Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Toxins (Basel) ; 14(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36548715

RESUMEN

The venom of honeybees is composed of numerous peptides and proteins and has been used for decades as an anti-inflammatory and anti-cancer agent in traditional medicine. However, the bioactivity of specific biomolecular components has been evaluated for the predominant constituent, melittin. So far, only a few melittin-like peptides from solitary bee species have been investigated, and the molecular mechanisms of bee venoms as therapeutic agents remain largely unknown. Here, the preclinical pharmacological activities of known and proteo-transcriptomically discovered new melittin variants from the honeybee and more ancestral variants from phylogenetically older solitary bees were explored in the context of cancer and inflammation. We studied the effects of melittin peptides on cytotoxicity, second messenger release, and inflammatory markers using primary human cells, non-cancer, and cancerous cell lines. Melittin and some of its variants showed cytotoxic effects, induced Ca2+ signaling and inhibited cAMP production, and prevented LPS-induced NO synthesis but did not affect the IP3 signaling and pro-inflammatory activation of endothelial cells. Compared to the originally-described melittin, some phylogenetically more ancestral variants from solitary bees offer potential therapeutic modalities in modulating the in vitro inflammatory processes, and hindering cancer cell viability/proliferation, including aggressive breast cancers, and are worth further investigation.


Asunto(s)
Antiinflamatorios , Antineoplásicos , Venenos de Abeja , Abejas , Meliteno , Animales , Humanos , Venenos de Abeja/farmacología , Venenos de Abeja/química , Células Endoteliales , Meliteno/química , Meliteno/aislamiento & purificación , Meliteno/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Línea Celular Tumoral
2.
Toxins (Basel) ; 13(5)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067049

RESUMEN

Prostate cancer is one of the most common cancers in men. Despite the development of a variety of therapeutic agents to treat either metastatic hormone-sensitive prostate cancer, advanced prostate cancer, or nonmetastatic/metastatic castration-resistant prostate cancer, the progression or spread of the disease often cannot be avoided. Additionally, the development of resistance of prostate cancer cells to available therapeutic agents is a well-known problem. Despite extensive and cost-intensive research over decades, curative therapy for metastatic prostate cancer is still not available. Therefore, additional therapeutic agents are still needed. The animal kingdom offers a valuable source of natural substances used for the treatment of a variety of diseases. Bee venom of the honeybee is a mixture of many components. It contains proteins acting as enzymes such as phospholipase A2, smaller proteins and peptides such as melittin and apamin, phospholipids, and physiologically active amines such as histamine, dopamine, and noradrenaline. Melittin has been shown to induce apoptosis in different cancer cell lines, including prostate cancer cell lines. It also influences cell proliferation, angiogenesis, and necrosis as well as motility, migration, metastasis, and invasion of tumour cells. Hence, it represents an interesting anticancer agent. In this review article, studies about the effect of bee venom components on prostate cancer cells are discussed. An electronic literature research was performed utilising PubMed in February 2021. All scientific publications, which examine this interesting subject, are discussed. Furthermore, the different types of application of these promising substances are outlined. The studies clearly indicate that bee venom or melittin exhibited anticancer effects in various prostate cancer cell lines and in xenografts. In most of the studies, a combination of bee venom or the modified melittin with another molecule was utilised in order to avoid side effects and, additionally, to target selectively the prostate cancer cells or the surrounding tissue. The studies showed that systemic side effects and unwanted damage to healthy tissue and organs could be minimised when the anticancer drug was not activated until binding to the cancer cells or the surrounding tissue. Different targets were used, such as the matrix metalloproteinase 2, hormone receptors expressed by prostate cancer cells, the extracellular domain of PSMA, and the fibroblast activation protein occurring in the stroma of prostate cancer cells. Another approach used loaded phosphate micelles, which were cleaved by the enzyme secretory phospholipase A2 produced by prostate cancer cells. In a totally different approach, targeted nanoparticles containing the melittin gene were used for prostate cancer gene therapy. By the targeted nonviral gene delivery, the gene encoding melittin was delivered to the prostate cancer cells without systemic side effects. This review of the scientific literature reveals totally different approaches using bee venom, melittin, modified melittin, or protoxin as anticancer agents. The toxic agents acted through several different mechanisms to produce their anti-prostate cancer effects. These mechanisms are not fully understood yet and more experimental studies are necessary to reveal the complete mode of action. Nevertheless, the researchers have conducted pioneering work. Based on these results, further experimental and clinical studies about melittin and modifications of this interesting agent deriving from nature are necessary and could possibly lead to a complementary treatment option for prostate cancer.


Asunto(s)
Antineoplásicos/farmacología , Venenos de Abeja/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Apamina/aislamiento & purificación , Apamina/farmacología , Apoptosis/efectos de los fármacos , Venenos de Abeja/administración & dosificación , Venenos de Abeja/química , Abejas , Humanos , Masculino , Meliteno/aislamiento & purificación , Meliteno/farmacología , Fosfolipasas A2/aislamiento & purificación , Fosfolipasas A2/farmacología , Neoplasias de la Próstata/patología
3.
Med Oncol ; 38(5): 52, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33796975

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is the most prevalent neurological complication of cancer treatment which involves sensory and motor nerve dysfunction. Severe CIPN has been reported in around 5% of patients treated with single and up to 38% of patients treated with multiple chemotherapeutic agents. Present medications available for CIPN are the use of opioids, nonsteroidal anti-inflammatory agents, and tricyclic antidepressants, which are only marginally effective in treating neuropathic symptoms. In reality, symptom reappears after these drugs are discontinued. The pathogenesis of CIPN has not been sufficiently recognized and methods for the prevention and treatment of CIPN remain vulnerable to therapeutic problems. It has witnessed that the present medicines available for the disease offer only symptomatic relief for the short term and have severe adverse side effects. There is no standard treatment protocol for preventing, reducing, and treating CIPN. Therefore, there is a need to develop curative therapy that can be used to treat this complication. Melittin is the main pharmacological active constituent of honeybee venom and has therapeutic values including in chemotherapeutic-induced peripheral neuropathy. It has been shown that melittin and whole honey bee venom are effective in treating paclitaxel and oxaliplatin-induced peripheral neuropathy. The use of melittin against peripheral neuropathy caused by chemotherapy has been limited despite having strong therapeutic efficacy against the disease. Melittin mediated haemolysis is the key reason to restrict its use. In our study, it is found that α-Crystallin (an eye lens protein) is capable of inhibiting melittin-induced haemolysis which gives hope of using an appropriate combination of melittin and α-Crystallin in the treatment of CIPN. The review summarizes the efforts made by different research groups to address the concern with melittin in the treatment of chemotherapeutic-induced neuropathy. It also focuses on the possible approaches to overcome melittin-induced haemolysis.


Asunto(s)
Antineoplásicos/efectos adversos , Venenos de Abeja/uso terapéutico , Meliteno/uso terapéutico , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Venenos de Abeja/aislamiento & purificación , Humanos , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/uso terapéutico , Meliteno/aislamiento & purificación , Enfermedades del Sistema Nervioso Periférico/inmunología
5.
Toxins (Basel) ; 11(6)2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31248167

RESUMEN

Bee venom contains a number of pharmacologically active components, including enzymes and polypeptides such as phospholipase A2 (PLA2) and melittin, which have been shown to exhibit therapeutic benefits, mainly via attenuation of inflammation, neurotoxicity, and nociception. The individual components of bee venom may manifest distinct biological actions and therapeutic potential. In this study, the potential mechanisms of action of PLA2 and melittin, among different compounds purified from honey bee venom, were evaluated against Parkinson's disease (PD). Notably, bee venom PLA2 (bvPLA2), but not melittin, exhibited neuroprotective activity against PD in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP-induced behavioral deficits were also abolished after bvPLA2 treatment, depending on the PLA2 content. Further, bvPLA2 administration activated regulatory T cells (Tregs) while inhibiting inflammatory T helper (Th) 1 and Th17 cells in the MPTP mouse model of PD. These results indicate that bvPLA2, but not melittin, protected against MPTP and alleviated inflammation in PD. Thus, bvPLA2 is a promising and effective therapeutic agent in Parkinson's disease.


Asunto(s)
Venenos de Abeja/química , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/tratamiento farmacológico , Fosfolipasas A2/uso terapéutico , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Masculino , Meliteno/aislamiento & purificación , Meliteno/uso terapéutico , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/aislamiento & purificación , Fosfolipasas A2/aislamiento & purificación , Linfocitos T Reguladores/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA