exerted its analgesic effect through SRC and Rap1 signaling pathway. CONCLUSION: Diosgenin exhibited analgesic effects, while saponins had good anti-tumor effects in RPS. This discovery provided a better indication for the later application of RPS in anti-tumor and analgesic settings.


Asunto(s)
Diosgenina , Liliaceae , Melanthiaceae , Neoplasias , Saponinas , Saponinas/farmacología , Saponinas/uso terapéutico , Saponinas/metabolismo , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Rizoma/metabolismo , Neoplasias/tratamiento farmacológico , Dolor/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico
4.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4589-4597, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802798

RESUMEN

The shortage of Paridis Rhizoma promotes comprehensive utilization and development research of waste aerial parts of the original plant. The chemical compositions of the aerial parts of Paris polyphylla var. chinensis were clarified based on the ultrahigh performance liquid chromatography tandem quadrupoles time of flight mass spectrometry(UPLC-QTOF-MS/MS) in the previous investigation, and a series of flavonoids and steroidal saponins were isolated. The present study continued the isolation and structure identification of the new potential compounds discovered based on UPLC-QTOF-MS/MS. By using silica gel, ODS, flash rapid preparation, and other column chromatography techniques, combined with prepared high performance liquid chromatography, five compounds were isolated from the 75% ethanol extract of the aerial parts of P. polyphylla var. chinensis, and their structures were identified by spectral data combined with chemical transformations, respectively, as(23S,25R)-23,27-dihydroxy-diosgenin-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→3)]-ß-D-glucopyranoside(1),(25R)-26-O-ß-D-glucopyranosyl-furost-5-en-3ß,22α,26-triol-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranoside(2),(25R)-27-O-ß-D-glucopyranosyl-5-en-3ß,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranoside(3),(25R)-27-O-ß-D-glucopyranosyl-5-en-3ß,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→3)]-ß-D-glucopyranoside(4), and aculeatiside A(5). Among them, compounds 1-4 were new ones, and compound 5 was isolated from P. polyphylla var. chinensis for the first time.


Asunto(s)
Liliaceae , Melanthiaceae , Saponinas , Espectrometría de Masas en Tándem , Saponinas/análisis , Liliaceae/química , Cromatografía Líquida de Alta Presión , Rizoma/química , Estructura Molecular
5.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3774-3785, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37475069

RESUMEN

In this study, the authors cloned a glycosyltransferase gene PpUGT2 from Paris polyphylla var. yunnanensis with the ORF length of 1 773 bp and encoding 590 amino acids. The phylogenetic tree revealed that PpUGT2 belonged to the UGT80A subfamily and was named as UGT80A49 by the UDP-glycosyltransferase(UGT) Nomenclature Committee. The expression vector pET28a-PpUGT2 was constructed, and enzyme catalytic reaction in vitro was conducted via inducing protein expression and extraction. With UDP-glucose as sugar donor and diosgenin and pennogenin as substrates, the protein was found with the ability to catalyze the C-3 hydroxyl ß-glycosylation of diosgenin and pennogenin. To further explore its catalytic characteristic, 15 substrates including steroids and triterpenes were selected and PpUGT2 showed its activity towards the C-17 position of sterol testosterone with UDP-glucose as sugar donor. Homology modelling and molecule docking of PpUGT2 with substrates predicted the key residues interacting with ligands. The re-levant residues of PpUGT2-ligand binding model were scanned to calculate the corresponding mutants, and the optimized mutants were obtained according to the changes in binding affinity of the ligand with protein and the surrounding residues within 5.0 Å of ligands, which had reference value for design of the mutants. This study laid a foundation for further exploring the biosynthetic pathway of polyphyllin as well as the structure of sterol glycosyltransferases.


Asunto(s)
Ascomicetos , Diosgenina , Liliaceae , Melanthiaceae , Ligandos , Glicosiltransferasas/genética , Esteroles , Filogenia , Liliaceae/química , Azúcares , Glucosa , Uridina Difosfato
6.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2981-2988, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37381958

RESUMEN

Paris rugosa(Melanthiaceae) only grows in Yunnan province of China at present, and its chemical constituents have not been systematically studied. In this study, nine compounds, including one new compound pariposide G(1) and eight known compounds of cerin(2), stigmast-4-en-3-one(3), ß-ecdysone(4), ophiopogonin C'(5), methyl protogracillin(6), gracillin(7), parissaponin H(8), and parisyunnanoside G(9), were isolated and identified from the ethanol extract of P. rugosa rhizomes by column chromatography methods and semi-preparative high-performance liquid chromatography(HPLC). Compounds 1-9 were isolated from this plant for the first time. The antibacterial and antifungal activities of all the compounds were evaluated. The results showed that ophiopogonin C' had strong inhibitory effects on Candida albicans [MIC_(90)=(4.68±0.01) µmol·L~(-1)] and the fluconazole-resistant strain of C. albicans [MIC_(90)=(4.66±0.02) µmol·L~(-1)].


Asunto(s)
Liliaceae , Melanthiaceae , Antibacterianos , Candida albicans , China , Rizoma
7.
BMC Plant Biol ; 23(1): 344, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37380980

RESUMEN

BACKGROUND: Paris yunnanensis (Melanthiaceae) is a traditional Chinese medicinal plant of significant pharmaceutical importance. Due to previous taxonomic confusion, a congeneric species, Paris liiana, has been mistaken for P. yunnanensis and cultivated on a large scale, leading to the mixing of commercial products (i.e., seedlings and processed rhizomes) of P. yunnanensis with those of P. liiana. This may have adverse effects on quality control in the standardization of P. yunnanensis productions. As the lack of PCR amplifiable genomic DNA within processed rhizomes is an intractable obstacle to the authentication of P. yunnanensis products using PCR-based diagnostic tools, this study aimed to develop a PCR-free method to authenticate commercial P. yunnanensis products, by applying genome skimming to generate complete plastomes and nrDNA arrays for use as the molecular tags. RESULTS: Based on a dense intraspecies sampling of P. liiana and P. yunnanensis, the robustness of the proposed authentication systems was evaluated by phylogenetic inferences and experimental authentication of commercial seedling and processed rhizome samples. The results indicate that the genetic criteria of both complete plastomes and nrDNA arrays were consistent with the species boundaries to achieve accurate discrimination of P. yunnanensis and P. liinna. Owing to its desirable accuracy and sensitivity, genome skimming can serve as an effective and sensitive tool for monitoring and controlling the trade of P. yunnanensis products. CONCLUSION: This study provides a new way to solve the long-standing problem of the molecular authentication of processed plant products due to the lack of PCR amplifiable genomic DNA. The proposed authentication system will support quality control in the standardization of P. yunnanensis products in cultivation and drug production. This study also provides molecular evidence to clarify the long-standing taxonomic confusion regarding the species delimitation of P. yunnanensis, which will contribute to the rational exploration and conservation of the species.


Asunto(s)
Ascomicetos , Melanthiaceae , Filogenia , Reacción en Cadena de la Polimerasa , Plantones/genética
8.
Fitoterapia ; 167: 105498, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004742

RESUMEN

Phytochemical investigation of an extract of the aerial parts of Paris polyphylla var. yunnanensis resulted in the identification of three new steroidal sapogenins, namely as paripolins A-C (1-3). With the aid of comprehensive spectroscopic techniques (NMR, IR, UV, MS), the structures of all isolated compounds were elucidated and subsequently screened for anti-inflammatory activity.


Asunto(s)
Ascomicetos , Liliaceae , Melanthiaceae , Sapogeninas , Saponinas , Saponinas/química , Estructura Molecular , Esteroides , Liliaceae/química , Componentes Aéreos de las Plantas
9.
Phytochemistry ; 207: 113577, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36587887

RESUMEN

Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. (Melanthiaceae), an important specie of the genus Paris, has long been in a traditional Chinese medicine (TCM) for a long time. This study aimed to isolate and identify the structures of bioactive saponins from the rhizomes of P. polyphylla var. yunnanensis and evaluate their cytotoxicity against BxPC-3, HepG2, U373 and SGC-7901 carcinoma cell lines. Seven previously undescribed and seven known saponins were identified, and Paris saponins VII (PSVII) showed significant cytotoxicity against the BxPC-3 cell line with IC50 values of 3.59 µM. Furthermore, flow cytometry, transmission electron microscopy and western-bolt analysis revealed that PSVII inhibited the proliferation of BxPC-3 cells and might be involved in inducing apoptosis and pyroptosis by activating caspase-3, -7 and caspase-1, respectively.


Asunto(s)
Antineoplásicos , Liliaceae , Melanthiaceae , Saponinas , Rizoma/química , Saponinas/farmacología , Liliaceae/química , Melanthiaceae/química
10.
Molecules ; 27(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36235164

RESUMEN

An effective method for separating and purifying critical saponins (polyphyllin II and polyphyllin VII) from a Paris polyphylla var. yunnanensis extract was developed in this study which was environmentally friendly and economical. Static adsorption kinetics, thermodynamics, and the dynamic adsorption-desorption of macroporous resins were investigated, and then the conditions of purification and separation were optimized by fitting with an adsorption thermodynamics equation and a kinetic equation. Effective NKA-9 resin from seven macroporous resins was screened out to separate and purify the two saponins. The static adsorption and dynamic adsorption were chemical and physical adsorption dual-processes on the NKA-9 resin. Under the optimum parameters, the contents of polyphyllin II and polyphyllin VII in the product were 17.3-fold and 28.6-fold those in plant extracts, respectively. The total yields of the two saponins were 93.16%. This research thus provides a theoretical foundation for the large-scale industrial production of the natural drugs polyphyllin II and polyphyllin VII.


Asunto(s)
Liliaceae , Melanthiaceae , Saponinas , Adsorción , Liliaceae/química , Melanthiaceae/química , Extractos Vegetales , Resinas de Plantas , Saponinas/química
11.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4863-4876, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164896

RESUMEN

Steroidal saponins, important natural organic compounds in Paris polyphylla var. yunnanensis, have good biological activity. Structural modification of steroidal saponins by microbial transformation could produce a large number of products with novel structures and excellent bioactivity, which can provide functional compounds for the research and development of steroidal drugs. This study summarized the research progress in steroidal saponins and their microbial transformation in P. polyphylla var. yunnanensis. P. polyphylla var. yunnanensis contains 112 steroidal saponins, 8 of which are used as substrates in 35 transformation reactions by 25 microbial species, with the highest transformation rate of 95%. Diosgenin is the most frequently used substrate. Furthermore, the strains, culture medium, reaction conditions, transformation rate, transformation reaction characteristics, and biological activities of the transformed products were summarized. This review may provide reference for the further research on microbial transformation of steroidal saponins in P. polyphylla var. yunnanensis.


Asunto(s)
Diosgenina , Liliaceae , Melanthiaceae , Saponinas , Diosgenina/análisis , Liliaceae/química , Melanthiaceae/química , Rizoma/química , Saponinas/análisis
12.
Molecules ; 27(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35566077

RESUMEN

Paris polyphylla var. chinensis (Franch.) Hara is a perennial herb belonging to the Trilliaceae family. Ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) was used to detect the composition of different fractions of Paris polyphylla var. chinensis leaves. Meanwhile, the extracts of different fractions were evaluated for their cytotoxic activities against four selected human cancer cell lines and one human normal epithelial cell line based on the MTT assay method. Multivariate statistical analysis was performed to screen differential compounds and to analyze the distributions between different fractions. Finally, more than 60 compounds were obtained and identified from the different fractions of Paris polyphylla var. chinensis leaves, and the chloroform and n-butanol extracts showed significant cytotoxic effects on these four cancer cells. Several compounds were preliminarily identified from different fractions, including 36 steroidal saponins, 11 flavonoids, 10 ceramides, 8 lipids, 6 organic acids, and 8 other compounds. Various compounds were screened out as different chemical components of different fractions, which were considered as a potential substance basis for the cytotoxicity of Paris polyphylla var. chinensis leaves.


Asunto(s)
Liliaceae , Melanthiaceae , Saponinas , Humanos , Liliaceae/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Saponinas/química
13.
J Ethnopharmacol ; 293: 115311, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35461989

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rhizoma Paridis saponins (RPS) as the mainly active components of Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz., possess tumor therapeutic potential. However, the anti-tumor material basis of RPS in liver cancer pulmonary metastasis remains poorly understood. The objective of this study was to identify the distribution and anti-cancer effects of RPS in liver cancer pulmonary metastatic model. MATERIALS AND METHODS: In this study, a mouse liver cancer pulmonary metastasis model was established to determine the distribution of different saponins in the tissues by UPLC-MS and plasma protein binding rate. RESULTS: As a result, RPS prolonged the survival time and inhibited the pulmonary metastasis in H22 injected mice through its underlying mechanism. UPLC-MS identified saponins from RPS such as PVII, PH, PVI, PII, gracillin and PI in tissues, which may be regarded as the Q-markers in RPS. Surprisingly, the concentration of PI, PII and gracillin as diosgenyl saponins was higher than that of pennogenyl saponins in the liver and lung. Besides, plasma protein binding rate of PII was higher than that of PVII. CONCLUSION: These findings suggested that PVII, PH, PVI, PI, PII and gracillin are regarded as the Q-markers of RPS in liver cancer pulmonary metastasis. The concentration of PI, PII and gracillin as diosgenyl saponins was higher than that of pennogenyl saponins in the liver and lung. It would be helpful for understanding the importance of RPS with anticancer activities in the future.


Asunto(s)
Liliaceae , Neoplasias Hepáticas , Melanthiaceae , Saponinas , Animales , Cromatografía Liquida , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Rizoma , Saponinas/farmacología , Saponinas/uso terapéutico , Espectrometría de Masas en Tándem
14.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1222-1229, 2022 Mar.
Artículo en Chino | MEDLINE | ID: mdl-35343148

RESUMEN

In this study, a method was established for in-situ visualization of metabolite distribution in the rhizome of Paris polyphylla var. yunnanensis. To be specific, through matrix-assisted laser desorption/ionization-mass spectrometry imaging(MALDI-MSI), the spatial locations of steroidal saponins, amino acids, organic acids, phytosterols, phytoecdysones, nucleosides, and esters in rhizome of the medicinal plant were directly analyzed, and six unknown compounds with differential distribution in rhizome tissues were identified. The specific procedure is as follows: preparation of rhizome tissue section, matrix screening and optimization, and MALDI-MSI analysis. The results showed that the steroidal saponins were mainly distributed in the central, amino acids in epidermis and cortex, low-molecular-weight organic acids in central epidermis, phytosterols in the epidermis and lateral cortex, the phytoecdysones in epidermis and cortex, nucleosides(uneven distribution) in epidermis and cortex, growth hormones around the epidermis and cortex, particularly outside the cortex, and esters in cortex with unobvious difference among different tissues. In this study, the spatial distribution of meta-bolites in the rhizome of P. polyphylla var. yunnanensis was characterized for the first time. The result can serve as a reference for identifying and extracting endogenous metabolites of P. polyphylla var. yunnanensis, exploring the synthesis and metabolism mechanisms of the metabolites, and evaluating the quality of medicinal materials.


Asunto(s)
Liliaceae , Melanthiaceae , Saponinas , Liliaceae/química , Rizoma/química , Saponinas/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Commun Biol ; 5(1): 50, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027659

RESUMEN

The genes in polyphyllins pathway mixed with other steroid biosynthetic genes form an extremely complex biosynthetic network in Paris polyphylla with a giant genome. The lack of genomic data and tissue specificity causes the study of the biosynthetic pathway notably difficult. Here, we report an effective method for the prediction of key genes of polyphyllin biosynthesis. Full-length transcriptome from eight different organs via hybrid sequencing of next generation sequencingand third generation sequencing platforms annotated two 2,3-oxidosqualene cyclases (OSCs), 216 cytochrome P450s (CYPs), and 199 UDP glycosyltransferases (UGTs). Combining metabolic differences, gene-weighted co-expression network analysis, and phylogenetic trees, the candidate ranges of OSC, CYP, and UGT genes were further narrowed down to 2, 15, and 24, respectively. Beside the three previously characterized CYPs, we identified the OSC involved in the synthesis of cycloartenol and the UGT (PpUGT73CR1) at the C-3 position of diosgenin and pennogenin in P. polyphylla. This study provides an idea for the investigation of gene cluster deficiency biosynthesis pathways in medicinal plants.


Asunto(s)
Vías Biosintéticas/genética , Genes de Plantas/fisiología , Melanthiaceae/genética , Saponinas/genética
16.
J Ethnopharmacol ; 282: 114591, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34481873

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Polyphyllin D (PD), an active component from rhizome of Paris polyphylla Sm, root and rhizome, shows a strong anti-cancer activity in several cancers. However, whether autophagy is involved in PD-induced cell death in breast cancer cells and its molecular mechanism has not yet been elucidated. AIM OF THE STUDY: To explore the anti-tumor effects of PD in breast cancer and the underlying mechanisms. MATERIALS AND METHODS: PD was isolated from P. polyphylla Sm and confirmed by HPLC and NMR. The role of PD in cell viability, apoptosis, autophagy in breast cancer cells were determined. RESULTS: PD shows significant anti-tumor activity by inhibit cell proliferation and induce caspase-dependent apoptosis in breast cancer cells. Moreover, PD treatment could induce autophagy by activation of JNK1/Bcl-2 pathway. Importantly, blocking of autophagy by using autophagy inhibitor 3-methyladenine (3-MA) dramatically increase PD-induced apoptosis as evidence by the increased percentage of apoptotic cell death. The anti-tumor effects of PD also investigated in vivo. The results showed that the combinatory treatment of PD with autophagy inhibitor significantly promote PD-induced apoptosis. CONCLUSION: PD could induce caspase-dependent apoptosis and cyto-protectvie autophagy by activation of JNK1/Bcl-2 pathway in breast cancer cells. Combination with an autophagy inhibitor significantly enhance cytotoxic effect of PD and this combination may be a promising candidate for breast cancer therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Diosgenina/análogos & derivados , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Saponinas/farmacología , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diosgenina/farmacología , Femenino , Humanos , Melanthiaceae , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
17.
Phytochem Anal ; 33(1): 136-150, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34231268

RESUMEN

INTRODUCTION: Medicinal plants are very important to human health, and ensuring their quality and rapid evaluation are the current research concerns. Deep learning has a strong ability in recognition. This study extended it to the identification of medicinal plants from the perspective of spectrum. OBJECTIVE: In order to realise the rapid identification and provide a reference for the selection of high-quality resources of medicinal plants, a combination of deep learning and two-dimensional correlation spectroscopy (2DCOS) was proposed. METHODS: For the first time, Fourier transform mid-infrared (FT-MIR) and near-infrared (NIR) spectroscopy 2DCOS images combined with residual neural network (ResNet) was used for the origin identification of Paris polyphylla var. yunnanensis. In total 1593 samples were collected and 12821 2DCOS images were drawn. The climate of different origins was briefly analysed. RESULTS: The xishuangbanna, puer, lincang, honghe and wenshan are the five regions with more ecological advantages. The synchronous 2DCOS models of FT-MIR and NIR could realise origin identification with the accuracy of 100%. The synchronous images were suitable for the identification of medicinal plants with complex systems. The full band, feature band and different contour models had no big difference in distinguishing ability, so they were not the key factors affecting the discrimination results. CONCLUSION: The ResNet models established were stable, reliable, and robust, which not only solved the problem of origin identification, expanded the application field of deep learning, but also provided practical reference for the related research of other medicinal plants.


Asunto(s)
Aprendizaje Profundo , Liliaceae , Melanthiaceae , Plantas Medicinales , Análisis Espectral
18.
Artículo en Chino | WPRIM | ID: wpr-928046

RESUMEN

In this study, a method was established for in-situ visualization of metabolite distribution in the rhizome of Paris polyphylla var. yunnanensis. To be specific, through matrix-assisted laser desorption/ionization-mass spectrometry imaging(MALDI-MSI), the spatial locations of steroidal saponins, amino acids, organic acids, phytosterols, phytoecdysones, nucleosides, and esters in rhizome of the medicinal plant were directly analyzed, and six unknown compounds with differential distribution in rhizome tissues were identified. The specific procedure is as follows: preparation of rhizome tissue section, matrix screening and optimization, and MALDI-MSI analysis. The results showed that the steroidal saponins were mainly distributed in the central, amino acids in epidermis and cortex, low-molecular-weight organic acids in central epidermis, phytosterols in the epidermis and lateral cortex, the phytoecdysones in epidermis and cortex, nucleosides(uneven distribution) in epidermis and cortex, growth hormones around the epidermis and cortex, particularly outside the cortex, and esters in cortex with unobvious difference among different tissues. In this study, the spatial distribution of meta-bolites in the rhizome of P. polyphylla var. yunnanensis was characterized for the first time. The result can serve as a reference for identifying and extracting endogenous metabolites of P. polyphylla var. yunnanensis, exploring the synthesis and metabolism mechanisms of the metabolites, and evaluating the quality of medicinal materials.


Asunto(s)
Liliaceae/química , Melanthiaceae , Rizoma/química , Saponinas/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
World J Microbiol Biotechnol ; 38(1): 15, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878606

RESUMEN

Pairs polyphylla var. yunnanensis (Paris L.) is a valuable medicinal plant used in traditional Chinese medicine. The market demand for P. polyphylla has increased over time, but it has slow growth and a low natural propagation rate. Endophytic bacteria are bioactive microorganisms that form a mutualistic relationship with host plants in long-term coordinated evolution, and they can promote the growth and accumulation of effective components in host plants. The aims of this study were to identify endophytic bacteria of P. polyphylla and to characterize their properties in promoting plant growth. A total of 10 endophytic bacteria were isolated from rhizomes of P. polyphylla. The isolated endophytes exhibited a variable capacity for indole acetic acid production, phosphate solubilization and nitrogen fixation. To investigate the effects of the endophytes on plant growth, four endophyte strains, G5, J2, G20, and Y2, were selected to compare their ability to promote plant growth. The results indicated that microbial endophytes isolated from P. polyphylla rhizomes play a vital role in improving P. polyphylla plant growth and could be used as inoculants to establish a sustainable crop production system.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Endófitos/fisiología , Melanthiaceae/crecimiento & desarrollo , Melanthiaceae/microbiología , Desarrollo de la Planta , Rizoma/microbiología , ADN Bacteriano , Interacciones Microbiota-Huesped , Ácidos Indolacéticos/metabolismo , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/microbiología , Simbiosis
20.
Zhongguo Zhong Yao Za Zhi ; 46(19): 4936-4944, 2021 Oct.
Artículo en Chino | MEDLINE | ID: mdl-34738387

RESUMEN

In this study, liquid chromatography-mass spectrometry(LC-MS) and high performance liquid chromatography(HPLC) were employed for qualitative and quantitative analysis of the steroidal saponins in rhizomes of Paris polyphylla var. yunnanensis from three different habitats cultured in vitro, in an attempt to explore whether the rhizomes of the medicinal herb cultured in vitro can synthesize the steroidal saponins, including polyphyllinsⅠ, Ⅱ, and Ⅶ, the quality markers specified in Chinese Pharmacopoeia(2020 edition). A total of 20 steroidal saponins were identified in the rhizomes from Changxin, Yunlong(S1), Fengyi, Dali(S2), and Niujie, Eryuan(S3): parisyunnanoside A and parisyunnanoside D or E, proto-polyphyllin Ⅱ, polyphyllins G and H, polyphyllinsⅠ, Ⅱ, Ⅴ, Ⅵ, and Ⅶ, dioscin, gracillin, prosapogenin A, Tg, isomer of Th, saponin Th, reclinatoside, proto-pairs D, pseudoproto-dioscin, and 23-O-glc-(23S,25R)-spirost-5-en-3ß,23α,27-triol-3-O-rha-(1→2)-[ara(1→4)]-glc or 27-O-glc-(23S,25R)-spirost-5-en-3ß,27α-diol-3-O-rha-(1→2)-[ara(1→4)]-glc. Among them, polyphyllinsⅠ, Ⅱ, and Ⅶ were detected in the rhizomes from S1, with the mass fraction of 0.109 1%, 0.165 2%, and 0.051 03%, respectively(total 0.325 3%). Polyphyllins Ⅱ and Ⅶ were identified in the rhizomes from S2 with the respective mass fraction of 0.192 2% and 0.074 23% and total content of 0.266 5%. Moreover, polyphyllins Ⅱ and Ⅶ were also found in the rhizomes from S3, which had the mass fraction of 0.207 7% and 0.186 9%, separately, with the total content of 0.394 6%. Thus, steroidal saponins, including the quality makers polyphyllins Ⅰ, Ⅱ, and Ⅶ recorded in Chinese Pharmacopoeia(2020 edition) can be synthesized in rhizomes of Paris polyphylla var. yunnanensis cultured in vitro, but their total content fails to meet the standard(0.60% in Chinese Pharmacopoeia). Therefore, in vitro culture of the Paris polyphylla var. yunnanensis is feasible, but the culture conditions need to be further improved.


Asunto(s)
Liliaceae , Melanthiaceae , Saponinas , Cromatografía Líquida de Alta Presión , Rizoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA