Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Naturwissenschaften ; 108(2): 11, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33740167

RESUMEN

Regrowth via production of epicormic shoots is an important strategy for many woody plants after environmental disturbances such as fire, drought, and herbivory. Populations spreading across a broad latitudinal gradient offer opportunities to investigate if essential traits vary with heterogenous environmental conditions, such as in savanna ecosystems. This information can help us predict plant responses to climate change. Here, we evaluated if epicormic bud protection traits varied among populations of three focal savanna species (Miconia albicans, Solanum lycocarpum, and Zeyheria montana) that have a wide distribution and grow under variable climatic conditions. We randomly sampled 225 individuals over five spatially independent sites (7°, 10°, 15°, 18°, and 24° S) in Brazil, totaling 15 individuals per species per area. We analyzed anatomical transverse sections of five buds per species per area to assess the relative area occupied by crystal and phenolic idioblasts, the thickness of the trichome boundary layer, and to test if these traits were associated with climatic conditions. The buds were protected by cataphylls and composed of a variable number of undeveloped leaves enveloping the shoot apex. For M. albicans, we found an association between maximum temperature and both phenolic idioblasts and trichome boundary layer, but no association with crystal idioblasts. In S. lycocarpum, only the trichome boundary layer was associated with maximum temperature plus high radiation. Z. montana showed no variation. Combination of two or more traits can lead to the development of adaptative strategies to different climatic conditions. We present for the first time an analysis of epicormic bud traits in plant populations occurring in an extensive latitudinal gradient and shed light on how maximum temperature is associated with these traits, contributing to a better understanding of plant resprouting capabilities in widespread savanna plant species.


Asunto(s)
Pradera , Magnoliopsida/fisiología , Temperatura , Brasil , Magnoliopsida/anatomía & histología , Melastomataceae/anatomía & histología , Melastomataceae/fisiología , Solanum/anatomía & histología , Solanum/fisiología , Clima Tropical
2.
Plant Biol (Stuttg) ; 18(4): 585-93, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26789333

RESUMEN

Most species in Melastomataceae have poricidal anthers related to specialised bee buzz-pollination, while some have anthers with large openings associated to non-bee pollination systems. We tracked the evolution of anther morphology and seed number on the Miconieae phylogenetic tree to understand the evolutionary shifts in such pollination systems. Anther morphometric data and seed number were recorded for 54 taxa. Pollinators (bees, flies, wasps) were recorded for 20 available species. Ancestral state reconstruction was made using Maximum Likelihood from nrITS sequences. We used phylogenetic eigenvector regressions to estimate phylogenetic signal and the adaptive component for these traits. Species pollinated by bees or bees and wasps tend to have smaller pores and fruits with more seeds. Species pollinated by flies or flies and bees and/or wasps tend to have larger pores and fruits with less seeds. Independent evolution occurred three times for anthers with large pores and twice for fruits with few seeds. We detected a phylogenetic signal in both traits, and negative correlated evolution between them. In actinomorphic small-flowered Miconieae, changes in anther morphology can be related to generalisation in the pollination system incorporating flies and wasps as pollinators and lessening the importance of buzzing bees in such process. Differences in pollen removal and deposition may explain differences in anther morphology and seed number in Miconieae.


Asunto(s)
Melastomataceae/fisiología , Polinización , Animales , Abejas/fisiología , Evolución Biológica , Análisis por Conglomerados , Dípteros/fisiología , Flores/anatomía & histología , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Melastomataceae/anatomía & histología , Melastomataceae/genética , Melastomataceae/crecimiento & desarrollo , Fenotipo , Polen/anatomía & histología , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Semillas/anatomía & histología , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Avispas/fisiología
3.
Plant Biol (Stuttg) ; 18(1): 132-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26152277

RESUMEN

Apomixis is an asexual seed reproduction mechanism thorough which embryos are originated from material tissues inside the ovules, without precedent fertilisation. It allows plants to colonise new habitats, even in places where flower visitors are scarce or where plants are isolate. Apomixis seems to be related to pollen sterility and, in species with flowers that offer pollen as a reward for pollinators, the amount or quality of the pollen offered by these species may influence the amount of the visits and specific composition of the visitors. In order to test this hypothesis, we studied breeding systems of 16 species of Melastomataceae and their flower visitors, evaluating composition and abundance of the visits to apomictic and sexual species. Apomictic plants with no viable pollen or with pollen with low viability did not receive visits from pollinators, and consequently probably produce strictly apomictic fruits. On the other hand, apomictic and sexual plants with high pollen viability do receive visits; in this case, apomictic plants may produce fruits and seeds through both sexual and apomictic methods. The species composition of insects visiting Melastomataceae with high pollen viability was similar, regardless of whether the plants were apomictic or not. It seems that pollen viability levels are important to determine visits to the flowers irrespective of breeding system.


Asunto(s)
Apomixis/fisiología , Melastomataceae/fisiología , Infertilidad Vegetal/fisiología , Polinización/fisiología , Animales , Brasil , Flores , Insectos , Polen , Semillas
4.
Curr Biol ; 24(14): 1615-1619, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24998529

RESUMEN

Bird pollination has evolved repeatedly among flowering plants but is almost exclusively characterized by passive transfer of pollen onto the bird and by nectar as primary reward [1, 2]. Food body rewards are exceedingly rare among eudicot flowering plants and are only known to occur on sterile floral organs [3]. In this study, we report an alternative bird pollination mechanism involving bulbous stamen appendages in the Neotropical genus Axinaea (Melastomataceae). We studied the pollination process by combining pollination experiments, video monitoring, and detailed analyses of stamen structure and metabolomic composition. We show that the bulbous stamen appendages, which are consumed by various species of passerines (Thraupidae, Fringillidae), are bifunctional during the pollination process. First, the appendages work as bellows organs in a unique pollen expulsion mechanism activated by the passerines. As the birds seize an appendage with their beaks in order to remove it from the flower for consumption, air contained in the appendage's aerenchymatous tissue is pressed into the hollow anther. The resulting air flow causes the expulsion of a pollen jet and the deposition of pollen on the bird's head and beak. Second, the stamen appendages provide a hexose-rich, highly nutritious (15,100 J/g) food body reward for the pollinating passerines. This discovery expands our knowledge of flowering plant pollination systems and provides the first report of highly specialized bellows organs for active pollen transfer in flowering plants. In addition, this is the only known case of a food body reward associated with reproductive structures in the eudicot clade of flowering plants.


Asunto(s)
Flores/fisiología , Melastomataceae/fisiología , Polinización/fisiología , Animales , Aves , Polen
5.
Proc Natl Acad Sci U S A ; 107(31): 13760-4, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20660738

RESUMEN

Coffee farms are often embedded within a mosaic of agriculture and forest fragments in the world's most biologically diverse tropical regions. Although shade coffee farms can potentially support native pollinator communities, the degree to which these pollinators facilitate gene flow for native trees is unknown. We examined the role of native bees as vectors of gene flow for a reproductively specialized native tree, Miconia affinis, in a shade coffee and remnant forest landscape mosaic. We demonstrate extensive cross-habitat gene flow by native bees, with pollination events spanning more than 1,800 m. Pollen was carried twice as far within shade coffee habitat as in nearby forest, and trees growing within shade coffee farms received pollen from a far greater number of sires than trees within remnant forest. The study shows that shade coffee habitats support specialized native pollinators that enhance the fecundity and genetic diversity of remnant native trees.


Asunto(s)
Abejas/fisiología , Café/fisiología , Melastomataceae/fisiología , Polen , Animales , Conducta Animal , Variación Genética , Melastomataceae/genética , México
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA