Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
BMC Plant Biol ; 24(1): 51, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38225581

RESUMEN

BACKGROUND: Caffeic acid O-methyltransferase (COMT) is a key enzyme that regulates melatonin synthesis and is involved in regulating the growth, development, and response to abiotic stress in plants. Tea plant is a popular beverage consumed worldwide, has been used for centuries for its medicinal properties, including its ability to reduce inflammation, improve digestion, and boost immune function. By analyzing genetic variation within the COMT family, while helping tea plants resist adversity, it is also possible to gain a deeper understanding of how different tea varieties produce and metabolize catechins, then be used to develop new tea cultivars with desired flavor profiles and health benefits. RESULTS: In this study, a total of 25 CsCOMT genes were identified based on the high-quality tea (Camellia sinensis) plant genome database. Phylogenetic tree analysis of CsCOMTs with COMTs from other species showed that COMTs divided into four subfamilies (Class I, II, III, IV), and CsCOMTs was distributed in Class I, Class II, Class III. CsCOMTs not only undergoes large-scale gene recombination in pairs internally in tea plant, but also shares 2 and 7 collinear genes with Arabidopsis thaliana and poplar (Populus trichocarpa), respectively. The promoter region of CsCOMTs was found to be rich in cis-acting elements associated with plant growth and stress response. By analyzing the previously transcriptome data, it was found that some members of CsCOMT family exhibited significant tissue-specific expression and differential expression under different stress treatments. Subsequently, we selected six CsCOMTs to further validated their expression levels in different tissues organ using qRT-PCR. In addition, we silenced the CsCOMT19 through virus-induced gene silencing (VIGS) method and found that CsCOMT19 positively regulates the synthesis of melatonin in tea plant. CONCLUSION: These results will contribute to the understanding the functions of CsCOMT gene family and provide valuable information for further research on the role of CsCOMT genes in regulating tea plant growth, development, and response to abiotic stress.


Asunto(s)
Camellia sinensis , Melatonina , Metiltransferasas , Camellia sinensis/fisiología , Melatonina/genética , Filogenia , , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Nat Commun ; 14(1): 5525, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684283

RESUMEN

Melatonin is a functionally conserved broad-spectrum physiological regulator found in most biological organisms in nature. Enrichment of tomato fruit with melatonin not only enhances its agronomic traits but also provides extra health benefits. In this study, we elucidate the full melatonin biosynthesis pathway in tomato fruit by identifying biosynthesis-related genes that encode caffeic acid O-methyltransferase 2 (SlCOMT2) and N-acetyl-5-hydroxytryptamine-methyltransferases 5/7 (SlASMT5/7). We further reveal that red light supplementation significantly enhances the melatonin content in tomato fruit. This induction relies on the "serotonin-N-acetylserotonin-melatonin" biosynthesis route via the SlphyB2-SlPIF4-SlCOMT2 module. Based on the regulatory mechanism, we design a gene-editing strategy to target the binding motif of SlPIF4 in the promoter of SlCOMT2, which significantly enhances the production of melatonin in tomato fruit. Our study provides a good example of how the understanding of plant metabolic pathways responding to environmental factors can guide the engineering of health-promoting foods.


Asunto(s)
Melatonina , Solanum lycopersicum , Solanum lycopersicum/genética , Melatonina/genética , Ingeniería , Agricultura , Frutas/genética
3.
Mech Ageing Dev ; 211: 111776, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36706965

RESUMEN

Disturbances of melatonin secretion alter the circadian rhythm and sleep-wake cycle, which is observed among patients with depression. Melatonin acts via melatonin receptors MT1 and MT2, which are present in many tissues, including peripheral blood mononuclear cells (PBMC). We assume that disturbances of the melatonin pathway in the brain may be reflected by molecular changes in peripheral organs. The study objective was to evaluate the methylation profile of CpG island in the promoter region of melatonin receptor genes MTNR1A and MTNR1B in PBMC of patients with depression and compare it with healthy volunteers. The study group comprised 85 patients with unipolar (UP) and bipolar disorders (BP) and 83 controls. The methylation pattern of CpG island in the promoter region was analyzed using the quantitative methylation-specific real-time PCR (qMSP-PCR) method. We found that the methylation profile of the patients with depression varied in comparison to the control group. The methylation level of MTNR1A was significantly lower among depressed patients compared to controls. Additionally, melatonin concentration was negatively correlated with MTNR1B methylation level among the UP patients. The study may suggest that the methylation profile of melatonin receptors in PBMC may be used as a complementary molecular marker in depression diagnosis.


Asunto(s)
Trastorno Bipolar , Melatonina , Humanos , Receptores de Melatonina/genética , Receptores de Melatonina/metabolismo , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Leucocitos Mononucleares/metabolismo , Melatonina/genética , Metilación
4.
Int J Biol Macromol ; 220: 942-953, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998857

RESUMEN

Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme involved in plant melatonin biosynthesis. Identifying its expression under development and stress will reveal the regulatory role in the soybean. To identify and characterize SNAT, we employed genome-wide analysis, gene structure, cis-acting elements, expression, and enzyme activity. We identified seven putative genes by genome-wide analysis and found chloroplast signal peptides in three GmSNATs. To elucidate GmSNATs role, expression datasets of more than a hundred samples related to circadian rhythm, developmental stages, and stress conditions were analysed. Notably, the expression of GmSNAT1 did not show significant expression during biotic and abiotic stress. The GmSNAT1 sequence showed 67.8 and 72.2 % similarities with OsSNAT and AtSNAT, respectively. The Km and Vmax of the purified recombinant GmSNAT1 were 657 µM and 3780 pmol/min/mg, respectively. To further understand the GmSNAT1 role, we supplemented different concentrations of serotonin and melatonin to in-vitro cultures and seed priming. These studies revealed that the GmSNAT1 expression was significantly up-regulated at higher concentrations of serotonin and down-regulated at higher melatonin concentrations. We speculate that a high concentration of melatonin during abiotic, biotic stress, and in-vitro cultures are responsible for regulating GmSNAT1 expression, which may regulate them at the enzyme level during stress in soybean.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina , Melatonina , N-Acetiltransferasa de Arilalquilamina/química , N-Acetiltransferasa de Arilalquilamina/genética , N-Acetiltransferasa de Arilalquilamina/metabolismo , Regulación de la Expresión Génica de las Plantas , Melatonina/genética , Melatonina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Señales de Clasificación de Proteína/genética , Serotonina/genética , Serotonina/metabolismo , Glycine max/genética , Glycine max/metabolismo , Estrés Fisiológico/genética
5.
Biosci Rep ; 42(7)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35771226

RESUMEN

Sleep disorder caused by abnormal circadian rhythm is one of the main symptoms and risk factors of depression. As a known hormone regulating circadian rhythms, melatonin (MT) is also namely N-acetyl-5-methoxytryptamine. N-acetylserotonin methyltransferase (Asmt) is the key rate-limiting enzyme of MT synthesis and has been reportedly associated with depression. Although 50-90% of patients with depression have sleep disorders, there are no effective treatment ways in the clinic. Exercise can regulate circadian rhythm and play an important role in depression treatment. In the present study, we showed that Asmt knockout induced depression-like behaviors, which were ameliorated by swimming exercise. Moreover, swimming exercise increased serum levels of MT and 5-hydroxytryptamine (5-HT) in Asmt knockout mice. In addition, the microarray data identified 10 differentially expressed genes (DEGs) in KO mice compared with WT mice and 29 DEGs in KO mice after swimming exercise. Among the DEGs, the direction and magnitude of change in epidermal growth factor receptor pathway substrate 8-like 1 (Eps8l1) and phospholipase C-ß 2 (Plcb2) were confirmed by qRT-PCR partly. Subsequent bioinformatic analysis showed that these DEGs were enriched significantly in the p53 signaling pathway, long-term depression and estrogen signaling pathway. In the protein-protein interaction (PPI) networks, membrane palmitoylated protein 1 (Mpp1) and p53-induced death domain protein 1 (Pidd1) were hub genes to participate in the pathological mechanisms of depression and exercise intervention. These findings may provide new targets for the treatment of depression.


Asunto(s)
Acetilserotonina O-Metiltransferasa , Melatonina , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Animales , Depresión/genética , Hipotálamo/metabolismo , Melatonina/genética , Ratones , Transcriptoma , Proteína p53 Supresora de Tumor/genética
6.
Int J Mol Sci ; 22(22)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830375

RESUMEN

Melatonin is synthesized in the pineal gland at night. Since melatonin is produced in the mitochondria of all other cells in a non-circadian manner, the amount synthesized by the pineal gland is less than 5% of the total. Melatonin produced in mitochondria influences glucose metabolism in all cells. Many pathological cells adopt aerobic glycolysis (Warburg effect) in which pyruvate is excluded from the mitochondria and remains in the cytosol where it is metabolized to lactate. The entrance of pyruvate into the mitochondria of healthy cells allows it to be irreversibly decarboxylated by pyruvate dehydrogenase (PDH) to acetyl coenzyme A (acetyl-CoA). The exclusion of pyruvate from the mitochondria in pathological cells prevents the generation of acetyl-CoA from pyruvate. This is relevant to mitochondrial melatonin production, as acetyl-CoA is a required co-substrate/co-factor for melatonin synthesis. When PDH is inhibited during aerobic glycolysis or during intracellular hypoxia, the deficiency of acetyl-CoA likely prevents mitochondrial melatonin synthesis. When cells experiencing aerobic glycolysis or hypoxia with a diminished level of acetyl-CoA are supplemented with melatonin or receive it from another endogenous source (pineal-derived), pathological cells convert to a more normal phenotype and support the transport of pyruvate into the mitochondria, thereby re-establishing a healthier mitochondrial metabolic physiology.


Asunto(s)
Glucosa/metabolismo , Melatonina/genética , Mitocondrias/metabolismo , Neoplasias/metabolismo , Aerobiosis/genética , Comunicación Celular/genética , Glucólisis/genética , Humanos , Melatonina/metabolismo , Neoplasias/genética , Neoplasias/patología , Efecto Warburg en Oncología
7.
Mol Biol Rep ; 48(5): 4659-4665, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34061325

RESUMEN

Neuroblastoma is a deadly and serious malignancy among children. Although many developments have been occurred for the treatment of this disease, the rate of mortality is still high. Therefore, it is necessary to search for novel complementary and alternative therapies. Melatonin, a hormone secreted from pineal gland, is a multifunctional agent having anticancer potentials. Recently, several investigations have been conducted indicating melatonin effects against neuroblastoma. In this paper, we summarize current evidence on anti-neuroblastoma effects of melatonin based on cellular pathways.


Asunto(s)
Antineoplásicos/uso terapéutico , Melatonina/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Pediatría , Preescolar , Humanos , Melatonina/genética , Neuroblastoma/genética , Neuroblastoma/patología , Glándula Pineal/metabolismo , Transducción de Señal/efectos de los fármacos
8.
J Exp Clin Cancer Res ; 40(1): 93, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33691750

RESUMEN

BACKGROUND: There is no consensus about the effective dosages of melatonin in cancer management, thus, it is imperative to fully understand the dose-dependent responsiveness of cancer cells to melatonin and the underlying mechanisms. METHODS: Head and neck squamous cell carcinoma (HNSCC) cells with or without melatonin treatment were used as a research platform. Gene depletion was achieved by short hairpin RNA, small interfering RNA, and CRISPR/Cas9. Molecular changes and regulations were assessed by Western blotting, quantitative RT-PCR (qRT-PCR), immunohistochemistry, and chromatin Immunoprecipitation coupled with qPCR (ChIP-qPCR). The therapeutic efficacy of FGF19/FGFR4 inhibition in melatonin-mediated tumor growth and metastasis was evaluated in orthotopic tongue tumor mice. RESULTS: The effect of melatonin on controlling cell motility and metastasis varies in HNSCC cells, which is dose-dependent. Mechanistically, high-dose melatonin facilitates the upregulation of FGF19 expression through activating endoplasmic stress (ER)-associated protein kinase RNA-like endoplasmic reticulum kinase (PERK)-Eukaryotic initiation factor 2 alpha (eIF2α)-activating transcription factor 4 (ATF4) pathway, which in turn promotes FGFR4-Vimentin invasive signaling and attenuates the role of melatonin in repressing metastasis. Intriguingly, following long-term exposure to high-dose melatonin, epithelial HNSCC cells revert the process towards mesenchymal transition and turn more aggressive, which is enabled by FGF19/FGFR4 upregulation and alleviated by genetic depletion of the FGF19 and FGFR4 genes or the treatment of FGFR4 inhibitor H3B-6527. CONCLUSIONS: Our study gains novel mechanistic insights into melatonin-mediated modulation of FGF19/FGFR4 signaling in HNSCC, demonstrating that activating this molecular node confines the role of melatonin in suppressing metastasis and even triggers the switch of its function from anti-metastasis to metastasis promotion. The blockade of FGF19/FGFR4 signaling would have great potential in improving the efficacy of melatonin supplements in cancer treatment.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Melatonina/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Animales , Humanos , Ratones , Metástasis de la Neoplasia , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
9.
Plant Physiol ; 183(3): 898-914, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32354877

RESUMEN

Previous studies have clearly demonstrated that the putative phytohormone melatonin functions directly in many aspects of plant growth and development. In Arabidopsis (Arabidopsis thaliana), the role of melatonin in seed oil and anthocyanin accumulation, and corresponding underlying mechanisms, remain unclear. Here, we found that serotonin N-acetyltransferase1 (SNAT1) and caffeic acid O-methyltransferase (COMT) genes were ubiquitously and highly expressed and essential for melatonin biosynthesis in Arabidopsis developing seeds. We demonstrated that blocking endogenous melatonin biosynthesis by knocking out SNAT1 and/or COMT significantly increased oil and anthocyanin content of mature seeds. In contrast, enhancement of melatonin signaling by exogenous application of melatonin led to a significant decrease in levels of seed oil and anthocyanins. Further gene expression analysis through RNA sequencing and reverse-transcription quantitative PCR demonstrated that the expression of a series of important genes involved in fatty acid and anthocyanin accumulation was significantly altered in snat1-1 comt-1 developing seeds during seed maturation. We also discovered that SNAT1 and COMT significantly regulated the accumulation of both mucilage and proanthocyanidins in mature seeds. These results not only help us understand the function of melatonin and provide valuable insights into the complicated regulatory network controlling oil and anthocyanin accumulation in seeds, but also divulge promising gene targets for improvement of both oil and flavonoids in seeds of oil-producing crops and plants.


Asunto(s)
Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , N-Acetiltransferasa de Arilalquilamina/genética , Melatonina/biosíntesis , Metiltransferasas/genética , Semillas/metabolismo , Antocianinas/genética , N-Acetiltransferasa de Arilalquilamina/metabolismo , Regulación de la Expresión Génica de las Plantas , Melatonina/genética , Metiltransferasas/metabolismo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/metabolismo
10.
Biomed Res Int ; 2019: 9740568, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31637261

RESUMEN

Colorectal cancer (CRC) influences individual health worldwide with high morbidity and mortality. Melatonin, which shows multiple physiological functions (e.g., circadian rhythm, immune modulation, and antioncogenic action), can be present in almost all organisms and found in various tissues including gastrointestinal tract. Notably, melatonin disruption is closely associated with the elevation of CRC incidence, indicating that melatonin is effective in suppressing CRC development and progression. Mechanistically, melatonin favors in activating apoptosis and colon cancer immunity, while reducing proliferation, autophagy, metastasis, and angiogenesis, thereby exerting its anticarcinogenic effects. This review highlights that melatonin can be an adjuvant therapy and be beneficial in treating patients suffering from CRC.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Melatonina/genética , Neovascularización Patológica/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ritmo Circadiano/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/patología , Humanos , Melatonina/uso terapéutico , Metástasis de la Neoplasia , Neovascularización Patológica/genética , Neovascularización Patológica/patología
12.
Nat Rev Endocrinol ; 15(2): 105-125, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30531911

RESUMEN

Despite considerable advances in the past few years, obesity and type 2 diabetes mellitus (T2DM) remain two major challenges for public health systems globally. In the past 9 years, genome-wide association studies (GWAS) have established a major role for genetic variation within the MTNR1B locus in regulating fasting plasma levels of glucose and in affecting the risk of T2DM. This discovery generated a major interest in the melatonergic system, in particular the melatonin MT2 receptor (which is encoded by MTNR1B). In this Review, we discuss the effect of melatonin and its receptors on glucose homeostasis, obesity and T2DM. Preclinical and clinical post-GWAS evidence of frequent and rare variants of the MTNR1B locus confirmed its importance in regulating glucose homeostasis and T2DM risk with minor effects on obesity. However, these studies did not solve the question of whether melatonin is beneficial or detrimental, an issue that will be discussed in the context of the peculiarities of the melatonergic system. Melatonin receptors might have therapeutic potential as they belong to the highly druggable G protein-coupled receptor superfamily. Clarifying the precise role of melatonin and its receptors on glucose homeostasis is urgent, as melatonin is widely used for other indications, either as a prescribed medication or as a supplement without medical prescription, in many countries in Europe and in the USA.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo/métodos , Melatonina/genética , Obesidad/genética , Receptor de Melatonina MT2/genética , Animales , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Variación Genética , Glucosa/metabolismo , Homeostasis/genética , Humanos , Masculino , Ratones , Mutación , Obesidad/fisiopatología , ARN Mensajero/genética , Transducción de Señal/genética
13.
Cell Mol Life Sci ; 74(20): 3741-3768, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28623510

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder implicitly marked by the substantia nigra dopaminergic neuron degeneration and explicitly characterized by the motor and non-motor symptom complexes. Apart from the nigrostriatal dopamine depletion, the immune and endocrine study findings are also frequently reported, which, in fact, have helped to broaden the symptom spectrum and better explain the pathogenesis and progression of PD. Nevertheless, based on the neural, immune, and endocrine findings presented above, it is still difficult to fully recapitulate the pathophysiologic process of PD. Therefore, here, in this review, we have proposed the neuroimmunoendocrine (NIE) modulatory network in PD, aiming to achieve a more comprehensive interpretation of the pathogenesis and progression of this disease. As a matter of fact, in addition to the classical motor symptoms, NIE modulatory network can also underlie the non-motor symptoms such as gastrointestinal, neuropsychiatric, circadian rhythm, and sleep disorders in PD. Moreover, the dopamine (DA)-melatonin imbalance in the retino-diencephalic/mesencephalic-pineal axis also provides an alternative explanation for the motor complications in the process of DA replacement therapy. In conclusion, the NIE network can be expected to deepen our understanding and facilitate the multi-dimensional management and therapy of PD in future clinical practice.


Asunto(s)
Hipotálamo/fisiopatología , Inflamación/fisiopatología , Enfermedad de Parkinson/fisiopatología , Animales , Relojes Circadianos , Dopamina/genética , Dopamina/inmunología , Neuronas Dopaminérgicas/inmunología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Predisposición Genética a la Enfermedad , Humanos , Hipotálamo/inmunología , Hipotálamo/metabolismo , Inflamación/genética , Inflamación/inmunología , Melatonina/genética , Melatonina/inmunología , Degeneración Nerviosa/genética , Degeneración Nerviosa/inmunología , Degeneración Nerviosa/fisiopatología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/inmunología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/inmunología , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/inmunología , Pérdida de Peso , alfa-Sinucleína/genética , alfa-Sinucleína/inmunología
14.
Biochem Biophys Res Commun ; 475(2): 189-93, 2016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27208779

RESUMEN

The present study aimed to determine the relationship between melatonin and gonadotropin-inhibitory hormone (GnIH) and their effect on reproduction in cinnamon clownfish, Amphiprion melanopus. Accordingly, we investigated the expression pattern of GnIH, GnIH receptor (GnIH-R), and melatonin receptor (MT-R1) mRNA and protein, as well as the plasma levels of melatonin, during sex change in cinnamon clownfish. We found that GnIH and MT-R1 mRNA and melatonin activity were higher in fish with mature brain than in fish with developing gonads, and using double immunofluorescence staining, we found that both GnIH and MT-R1 proteins were co-expressed in the hypothalamus of cinnamon clownfish. These findings support the hypothesis that melatonin plays an important role in the negative regulation of maturation and GnIH regulation during reproduction.


Asunto(s)
Proteínas de Peces/metabolismo , Hormonas Hipotalámicas/metabolismo , Melatonina/metabolismo , Perciformes/crecimiento & desarrollo , Receptores de Melatonina/metabolismo , Conducta Sexual Animal , Animales , Femenino , Proteínas de Peces/análisis , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica , Hormonas Hipotalámicas/análisis , Hormonas Hipotalámicas/genética , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Masculino , Melatonina/análisis , Melatonina/sangre , Melatonina/genética , Perciformes/sangre , Perciformes/metabolismo , ARN Mensajero/genética , Receptores de Melatonina/análisis , Receptores de Melatonina/genética , Desarrollo Sexual
15.
Anim Reprod Sci ; 147(1-2): 10-6, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24768045

RESUMEN

Melatonin and its receptors are found in the testis of many species, where they mediate testicular functions. The present study aimed to investigate the expression of melatonin receptors (MT1 and MT2) in bovine Sertoli cells (SCs), using reverse transcription polymerase chain reaction (RT-PCR) and western blot. In addition, we assessed the mRNA levels of spermatogenesis-related genes (real-time PCR) and secretion of inhibin B after treatment with various concentrations (0, 80, 160, and 320 pg/mL) of melatonin at different time points (24, 48, or 72 h). We found that bovine SCs express MT1 and MT2 receptors, which were regulated by melatonin in time- and dose-dependent manners after treatment with melatonin. Exogenous melatonin up-regulated the expression of spermatogenesis-related genes, including Cyclin D1, Cyclin E, Pdgfa, Dhh, Occludin, and Claudin, and decreased the mRNA levels of P21 and Kit1 in a time or dose-dependent manner. Meanwhile, melatonin supplementation significantly affected Inhba, Inhbb and Inha mRNA expression. These findings were consistent with inhibin B levels detected in the culture medium. In conclusion, exogenous melatonin acts via its receptors and appears to play regulatory roles in the development and function of bovine SCs.


Asunto(s)
Melatonina/metabolismo , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Células de Sertoli/metabolismo , Animales , Bovinos , Células Cultivadas , Regulación de la Expresión Génica , Inhibinas/genética , Inhibinas/metabolismo , Masculino , Melatonina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética , Espermatogénesis/fisiología
16.
Int J Biol Sci ; 6(3): 282-93, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20567497

RESUMEN

Melatonin is a possible protective agent in postburn gut pathophysiological dynamics. We investigated the role of endogenously-produced versus exogenously-administered melatonin in a major thermal injury rat model with well-characterized gut inflammatory complications. Our rationale is that understanding in vivo melatonin mechanisms in control and inflamed tissues will improve our understanding of its potential as a safe anti-inflammatory/antioxidant therapeutic alternative. Towards this end, we tested the hypothesis that the gut is both a source and a target for melatonin and that mesenteric melatonin plays an anti-inflammatory role following major thermal injury in rats with 3rd degree hot water scald over 30% TBSA. Our methods for assessing the gut as a source of melatonin included plasma melatonin ELISA measurements in systemic and mesenteric circulation as well as rtPCR measurement of jejunum and terminal ileum expression of the melatonin synthesizing enzymes arylalkylamine N-acetyltransferase (AA-NAT) and 5-hydroxyindole-O-methyltransferase (HIOMT) in sham versus day-3 postburn rats. Our melatonin ELISA results revealed that mesenteric circulation has much higher melatonin than systemic circulation and that both mesenteric and systemic melatonin levels are increased three days following major thermal injury. Our rtPCR results complemented the ELISA data in showing that the melatonin synthesizing enzymes AA-NAT and HIOMT are expressed in the ileum and jejunum and that this expression is increased three days following major thermal injury. Interestingly, the rtPCR data also revealed negative feedback by melatonin as exogenous melatonin supplementation at a dose of 7.43 mg (32 micromole/kg), but not 1.86 mg/kg (8 micromole/kg) drastically suppressed AA-NAT mRNA expression. Our methods also included an assessment of the gut as a target for melatonin utilizing computerized immunohistochemical measurements to quantify the effects of exogenous melatonin supplementation on postburn gut mucosa barrier inflammatory profiles. Here, our results revealed that daily postburn intraperitoneal melatonin administration at a dose of 1.86 mg/kg (8 micromole/kg) significantly suppressed both neutrophil infiltration and tyrosine nitrosylation as revealed by Gr-1 and nitrotyrosine immunohistochemistry, respectively. In conclusion, our results provide support for high mesenteric melatonin levels and dynamic de novo gut melatonin production, both of which increase endogenously in response to major thermal injury, but appear to fall short of abrogating the excessive postburn hyper-inflammation. Moreover, supplementation by exogenous melatonin significantly suppresses gut inflammation, thus confirming that melatonin is protective against postburn inflammation.


Asunto(s)
Quemaduras/fisiopatología , Melatonina/biosíntesis , Melatonina/metabolismo , Abdomen/fisiopatología , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Animales , N-Acetiltransferasa de Arilalquilamina/genética , N-Acetiltransferasa de Arilalquilamina/metabolismo , Quemaduras/genética , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/fisiopatología , Íleon/metabolismo , Íleon/fisiopatología , Indoles , Masculino , Melatonina/genética , Mesenterio/metabolismo , Mesenterio/fisiopatología , Ratas , Ratas Sprague-Dawley , Roedores/genética , Roedores/metabolismo
17.
Biol Rev Camb Philos Soc ; 85(3): 607-23, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20039865

RESUMEN

Melatonin is a molecule present in a multitude of taxa and may be ubiquitous in organisms. It has been found in bacteria, unicellular eukaryotes, macroalgae, fungi, plants and animals. A primary biological function of melatonin in primitive unicellular organisms is in antioxidant defence to protect against toxic free radical damage. During evolution, melatonin has been adopted by multicellular organisms to perform many other biological functions. These functions likely include the chemical expression of darkness in vertebrates, environmental tolerance in fungi and plants, sexual signaling in birds and fish, seasonal reproductive regulation in photoperiodic mammals, and immunomodulation and anti-inflammatory activity in all vertebrates tested. Moreover, its waning production during aging may indicate senescence in terms of a bio-clock in many organisms. Conversely, high melatonin levels can serve as a signal of vitality and health. The multiple biological functions of melatonin can partially be attributed to its unconventional metabolism which is comprised of multi-enzymatic, pseudo-enzymatic and non-enzymatic pathways. As a result, several bioactive metabolites of melatonin are formed during its metabolism and some of the presumed biological functions of melatonin reported to date may, in fact, be mediated by these metabolites. The changing biological roles of melatonin seem to have evolved from its primary function as an antioxidant.


Asunto(s)
Evolución Biológica , Regulación de la Expresión Génica/fisiología , Aptitud Genética/fisiología , Preferencia en el Apareamiento Animal/fisiología , Melatonina/metabolismo , Transducción de Señal/fisiología , Animales , Antioxidantes/metabolismo , Oscuridad , Aptitud Genética/genética , Melatonina/genética , Plantas/metabolismo
18.
Endocrinology ; 149(3): 962-70, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18063680

RESUMEN

We recently identified a novel hypothalamic neuropeptide stimulating GH release in bullfrogs and termed it frog GH-releasing peptide (fGRP). The fGRP precursor encodes fGRP and its related peptides (fGRP-RP-1, -RP-2, and -RP-3), and fGRP-RP-2 also stimulates GH and prolactin (PRL) release. Cell bodies and terminals containing these neuropeptides are localized in the suprachiasmatic nucleus (SCN) and median eminence, respectively. To understand the physiological role of fGRP and fGRP-RP-2, we investigated the mechanisms that regulate the expression of these neuropeptides. This study shows that melatonin induces the expression of fGRP and fGRP-RPs in bullfrogs. Orbital enucleation combined with pinealectomy (Ex plus Px) decreased the expression of fGRP precursor mRNA and content of mature fGRP and fGRP-RPs in the diencephalon including the SCN and median eminence. Conversely, melatonin administration to Ex plus Px bullfrogs increased dose-dependently their expressions. The expression of fGRP precursor mRNA was photoperiodically controlled and increased under short-day photoperiods, when the nocturnal duration of melatonin secretion increases. To clarify the mode of melatonin action on the induction of fGRP and fGRP-RPs, we further demonstrated the expression of Mel(1b), a melatonin receptor subtype, in SCN neurons expressing fGRP precursor mRNA. Finally, we investigated circulating GH and PRL levels after melatonin manipulation because fGRP and fGRP-RP-2 stimulate the release of GH and GH/PRL, respectively. Ex plus Px decreased plasma GH and PRL concentrations, whereas melatonin administration increased these hormone levels. These results suggest that melatonin induces the expression of fGRP and fGRP-RP-2, thus stimulating the release of GH and PRL in bullfrogs.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/sangre , Hipotálamo/metabolismo , Melatonina/fisiología , Oligopéptidos/metabolismo , Prolactina/sangre , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Relación Dosis-Respuesta a Droga , Enucleación del Ojo , Regulación de la Expresión Génica , Hormona Liberadora de Hormona del Crecimiento/genética , Masculino , Melatonina/genética , Datos de Secuencia Molecular , Oligopéptidos/genética , Fotoperiodo , Glándula Pineal/fisiología , Glándula Pineal/cirugía , ARN Mensajero/metabolismo , Rana catesbeiana
19.
Endocrine ; 27(2): 89-100, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16217122

RESUMEN

In all vertebrates, melatonin is rhythmically synthesized in the pineal gland and functions as a hormonal message, encoding for the duration of night. In rodents, the nocturnal rise and fall of the arylalkylamine N-ace-tyltransferase (AA-NAT) activity controls the rhythmic synthesis of melatonin. This rhythm is centered around the transcriptional regulation of the AA-NAT by two norepinephrine-inducible transcription factors, the activator CREB (Ca2+/cAMP-response element binding protein) and the inhibitor ICER (inducible cAMP early repressor). CREB is activated by phosphorylation, which is one of the fastest responses in pinealocytes upon adrenergic stimulation, occurring within minutes. ICER in turn accumulates only after several hours, a time gap resulting from the required de novo protein synthesis upon adrenergic stimulation. However, these molecular components of neuroendocrine signaling in the rodent pineal gland are supplemented by the impact of a variety of neurotransmitters and neuromodulators, and by translational and post-translational mechanisms. By molecular crosstalk, those different inputs on pinealocytes seem to fine-tune the shape of the melatonin signal, by interacting at various levels with the NE/cAMP/pCREB/ICER pathway. In addition, these alternate signaling routes may be important in acute "emergency" situations. Together, concerted signaling events in the rodent pineal gland help to generate a stable and reliable hormonal message of darkness for the body, that, however, can be altered rapidly upon sudden and unexpected "error" signals.


Asunto(s)
Expresión Génica/fisiología , Melatonina/biosíntesis , Melatonina/genética , Periodicidad , Glándula Pineal/fisiología , Roedores/fisiología , Animales , Evolución Biológica , Regulación de la Expresión Génica/fisiología , Neurotransmisores
20.
J Neurochem ; 86(5): 1308-11, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12911638

RESUMEN

A second gene encoding a functional tryptophan hydroxylase activity has recently been described (TPH2), which is expressed abundantly in brainstem, the primary site of serotonergic neurons in the CNS. As serotonin (5-HT) has an important role as a precursor of the nocturnal synthesis of the pineal gland hormone, melatonin, it was of interest to determine the relative expression of TPH1 and 2 mRNA in the rat pineal during the light:dark (L:D) cycle using sensitive real-time RT-PCR assays which were developed for each TPH isoform. TPH1 mRNA expression was 105-fold more abundant in rat pineal than TPH2, and showed a significant approximately 4-fold nocturnal increase in expression which may contribute to the previously described nocturnal increase in pineal tryptophan hydroxylase activity. TPH2 expression within the gland showed no significant variation with time of day and was very low (approximately 300 copies/gland) indicating expression in the small proportion of "non-pinealocyte" cells in the gland.


Asunto(s)
Ritmo Circadiano/fisiología , Glándula Pineal/metabolismo , ARN Mensajero/metabolismo , Triptófano Hidroxilasa/genética , Animales , Arilamina N-Acetiltransferasa/genética , Ritmo Circadiano/genética , ADN Complementario/genética , Isoenzimas/genética , Masculino , Melatonina/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA