Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Integr Med ; 22(1): 72-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38307819

RESUMEN

OBJECTIVE: Melittin and its derivative have been developed to support effective gene delivery systems. Their ability to facilitate endosomal release enhances the delivery of nanoparticle-based gene therapy. Nevertheless, its potential application in the context of viral vectors has not received much attention. Therefore, we would like to optimize the rAAV vector by Melittin analog to improve the transduction efficiency of rAAV in liver cancer cells and explore the mechanism of Melittin analog on rAAV. METHODS: Various melittin-derived peptides were inserted into loop VIII of the capsid protein in recombinant adeno-associated virus vectors. These vectors carrying either gfp or fluc genes were subjected to quantitative polymerase chain reaction assays and transduction assays in human embryonic kidney 293 (HEK293T) cells to investigate the efficiency of vector production and gene delivery. In addition, the ability of a specific p5RHH-rAAV vector to deliver genes was examined through in vitro transduction of different cultured cells and in vivo tail vein administration to C57BL/6 mice. Finally, the intricate details of the vector-mediated transduction mechanisms were explored by using pharmacological inhibitors of every stage of the rAAV2 intracellular life cycle. RESULTS: A total of 76 melittin-related peptides were identified from existing literature. Among them, CMA-3, p5RHH and aAR3 were found to significantly inhibit transduction of rAAV2 vector crude lysate. The p5RHH-rAAV2 vectors efficiently transduced not only rAAV-potent cell lines but also cell lines previously considered resistant to rAAV. Mechanistically, bafilomycin A1, a vacuolar endosome acidification inhibitor, completely inhibited the transgene expression mediated by the p5RHH-rAAV2 vectors. Most importantly, p5RHH-rAAV8 vectors also increased hepatic transduction in vivo in C57BL/6 mice. CONCLUSION: The incorporation of melittin analogs into the rAAV capsids results in a significant improvement in rAAV-mediated transgene expression. While further modifications remain an area of interest, our studies have substantially broadened the pharmacological prospects of melittin in the context of viral vector-mediated gene delivery. Please cite this article as: Meng J, He Y, Yang H, Zhou L, Wang S, Feng X, Al-shargi OY, Yu X, Zhu L, Ling, C. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. J Integr Med. 2024; 22(1): 72-82.


Asunto(s)
Dependovirus , Meliteno , Ratones , Masculino , Animales , Humanos , Dependovirus/genética , Meliteno/farmacología , Meliteno/genética , Transducción Genética , Células HEK293 , Ratones Endogámicos C57BL , Vectores Genéticos
2.
Medicine (Baltimore) ; 102(32): e34728, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37565866

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a type of difficult-to-cure arthralgia with a worldwide prevalence. It severely affects people's living standards. For a long time, bee venom has been used to treat RA and has shown good results. Melittin is the main active component of bee venom used for RA treatment, but the molecular mechanism of melittin in RA treatments remains unclear. METHODS: Potential melittin and RA targets were obtained from relevant databases, and common targets of melittin and RA were screened. The STRING database was used to build the PPI network and screen the core targets after visualization. The core targets were enriched by Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway. Finally, the binding of melittin to target proteins was evaluated through simulated molecular docking, which verified the reliability of the prediction results of network pharmacology. RESULTS: In total, 138 melittin targets and 5795 RA targets were obtained from relevant databases, and 90 common targets were obtained through intersection. Eighteen core targets, such as STAT3, AKT1, tumor necrosis factor, and JUN, were screened out. Enrichment analysis results suggested that melittin plays an anti-RA role mainly through tumor necrosis factor, interleukin-17, toll-like receptors, and advanced glycation end products-RAGE signaling pathways, and pathogenic bacterial infection. Molecular docking results suggested that melittin has good docking activity with core target proteins. CONCLUSION: RA treatment with melittin is the result of a multi-target and multi-pathway interaction. This study offers a theoretical basis and scientific evidence for further exploring melittin in RA therapy.


Asunto(s)
Artritis Reumatoide , Venenos de Abeja , Medicamentos Herbarios Chinos , Humanos , Meliteno/farmacología , Meliteno/uso terapéutico , Simulación del Acoplamiento Molecular , Farmacología en Red , Reproducibilidad de los Resultados , Factor de Necrosis Tumoral alfa , Artritis Reumatoide/tratamiento farmacológico , Medicina Tradicional China
3.
Nutrients ; 15(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37513529

RESUMEN

Apitherapy (using bee products) has gained broad recognition in cancer therapeutics globally. Honeybee venom has a broad range of biological potential, and its utilization is rapidly emerging in apitherapy. Bee products have significant potential to strengthen the immune system and improve human health. Thus, this review is targeted toward recapitulating the chemo-preventive potential of melittin (MEL), which constitutes a substantial portion of honeybee venom. Honeybee venom (apitoxin) is produced in the venom gland of the honeybee abdomen, and adult bees utilize it as a primary colony defense mechanism. Apitoxin comprises numerous biologically active compounds, including peptides, enzymes, amines, amino acids, phospholipids, minerals, carbohydrates, and volatile components. We are mainly focused on exploring the potential of melittin (a peptide component) of bee venom that has shown promising potential in the treatment of several human cancers, including breast, stomach, lung, prostate, ovary, kidney, colon, gastric, esophageal, cervical cancers, melanoma, osteosarcoma, and hepatocellular carcinoma. This review has summarized all potential studies related to the anticancerous efficacy of melittin (apitoxin), its formulations, conjugates, and nano-formulations against several human carcinomas, which would further pave the way for future researchers in developing potent drugs for cancer management.


Asunto(s)
Venenos de Abeja , Neoplasias Óseas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Abejas , Animales , Venenos de Abeja/farmacología , Venenos de Abeja/uso terapéutico , Meliteno/farmacología , Meliteno/uso terapéutico , Péptidos
4.
BMC Complement Med Ther ; 23(1): 132, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098530

RESUMEN

BACKGROUND: Apitherapy is an emerging field in cancer research, particularly in developing communities. The potency of Melittin (MEL), a major constituent in bee venom is accounted for the cytotoxic capacity against cancer cells. It is postulated that the genotype of bees and the time of venom collection influences its specific activity against certain types of cancer. METHOD: Hereby, Jordanian crude bee venom (JCBV) was collected during different seasons of the year, specifically spring, summer and autumn and investigated for in vitro antitumour effects. Venom collected during springtime comprised the highest quantity of MEL in comparison to venom collected some other time. Springtime-collected JCBV extract and MEL were tested on an immortal myelogenous leukaemia cell line, namely K562 leukemic cells. Treated cells were examined for cell modality via flow cytometry analysis and cell death mediating gene expressions. RESULTS: Springtime-collected JCBV extract and MEL showed an IC50 of 3.7 ± 0.37 µg/ml and 1.84 ± 0.75 µg/ml, respectively. In comparison to JCBV and positive control, MEL-treated cells exhibited late apoptotic death with a moderate cellular arrest at G0/G1 and an increase of cell number at G2/M phase. Expression of NF-κB/MAPK14 axis was inhibited in MEL and JCBV-treated cells, as well as expression of c-MYC and CDK4. Moreover, marked upregulation in ABL1, JUN and TNF was observed. In conclusion, springtime-collected JCBV showed the highest content of MEL while both JCBV and pure MEL showed apoptotic, necrotic, and cell cycle arrest efficiency against K562 leukemic cells. CONCLUSION: Integration of bee venom in chemotherapy needs more investigation and should be carefully translated into clinical use. During such translation, the correlation of bee genotype, collection time and concentration of MEL in CBV should be profiled.


Asunto(s)
Venenos de Abeja , Leucemia , Humanos , Abejas , Animales , Meliteno/farmacología , Meliteno/química , Meliteno/genética , Venenos de Abeja/farmacología , Células K562 , Péptidos , Leucemia/tratamiento farmacológico
5.
Poult Sci ; 102(2): 102355, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36502563

RESUMEN

To study the effects of melittin on egg-laying performance and intestinal barrier of quails, 240 quails (aged 70 d) were randomly divided into 4 groups with 6 replicates (10 quails per replicate). They were fed with basal diet (group B), basal diet + 0.08 g/kg melittin (group BA1), basal diet + 0.12 g/kg melittin (group BA2) and basal diet + 0.16 g/kg melittin (group BA3). The experiment lasted for 21 days. The eggs were collected every day. At the end of the experiment, duodenal, jejunal, and ileal tissues were collected, and the cecal contents were sampled. Intestinal antioxidant index, barrier function, and intestinal flora were analyzed. The results showed that the addition of melittin significantly increased the laying rate and average egg weight. Addition of melittin significantly increased the antioxidant function, mechanical barrier, immune barrier, and the villus height to crypt depth ratio of small intestine. Addition of melittin had no significant effect on the α and ß diversity of cecal flora, but significantly increased the abundance of Bacteroidales at family level and genus level. Bioinformatics analysis of cecal content showed significant increase in COG functional category of cytoskeleton, and significant decrease in RNA processing and modification in group BA2. KEGG functional analysis showed significant decrease in steroid biosynthesis, caffeine metabolism, and cytochrome P450 pathways in group BA2. In conclusion, addition of 0.12 g/kg melittin to feed improved the laying performance and the intestinal antioxidant capacity and barrier function of quails but had no significant effect on the composition and structure of cecal microbial community. This study provides experimental data and theoretical basis for the application of melittin as a new quail feed additive.


Asunto(s)
Antioxidantes , Codorniz , Animales , Antioxidantes/metabolismo , Codorniz/metabolismo , Meliteno/farmacología , Pollos/metabolismo , Óvulo/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos/análisis
6.
J Integr Med ; 21(1): 106-115, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36333178

RESUMEN

OBJECTIVE: Melittin, a cell-penetrating peptide, improves the efficiency of many non-viral gene delivery vectors, yet its application in viral vectors has not been well studied. The non-pathogenic recombinant adeno-associated virus (rAAV) vector is an ideal in vivo gene delivery vector. However, its full potential will only be achieved after improvement of its transduction efficiency. To improve the transduction efficiency of rAAV2 vectors, we attempted to develop a melittin-based rAAV2 vector delivery strategy. METHODS: The melittin peptide was inserted into the rAAV2 capsid either in the loop VIII of all viral proteins (VPs) or at the N terminus of VP2. Various rAAV2-gfp or -fluc vectors were subjected to quantitative real-time polymerase chain reaction and Western blot assays to determine their titers and integrity of capsid proteins, respectively. Alternatively, the vectors based on wild-type capsid were pre-incubated with melittin, followed by transduction of cultured cells or tail vein administration of the mixture to C57BL/6 and BALB/c nude mice. In vivo bioluminescence imaging was performed to evaluate the transgene expression. RESULTS: rAAV2 vectors with melittin peptide inserted in the loop VIII of VPs had low transduction efficiency, probably due to dramatically reduced ability to bind to the target cells. Fusing the melittin peptide at the N-terminus of VP2 produced vectors without the VP2 subunit. Interestingly, among the commonly used rAAV vectors, pre-incubation of rAAV2 and rAAV6 vectors with melittin significantly enhanced their transduction efficiency in HEK293 and Huh7 cells in vitro. Melittin also had the ability to increase the rAAV2-mediated transgene expression in mouse liver in vivo. Mechanistically, melittin did not change the vector-receptor interaction. Moreover, cell counting kit-8 assays of cultured cells and serum transaminase levels indicated melittin had little cytotoxicity. CONCLUSION: Pre-incubation with melittin, but not insertion of melittin into the rAAV2 capsid, significantly enhanced rAAV2-mediated transgene expression. Although further in vivo evaluations are required, this research not only expands the pharmacological potential of melittin, but also provides a new strategy to improve gene therapy mediated by rAAV vectors.


Asunto(s)
Dependovirus , Meliteno , Ratones , Animales , Humanos , Meliteno/farmacología , Meliteno/genética , Dependovirus/genética , Serogrupo , Células HEK293 , Ratones Desnudos , Ratones Endogámicos C57BL , Transgenes , Vectores Genéticos/genética
7.
Toxins (Basel) ; 14(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36548715

RESUMEN

The venom of honeybees is composed of numerous peptides and proteins and has been used for decades as an anti-inflammatory and anti-cancer agent in traditional medicine. However, the bioactivity of specific biomolecular components has been evaluated for the predominant constituent, melittin. So far, only a few melittin-like peptides from solitary bee species have been investigated, and the molecular mechanisms of bee venoms as therapeutic agents remain largely unknown. Here, the preclinical pharmacological activities of known and proteo-transcriptomically discovered new melittin variants from the honeybee and more ancestral variants from phylogenetically older solitary bees were explored in the context of cancer and inflammation. We studied the effects of melittin peptides on cytotoxicity, second messenger release, and inflammatory markers using primary human cells, non-cancer, and cancerous cell lines. Melittin and some of its variants showed cytotoxic effects, induced Ca2+ signaling and inhibited cAMP production, and prevented LPS-induced NO synthesis but did not affect the IP3 signaling and pro-inflammatory activation of endothelial cells. Compared to the originally-described melittin, some phylogenetically more ancestral variants from solitary bees offer potential therapeutic modalities in modulating the in vitro inflammatory processes, and hindering cancer cell viability/proliferation, including aggressive breast cancers, and are worth further investigation.


Asunto(s)
Antiinflamatorios , Antineoplásicos , Venenos de Abeja , Abejas , Meliteno , Animales , Humanos , Venenos de Abeja/farmacología , Venenos de Abeja/química , Células Endoteliales , Meliteno/química , Meliteno/aislamiento & purificación , Meliteno/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Línea Celular Tumoral
8.
Toxins (Basel) ; 14(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36287932

RESUMEN

Streptococcus pyogenes (S. pyogenes) bacteria cause almost all primary skin infections in humans. Bee venom (BV) and melittin (Mel) have multiple effects, including antibacterial and anti-inflammatory activities. This study aims to demonstrate their effects on bacterial mouse skin infection using S. pyogenes. The dorsal skin was tape-stripped, then S. pyogenes was topically applied. BV or Mel were topically applied to the lesion. The tissues were stained with hematoxylin and eosin, while immunohistochemical staining was performed with anti-neutrophil. S. pyogenes-infected skin revealed increased epidermal and dermal layers, but it was reduced in the BV and Mel groups. Finding increased neutrophils in the mice infected with S. pyogenes, but the BV and Mel mice showed decreased expression. These results suggest that BV and Mel treatments could reduce the inflammatory reactions and help improve lesions induced by S. pyogenes skin infection. This study provides additional assessment of the potential therapeutic effects of BV and Mel in managing skin infection caused by S. pyogenes, further suggesting that it could be a candidate for developing novel treatment alternative for streptococcal skin infections.


Asunto(s)
Venenos de Abeja , Enfermedades Cutáneas Bacterianas , Humanos , Ratones , Animales , Meliteno/farmacología , Meliteno/uso terapéutico , Venenos de Abeja/farmacología , Venenos de Abeja/uso terapéutico , Streptococcus pyogenes , Eosina Amarillenta-(YS) , Hematoxilina , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Antibacterianos/uso terapéutico
9.
Amino Acids ; 54(9): 1275-1285, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35779173

RESUMEN

The emergence of multidrug-resistant (MDR) bacteria is a major challenge for antimicrobial chemotherapy. Concerning this issue, antimicrobial peptides (AMPs) have been presented as novel promising antibiotics. Our previous de novo designed melittin-derived peptides (MDP1 and MDP2) indicated their potential as peptide drug leads. Accordingly, this study was aimed to evaluate the kinetics of activity, toxicity, and stability of MDP1 and MDP2 as well as determination of their structures. The killing kinetics of MDP1 and MDP2 demonstrate that all bacterial strains were rapidly killed. MDP1 and MDP2 were ca. 100- and 26.6-fold less hemolytic than melittin and found to be respectively 72.9- and 41.6-fold less cytotoxic than melittin on the HEK293 cell line. MDP1 and MDP2 showed 252- and 132-fold improvement in their therapeutic index in comparison to melittin. MDP1 and MDP2 sustained their activities in the presence of human plasma and were found to be ca. four to eightfold more stable than melittin. Spectropolarimetry analysis of MDP1 and MDP2 indicates that the peptides adopt an alpha-helical structure predominantly. According to the fast killing kinetics, significant therapeutic index, and high stability of MDP1, it could be considered as a drug lead in a mouse model of septicemia infections.


Asunto(s)
Péptidos Antimicrobianos , Meliteno , Animales , Antibacterianos/química , Células HEK293 , Humanos , Cinética , Meliteno/química , Meliteno/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Péptidos/química , Índice Terapéutico
10.
Anticancer Agents Med Chem ; 22(18): 3172-3181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35579132

RESUMEN

BACKGROUND AND PURPOSE: Osteosarcoma is the most commonly seen type of primary malignant bone tumors in children and adolescents. Partial patients with osteosarcoma cannot tolerate the side effects of chemotherapy drugs. Hence, it is urgent to find anti-osteosarcoma drugs with low side effects. Melittin is an anti-tumor Traditional Chinese Medicine with low side effects. The purpose of this study was to explore the anti-osteosarcoma effect of melittin and its possible molecular mechanisms. METHODS: The effects of melittin on cell growth were detected by CCK-8, clonal formation, and flow cytometry. The related molecules were also investigated by Real-time PCR and Western blot. A xenograft model in nude mice was established to observe the effects of melittin on tumor growth and the related molecular expression was detected by immunohistochemistry. RESULTS: Melittin can inhibit the proliferation of osteosarcoma 143B cells, reduce colony formation, and induce apoptosis while significantly up-regulating the expression of Bax and Caspase-3 and down-regulating the expression of Bcl-2 proteins. Moreover, treatment with melittin significantly reduced the mRNA and protein levels of ß-catenin and Wnt/ß- catenin related genes (LRP5, c-Myc, and Survivin) in osteosarcoma 143B cells in vitro. The xenograft model found that melittin significantly inhibited tumor growth and decreased the protein expression levels of ß-catenin and Wnt/ß- catenin related genes in vivo. CONCLUSION: These findings show that melittin could inhibit the growth of osteosarcoma 143B cells, which may be related to the inhibition of Wnt/ß-catenin signaling pathway activity and induce apoptosis by up-regulating the ratio of Bax/Bcl-2 in osteosarcoma 143B cells. Therefore, melittin is a promising anti-tumor drug for the treatment of osteosarcoma.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Osteosarcoma , Adolescente , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias Óseas/patología , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular , Niño , Humanos , Meliteno/farmacología , Ratones , Ratones Desnudos , Osteosarcoma/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero , Sincalida/farmacología , Sincalida/uso terapéutico , Survivin/metabolismo , Vía de Señalización Wnt , Proteína X Asociada a bcl-2 , beta Catenina/metabolismo
11.
Neuropeptides ; 91: 102209, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34808488

RESUMEN

Epilepsy is a chronic neuropathology characterized by an abnormal hyperactivity of neurons that generate recurrent, spontaneous, paradoxical and synchronized nerve impulses, leading or not to seizures. This neurological disorder affects around 70 million individuals worldwide. Pharmacoresistance is observed in about 30% of the patients and long-term use of antiepileptics may induce serious side effects. Thus, there is an interest in the study of the therapeutic potential of bioactive substances isolated from natural products in the treatment of epilepsy. Arthropod venoms contain neurotoxins that have high affinity for molecular structures in the neural tissue such as receptors, transporters and ion channels both in glial and neuronal membranes. This study evaluated the potential neuroprotective effect of melittin (MEL), an active compound of bee venom, in the bicuculline-induced seizure model (BIC) in rats. Male Wistar rats (3 months, 250-300 g) were submitted to surgery for the implantation of a unilateral cannula in the lateral ventricle. After the recovery period, rats received a microinjection of saline solution or MEL (0.1 mg per animal). Firstly, rats were evaluated in the open field (20 min) and in the elevated plus maze (5 min) tests after received microinjection of saline or MEL. After, 30 min later animals received BIC (100 mg/ml) or saline, and their behaviors were analyzed for 20 min in the open field according to a seizure scale. At the end, rats were euthanized, brains collected and processed to glial fibrillary acidic protein (GFAP) immunohistochemistry evaluation. No changes were observed in MEL-treated rats in the open field and elevated plus maze. However, 90% of MEL-treated animals were protected against seizures induced by BIC. There was an increase in the latency for the onset of seizures, accompanied by a reduction of GFAP-immunoreactivity cells in the dentate gyrus and CA1. Thus, our study suggests that MEL has an anticonvulsant potential, and further studies are needed to elucidate the mechanisms involved in this action.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Astrocitos/efectos de los fármacos , Venenos de Abeja/uso terapéutico , Hipocampo/efectos de los fármacos , Meliteno/uso terapéutico , Convulsiones/prevención & control , Animales , Anticonvulsivantes/farmacología , Venenos de Abeja/farmacología , Conducta Animal/efectos de los fármacos , Bicuculina , Masculino , Meliteno/farmacología , Ratas , Ratas Wistar , Convulsiones/inducido químicamente
12.
Toxins (Basel) ; 13(5)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067049

RESUMEN

Prostate cancer is one of the most common cancers in men. Despite the development of a variety of therapeutic agents to treat either metastatic hormone-sensitive prostate cancer, advanced prostate cancer, or nonmetastatic/metastatic castration-resistant prostate cancer, the progression or spread of the disease often cannot be avoided. Additionally, the development of resistance of prostate cancer cells to available therapeutic agents is a well-known problem. Despite extensive and cost-intensive research over decades, curative therapy for metastatic prostate cancer is still not available. Therefore, additional therapeutic agents are still needed. The animal kingdom offers a valuable source of natural substances used for the treatment of a variety of diseases. Bee venom of the honeybee is a mixture of many components. It contains proteins acting as enzymes such as phospholipase A2, smaller proteins and peptides such as melittin and apamin, phospholipids, and physiologically active amines such as histamine, dopamine, and noradrenaline. Melittin has been shown to induce apoptosis in different cancer cell lines, including prostate cancer cell lines. It also influences cell proliferation, angiogenesis, and necrosis as well as motility, migration, metastasis, and invasion of tumour cells. Hence, it represents an interesting anticancer agent. In this review article, studies about the effect of bee venom components on prostate cancer cells are discussed. An electronic literature research was performed utilising PubMed in February 2021. All scientific publications, which examine this interesting subject, are discussed. Furthermore, the different types of application of these promising substances are outlined. The studies clearly indicate that bee venom or melittin exhibited anticancer effects in various prostate cancer cell lines and in xenografts. In most of the studies, a combination of bee venom or the modified melittin with another molecule was utilised in order to avoid side effects and, additionally, to target selectively the prostate cancer cells or the surrounding tissue. The studies showed that systemic side effects and unwanted damage to healthy tissue and organs could be minimised when the anticancer drug was not activated until binding to the cancer cells or the surrounding tissue. Different targets were used, such as the matrix metalloproteinase 2, hormone receptors expressed by prostate cancer cells, the extracellular domain of PSMA, and the fibroblast activation protein occurring in the stroma of prostate cancer cells. Another approach used loaded phosphate micelles, which were cleaved by the enzyme secretory phospholipase A2 produced by prostate cancer cells. In a totally different approach, targeted nanoparticles containing the melittin gene were used for prostate cancer gene therapy. By the targeted nonviral gene delivery, the gene encoding melittin was delivered to the prostate cancer cells without systemic side effects. This review of the scientific literature reveals totally different approaches using bee venom, melittin, modified melittin, or protoxin as anticancer agents. The toxic agents acted through several different mechanisms to produce their anti-prostate cancer effects. These mechanisms are not fully understood yet and more experimental studies are necessary to reveal the complete mode of action. Nevertheless, the researchers have conducted pioneering work. Based on these results, further experimental and clinical studies about melittin and modifications of this interesting agent deriving from nature are necessary and could possibly lead to a complementary treatment option for prostate cancer.


Asunto(s)
Antineoplásicos/farmacología , Venenos de Abeja/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Apamina/aislamiento & purificación , Apamina/farmacología , Apoptosis/efectos de los fármacos , Venenos de Abeja/administración & dosificación , Venenos de Abeja/química , Abejas , Humanos , Masculino , Meliteno/aislamiento & purificación , Meliteno/farmacología , Fosfolipasas A2/aislamiento & purificación , Fosfolipasas A2/farmacología , Neoplasias de la Próstata/patología
14.
Integr Cancer Ther ; 19: 1534735420944476, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32735464

RESUMEN

Pathological angiogenesis and apoptosis evasion are common hallmarks of cancer. The present work was an endeavor to evaluate the influence of bee venom (BV) or its major constituent melittin (MEL) as antiapoptotic and angiogenic regulator modifier on the tumor growth and the cell sensitivity to ionizing radiation targeting the improvement of cancer therapeutic protocols. BV (0.56 mg/kg/day) and MEL (500 µg/kg body weight/day) were injected intraperitoneally to mice bearing 1 cm3 solid tumor of Ehrlich ascites carcinoma (EAC) for 21 consecutive days. Mice were whole-body exposed to 1 Gray (Gy) of γ-radiation (2 fractionated doses). Treatment with BV or MEL markedly suppresses the proliferation of tumor in EAC mice. The concentrations of m-RNA for angiogenic factors (TNF-α, VEGF) as well as MMPs 2 and 9 activities and NO concentration were significantly decreased, combined with improvements in apoptotic regulators (caspase-3 activity) and normal cells redox tone (catalase and free radicals content) compared with EAC mice. Moreover, the histopathological investigation confirms the improvement exerted by BV or MEL in the EAC mice group or EAC + R group. Exposure to γ-radiation sustained the modulatory effect of BV on tumor when compared with EAC + BV mice. Convincingly, the role of BV or MEL as a natural antiangiogenic in the biological sequelae after radiation exposure is verified. Hence, BV and its major constituent MEL might represent a potential therapeutic strategy for increasing the radiation response of solid tumors.


Asunto(s)
Venenos de Abeja , Carcinoma de Ehrlich , Carcinoma , Animales , Apoptosis , Venenos de Abeja/farmacología , Carcinoma de Ehrlich/tratamiento farmacológico , Carcinoma de Ehrlich/radioterapia , Meliteno/farmacología , Ratones , Neovascularización Patológica/tratamiento farmacológico
15.
ACS Nano ; 13(11): 12638-12652, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31625721

RESUMEN

Photodynamic therapy (PDT) is a clinical cancer treatment modality based on the induction of therapeutic reactive oxygen species (ROS), which can trigger immunogenic cell death (ICD). With the aim of simultaneously improving both PDT-mediated intracellular ROS production and ICD levels, we designed a serum albumin (SA)-coated boehmite ("B"; aluminum hydroxide oxide) organic-inorganic scaffold that could be loaded with chlorin e6 (Ce6), a photosensitizer, and a honey bee venom melittin (MLT) peptide, denoted Ce6/MLT@SAB. Ce6/MLT@SAB was anchored by a boehmite nanorod structure and exhibited particle size of approximately 180 nm. Ce6/MLT@SAB could significantly reduce hemolysis relative to that of free MLT, while providing MLT-enhanced PDT antitumor effects in vitro. Compared with Ce6@SAB, Ce6/MLT@SAB improved Ce6 penetration of cancer cells both in vitro and in vivo, thereby providing enhanced intracellular ROS generation with 660 nm light treatment. Following phototreatment, Ce6/MLT@SAB-treated cells displayed significantly improved levels of ICD and abilities to activate dendritic cells. In the absence of laser irradiation, multidose injection of Ce6/MLT@SAB could delay the growth of subcutaneous murine tumors by more than 60%, compared to controls. When combined with laser irradiation, a single injection and phototreatment with Ce6/MLT@SAB eradicated one-third of subcutaneous tumors in treated mice. The addition of an immune checkpoint blockade to Ce6/MLT@SAB phototreatment further augmented antitumor effects, generating increased numbers of CD4+ and CD8+ T cells in tumors with concomitant reduction of myeloid-derived suppressor cells.


Asunto(s)
Antineoplásicos , Inmunoterapia/métodos , Meliteno , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Muerte Celular Inmunogénica/efectos de los fármacos , Meliteno/química , Meliteno/farmacocinética , Meliteno/farmacología , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/patología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacocinética , Fármacos Fotosensibilizantes/farmacología
16.
Molecules ; 24(8)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995821

RESUMEN

Melittin (MEL) is a 26-amino acid peptide with numerous biological activities. Paraquat (PQ) is one of the most widely used herbicides, although it is extremely toxic to humans. To date, PQ poisoning has no effective treatment, and therefore the current study aimed to assess for the first time the possible effects of MEL on PQ-induced lung injuries in mice. Mice received a single intraperitoneal (IP) injection of PQ (30 mg/kg), followed by IP treatment with MEL (0.1 and 0.5 mg/kg) twice per week for four consecutive weeks. Histological alterations, oxidative stress, and apoptosis in the lungs were studied. Hematoxylin and eosin (H&E) staining indicated that MEL markedly reduced lung injuries induced by PQ. Furthermore, treatment with MEL increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity, and decreased malonaldehyde (MDA) and nitric oxide (NO) levels in lung tissue homogenates. Moreover, immunohistochemical staining showed that B-cell lymphoma-2 (Bcl-2) and survivin expressions were upregulated after MEL treatment, while Ki-67 expression was downregulated. The high dose of MEL was more effective than the low dose in all experiments. In summary, MEL efficiently reduced PQ-induced lung injuries in mice. Specific pharmacological examinations are required to determine the effectiveness of MEL in cases of human PQ poisoning.


Asunto(s)
Apoptosis/efectos de los fármacos , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Meliteno/farmacología , Estrés Oxidativo/efectos de los fármacos , Paraquat/efectos adversos , Animales , Biopsia , Catalasa/metabolismo , Modelos Animales de Enfermedad , Glutatión Peroxidasa/metabolismo , Histocitoquímica , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/patología , Malondialdehído/metabolismo , Ratones , Óxido Nítrico , Oxidación-Reducción/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2 , Superóxido Dismutasa/metabolismo
17.
Br J Pharmacol ; 175(23): 4310-4324, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30187459

RESUMEN

BACKGROUND AND PURPOSE: Atopic dermatitis (AD) is a multifactorial skin condition with complex interactions of innate and adaptive immune responses. There are several existing therapies for AD, including topical glucocorticosteroids, emollients, phototherapies, calcineurin inhibitors and immunosuppressants, such as cyclosporine A. Although these therapies reduce inflammation, they also cause serious side effects. Therefore, it is necessary to develop new therapeutic approaches for AD treatment without side effects. There are several studies on natural materials or toxins, such as herbs, ginseng extract and snake venom, for AD treatment. However, treatment of AD with bee venom and its major component, melittin has rarely been studied. EXPERIMENTAL APPROACH: Effects of bee venom and melittin were studied in a model of AD in vivo induced by 1-chloro-2,4-dinitrobenzene (DNCB) in female Balb/c mice and in cultures of human keratinocytes, stimulated by TNF-α/IFN-γ. The potential pharmacological effects of bee venom and melittin on these in vivo and in vitro AD-like skin disease models were studied. KEY RESULTS: Bee venom and melittin exhibited potent anti-atopic activities, shown by decreased AD-like skin lesions, induced by DNCB in mice. In vitro studies using TNF-α/IFN-γ-stimulated human keratinocytes showed that bee venom and melittin inhibited the increased expression of chemokines, such as CCL17 and CCL22, and pro-inflammatory cytokines, including IL-1ß, IL-6 and IFN-γ, through the blockade of the NF-κB and STAT signalling pathways. CONCLUSIONS AND IMPLICATIONS: Our results suggest that bee venom and melittin would be suitable for epicutaneous application, as topical administration is often appropriate for the treatment of AD.


Asunto(s)
Venenos de Abeja/farmacología , Dermatitis Atópica/tratamiento farmacológico , Meliteno/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos BALB C , Relación Estructura-Actividad
18.
Toxins (Basel) ; 9(11)2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29088102

RESUMEN

Paclitaxel, a chemotherapy drug for solid tumors, induces peripheral painful neuropathy. Bee venom acupuncture (BVA) has been reported to have potent analgesic effects, which are known to be mediated by activation of spinal α-adrenergic receptor. Here, we investigated the effect of BVA on mechanical hyperalgesia and spinal neuronal hyperexcitation induced by paclitaxel. The role of spinal α-adrenergic receptor subtypes in the analgesic effect of BVA was also observed. Administration of paclitaxel (total 8 mg/kg, intraperitoneal) on four alternate days (days 0, 2, 4, and 6) induced significant mechanical hyperalgesic signs, measured using a von Frey filament. BVA (1 mg/kg, ST36) relieved this mechanical hyperalgesia for at least two hours, and suppressed the hyperexcitation in spinal wide dynamic range neurons evoked by press or pinch stimulation. Both melittin (0.5 mg/kg, ST36) and phospholipase A2 (0.12 mg/kg, ST36) were shown to play an important part in this analgesic effect of the BVA, as they significantly attenuated the pain. Intrathecal pretreatment with the α2-adrenergic receptor antagonist (idazoxan, 50 µg), but not α1-adrenergic receptor antagonist (prazosin, 30 µg), blocked the analgesic effect of BVA. These results suggest that BVA has potent suppressive effects against paclitaxel-induced neuropathic pain, which were mediated by spinal α2-adrenergic receptor.


Asunto(s)
Terapia por Acupuntura , Venenos de Abeja/uso terapéutico , Hiperalgesia/terapia , Neuralgia/terapia , Receptores Adrenérgicos alfa 2/fisiología , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antineoplásicos Fitogénicos , Venenos de Abeja/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Idazoxan/farmacología , Masculino , Meliteno/farmacología , Meliteno/uso terapéutico , Neuralgia/inducido químicamente , Neuralgia/fisiopatología , Paclitaxel , Fosfolipasas A2/farmacología , Fosfolipasas A2/uso terapéutico , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología
19.
Cancer Lett ; 399: 1-9, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28428074

RESUMEN

Melittin is a Chinese traditional medicine for treating chronic inflammation, immunological diseases and cancers, however, the efficacy of melittin and its mechanism for treating pancreatic ductal adenocarcinoma (PDAC) are still unknown. Here we investigated the anti-cancer activity of melittin and its regulated mechanism(s) in the PDAC models. Melittin was found to suppress tumor growth by promoting cell apoptosis and cell-cycle arrest. Interestingly, the microarray analyses demonstrated that melittin significantly regulated cholesterol biosynthesis pathway during treatment. For instance, the cholesterol pathway gene clusterin (CLU) was highly downregulated by melittin which also enhanced gemcitabine sensitivity in PDAC cells by inhibiting CLU expression. In contrast, overexpression of CLU significantly diminished melittin mediated tumor suppression and gemcitabine sensitization, suggesting that CLU is the target of melittin. Furthermore, in the xenograft mouse model, the combination therapy of melittin and gemcitabine is more efficacious for inhibiting PDAC tumor growth than either single regimen. Taken together, our study has indicated that melittin is capable of suppressing tumor growth and promoting gemcitabine sensitivity in PDAC by downregulating cholesterol pathway.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Colesterol/metabolismo , Clusterina/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos/efectos de los fármacos , Meliteno/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Clusterina/genética , Desoxicitidina/farmacología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones Desnudos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
20.
Cancer Chemother Pharmacol ; 78(6): 1113-1130, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27677623

RESUMEN

Bee venom and its main constituent melittin (MEL) have been extensively studied in the treatment of tumors. However, the non-specific cytotoxicity and hemolytic activity have hampered the clinical application. Currently, a number of research groups have reported a series of optimization strategies, including gene therapy, recombinant immunotoxin incorporating MEL or MEL nanoparticles, targeting tumor cells to attenuate the cytotoxicity and improve its antitumor efficiency and therapeutic capabilities, which have shown very promising in overcoming some of these obstacles. In this review, we summarize the current knowledge regarding anticancer effects of bee venom and its main compound MEL on different kinds of tumor cells as well as elucidate their possible anticancer mechanisms. It could be concluded that MEL exerts multiple effects on cellular functions of cancerous cells such as proliferation, apoptosis, metastasis, angiogenesis as well as cell cycle, and the anticancer processes involve diverse signal molecules and regulatory pathways. We also highlight the recent research progress for efficient delivery of MEL peptide, thus providing new ideas and hopeful strategies for the in vivo application of MEL.


Asunto(s)
Venenos de Abeja/uso terapéutico , Meliteno/uso terapéutico , Neoplasias/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Venenos de Abeja/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Humanos , Inmunoterapia , Meliteno/genética , Meliteno/farmacología , Invasividad Neoplásica , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA