Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 691-701, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621873

RESUMEN

Mentha canadensis, as a plant with medicinal and culinary uses, holds significant economic value. Jasmonic acid signaling repressor JAZ protein has a crucial role in regulating plant response to adversity stresses. The M. canadensis McJAZ8 gene is cloned and analyzed for protein characterization, protein interactions, and expression patterns, so as to provide genetic resources for molecular breeding of M. canadensis for stress tolerance. This experiment will analyze the protein structural characteristics, subcellular localization, protein interactions, and gene expression of McJAZ8 using bioinformatics, yeast two-hybrid(Y2H), transient expression in tobacco leaves, qRT-PCR, and other technologies. The results show that:(1)The full length of the McJAZ8 gene is 543 bp, encoding 180 amino acids. The McJAZ8 protein contains conserved TIFY and Jas domains and exhibits high homology with Arabidopsis thaliana AtJAZ1 and AtJAZ2.(2)The McJAZ8 protein is localized in the nucleus and cytoplasm.(3)The Y2H results show that McJAZ8 interacts with itself or McJAZ1/3/4/5 proteins to form homologous or heterologous dimers.(4)McJAZ8 is expressed in different tissue, with the highest expression level in young leaves. In terms of leaf sequence, McJAZ8 shows the highest expression level in the fourth leaf and the lowest expression level in the second leaf.(5) In leaves and roots, the expression of McJAZ8 is upregulated to varying degrees under methyl jasmonate(MeJA), drought, and NaCl treatments. The expression of McJAZ8 shows an initial upregulation followed by a downregulation pattern under CdCl_2 treatment. In leaves, the expression of McJAZ8 tends to gradually decrease under CuCl_2 treatment, while in roots, it initially decreases and then increases before decreasing again. In both leaves and roots, the expression of McJAZ8 is downregulated to varying degrees under AlCl_(3 )treatment. This study has enriched the research on jasmonic acid signaling repressor JAZ genes in M. canadensis and provided genetic resources for the molecular breeding of M. canadensis.


Asunto(s)
Ciclopentanos , Perfilación de la Expresión Génica , Mentha , Oxilipinas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Filogenia , Estrés Fisiológico/genética
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1494-1505, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621933

RESUMEN

Mentha canadensis is a traditional Chinese herb with great medicinal and economic value. Abscisic acid(ABA) receptor PYLs have important roles in plant growth and development and response to adversity. The M. canadensis McPYL4 gene was cloned, and its protein characteristics, gene expression, and protein interactions were analyzed, so as to provide genetic resources for genetic improvement and molecular design breeding for M. canadensis resistance. Therefore, the protein characteristics, subcellular localization, gene expression pattern, and protein interactions of McPYL4 were analyzed by bioinformatics analysis, transient expression of tobacco leaves, RT-qPCR, and yeast two-hybrid(Y2H) techniques. The results showed that the McPYL4 gene was 621 bp in length, encoding 206 amino acids, and its protein had the conserved structural domain of SRPBCC and was highly homologous with Salvia miltiorrhiza SmPYL4. McPYL4 protein was localized to the cell membrane and nucleus. The McPYL4 gene was expressed in all tissue of M. canadensis, with the highest expression in roots, followed by leaves, and it showed a pattern of up-regulation followed by down-regulation in leaves 1-8. In both leaves and roots, the McPYL4 gene responded to the exogenous hormones ABA, MeJA, and the treatments of drought, AlCl_3, NaCl, CdCl_2, and CuCl_2. Moreover, McPYL4 was up-regulated for expression in both leaves and roots under the MeJA treatment, as well as in leaves treated with AlCl_3 stress for 1 h, whereas McPYL4 showed a tendency to be down-regulated in both leaves and roots under other treatments. Protein interactions showed that McPYL4 interacted with AtABI proteins in an ABA-independent manner. This study demonstrated that McPYL4 responded to ABA, JA, and several abiotic stress treatments, and McPYL4 was involved in ABA signaling in M. canadensis and thus in the regulation of leaf development and various abiotic stresses in M. canadensis.


Asunto(s)
Ácido Abscísico , Mentha , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Sequías
3.
J Wound Care ; 33(Sup3a): xlviii-lx, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38457268

RESUMEN

OBJECTIVE: To investigate the role of Mentha piperita silver nanoparticle-loaded carbopol gel for enhanced wound healing in a diabetic rat model. This research further aims to explore bioactive compounds derived from Mentha piperita obtained from high altitude. METHOD: Methanolic extracts of Mentha piperita (MP), Mentha spicata (MS) and Mentha longifolia (ML) were used to synthesise silver nanoparticles (AgNP). AgNP synthesis was confirmed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antioxidant activity was assessed by 2, 2-diphenyl-1-picrylhydrazyl (DDPH) assay. Antiglycation potential was determined by measuring the fluorescent advanced glycation end products. The bioactive compound identified in the Mentha piperita methanolic (MPM) fraction through electrospray ionisation tandem mass spectrometric analysis (ESI-MS) was responsible for the highest antiglycation. The effects of MPM and MPM.AgNP-loaded Carbopol (Sanare Lab, India) on wound healing were compared in male, alloxan-induced, diabetic albino rats (200-250g), divided into control and treated groups. Effects on wound healing were assessed via histopathology. RESULTS: UV-Vis and FTIR confirmed NP synthesis with peaks for flavonoids and polyphenols. SEM and XRD explored the cubical, 30-63nm crystalline NP. The maximum antioxidant and antiglycation potential was observed in order of; MP.AgNP>MS.AgNP>ML.AgNP. The highest antioxidant activity was observed by methanolic and aqueous MP.AgNPs (88.55% and 83.63%, respectively) at 2mg.ml-1, and (75.16% and 69.73%, respectively) at 1mg.ml-1, compared to ascorbic acid (acting as a positive control, 90.01%). MPM.AgNPs demonstrated the best antiglycation potential of 75.2% and 83.3% at 1mg.ml-1 and 2mg.ml-1, respectively, comparable to positive control (rutin: 88.1%) at 14 days post-incubation. A similar trend was observed for antimicrobial activity against Bacillus subtilis, Micrococcus luteus and Escherichia coli with an inhibition zone of 21mm, 21.6mm and 24.6mm. Rosmarinic acid was the active compound present in Mentha piperita, as identified by ESI-MS. MPM.AgNP-loaded Carbopol resulted in 100% wound closure compared with control at 20 days post-wounding. In the treatment group, re-epithelialisation was achieved by day 18, compared with 25 days for the positive control group. CONCLUSION: MPM.AgNP-loaded Carbopol demonstrated safer and more effective biological properties, hence accelerating the diabetic excision wound healing process in alloxan-induced diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental , Mentha , Nanopartículas del Metal , Ratas , Masculino , Animales , Plata/farmacología , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Mentha piperita , Antioxidantes/farmacología , Aloxano/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Cicatrización de Heridas , Coloides , Antibacterianos/farmacología
4.
Fitoterapia ; 174: 105875, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417678

RESUMEN

Grapefruit mint (Mentha suaveolens × piperita) is a hybrid, perennial, and aromatic plant widely cultivated all over the world and used in the food, cosmetics, and pharmaceutical industries mostly for its valuable essential oil. Herein, we evaluated the anticancer activity of the grapefruit mint essential oil, cultivated in Iran. For the chemical composition analysis of essential oil, GC-MS was used. MTT assay was utilized for assessing the cytotoxic activity of the essential oil. The type of cell death was determined by annexin V/PI staining. Essential oil effect on the expression of maternally expressed gene 3 (MEG3), a regulatory lncRNA involved in cell growth, proliferation, and metastasis, was studied using qRT-PCR. Linalool (43.9%) and linalool acetate (40.1%) were identified as the dominant compounds of essential oil. Compared with MCF-7, the MDA-MB-231 cells were more sensitive to essential oil (IC50 = 7.6 µg/ml in MCF-7 and 5.9 µg/ml in MDA-MB-231 after 48 h). Essential oil induced cell death by apoptosis. Wound healing scratch assay confirmed the anti-invasive effect of essential oil. In addition, essential oil upregulated the tumor suppressor MEG3 in breast cancer cells. These results provide new insights into grapefruit mint essential oil potential application as an anticancer adjuvant in combination treatments for breast cancer patients.


Asunto(s)
Monoterpenos Acíclicos , Neoplasias de la Mama , Citrus paradisi , Mentha , Aceites Volátiles , Humanos , Femenino , Aceites Volátiles/farmacología , Aceites Volátiles/química , Mentha/química , Estructura Molecular , Neoplasias de la Mama/tratamiento farmacológico , Mentha piperita
5.
Chem Biodivers ; 21(3): e202301980, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38285970

RESUMEN

The present paper highlights the effect of Pb/Cd-stress and/or mycorrhizal colonization by Glomus Intraradices on yield, chemical composition, cytotoxicity and antimicrobial activity of Mentha x piperita L. essential oil. Our findings showed that mycorrhizal colonization could be used to improve the essential oil yield of M. x piperita, either in non-stressed or Pb/Cd-stressed plants. GC-MS analysis revealed three chemotypes: linalool/pulegone (32.6/30.8 %) chemotype in essential oils of non-mycorrhizal Pb-stressed plants, menthone/menthyl acetate (30.3/25.1 %) chemotype in essential oils of non-mycorrhizal Cd-stressed plants and menthol (44.6 %) chemotype in essential oils of non-mycorrhizal non-stressed plants, mycorrhizal non-stressed plants and mycorrhizal Pb/Cd-stressed plants. The cytotoxicity of M. x piperita essential oil, evaluated by brine shrimp lethality bioassay, was increased in presence of Pb/Cd-stress (from 379.58 to 72.84 µm/mL) and decreased in mycorrhizal plants (from 379.58 to 482.32 µm/mL). The antimicrobial activity of M. x piperita essential oil, evaluated by disc diffusion method and determination of Minimum Inhibitory Concentration against ten microorganisms, was enhanced by the mycorrhizal colonization and deceased by the Pb/Cd-stress. In conclusion, the inoculation of medicinal plants with mycorrhizal fungi is a real avenue for alleviating abiotic stress and/or increasing the quantity and quality of secondary metabolites in terms of biological activities.


Asunto(s)
Antiinfecciosos , Mentha , Micorrizas , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Mentha piperita/química , Simbiosis , Cadmio , Plomo , Antiinfecciosos/farmacología
6.
Int J Radiat Biol ; 100(2): 151-160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37755121

RESUMEN

PURPOSE: The genus Mentha spp. is an aromatic herb from the family 'Lamiaceae'. It is extensively predominant in temperate and sub-temperate regions of the world. The essential oil of this species is enriched with broad aroma constituents extensively utilized in food, beverages, flavor, cosmetics, perfumery, and pharmaceutical enterprises. With the global menthol market size estimated to be worth USD 765 million in 2022, India (accompanied by China and Brazil) is the world's primary manufacturer, consumer, and exporter of Mentha oil. Despite prominent global demand, the crucial bottleneck in mint cultivation is the need for more superior commercial cultivars. Predominant vegetative propagation mode with difficulties in manual emasculation, differential blooming times, sterile/sub-sterile hybrids, and low seed viability are the primary containment in creating genetic variability by classical breeding approaches. Therefore, genetic complications encountered in conventional breeding have led the breeders to apply mutation breeding as an alternative crop improvement approach in Mentha spp. These attempts at mutation breeding have produced some distinctive mutants as genetic pools for plant breeding programs, and some novel mutant mint cultivars have been made available for commercial cultivation. CONCLUSIONS: The prime strategy in mutation-based breeding has proven an adept means of encouraging the expression of recessive genes and producing new genetic variations. The present review comprises a significant contribution of mutation breeding approaches in the development of mutant mint species and its effects on physiological variation, photosynthetic pigment, essential oil content and composition, phytochemical-mediated defense response, pathogen resistivity, and differential expression of genes related to terpenoid biogenesis. Development and diversification have led to the release of varieties, namely Todd's Mitcham, Murray Mitcham, Pranjal, Tushar, and Kukrail in M. piperita L., Mukta, and Pratik in M. cardiaca Baker, Neera in M. spicata L., Kiran in M. citrata Ehrh., and Rose mint in M. arvensis L. that have revolutionized and uplifted mint cultivation leading to economic gain by the farmers and entrepreneurs.


Asunto(s)
Mentha , Aceites Volátiles , Mentha/genética , Mentha/metabolismo , Mentol/metabolismo , Extractos Vegetales , Aceites Volátiles/metabolismo , Genotipo
7.
Environ Sci Pollut Res Int ; 30(51): 110240-110250, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37779122

RESUMEN

Botanicals are various plant-based products like plant extracts or essential oils. Anti-fungal activities of selected essential oils were tested on the pathogen causing potato and tomato late blight (Phytophthora infestans). Tests to evaluate anti-oomycete activities of commercial essential oils and their major compounds were carried out in vitro in microplate in liquid media. Anti-oomycete activities on Phytophthora infestans strain were obtained from essential oils/major compounds: Eucalyptus citriodora/citronellal; Syzygium aromaticum (clove)/eugenol; Mentha spicata/D-Carvone, L-Carvone; Origanum compactum/carvacrol; Satureja montana (savory)/carvacrol; Melaleuca alternifolia (tea tree)/terpinen-4-ol, and Thymus vulgaris/thymol. As an active substance of mineral origin, copper sulfate was chosen as a control. All selected essential oils showed an anti-oomycete activity calculated with IC50 indicator. The essential oils of clove, savory, and thyme showed the best anti-oomycete activities similar to copper sulfate, while oregano, eucalyptus, mint, and tea tree essential oils exhibited significantly weaker activities than copper sulfate. Clove essential oil showed the best activity (IC50 = 28 mg/L), while tea tree essential oil showed the worst activity (IC50 = 476 mg/L). For major compounds, three results were obtained: they were statistically more active than their essential oils (carvacrol for oregano, D- and L-Carvone for mint) or as active as their essential oils sources (thymol for thyme, carvacrol for savory, terpinen-4-ol for tea tree) or less active than their original essential oils (eugenol for clove, citronellal for eucalyptus). Microscopical observations carried out with the seven essential oils showed that they were all responsible for a modification of the morphology of the mycelium. The results demonstrated that various essential oils show different anti-oomycete activities, sometimes related to a major compound and sometimes unrelated, indicating that other compounds must play a role in total anti-oomycete activity.


Asunto(s)
Mentha , Aceites Volátiles , Origanum , Phytophthora infestans , Thymus (Planta) , Timol/análisis , Eugenol , Sulfato de Cobre , , Aceites de Plantas
8.
Sci Rep ; 13(1): 18028, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865706

RESUMEN

The current work attempts to explore the influence of three extraction solvents on phytochemical composition, content of polyphenols, antioxidant potential, and antibacterial capacity of hydroethanolic, acetonic, and aqueous extracts from Moroccan Mentha longifolia leaves. To achieve this goal, the chemical composition was identified using an HPLC-DAD examination. The contents of polyphenols were assessed, while the total antioxidant capacity (TAC), the DPPH test, and the reducing power test (RP) were utilized to determine antioxidant capacity. To assess the antibacterial activity, the microdilution technique was carried out to calculate the minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) of extracts against four nosocomial bacteria (Bacillus cereus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus). Additionally, the antibacterial and antioxidant activities of all tested extracts were examined in silico against the proteins NADPH oxidase and Bacillus cereus phospholipase C. Study reveals that M. longifolia extracts contain high phenolic and flavonoids. Additionally, the hydroethanolic extract contained the highest amounts of phenolic and flavonoid content, with values of 23.52 ± 0.14 mg Gallic acid equivalent/g dry weight and 17.62 ± 0.36 mg Quercetin Equivalent/g dry weight, respectively compared to the other two extracts. The same extract showed the best antioxidant capacity (IC50 = 39 µg/mL ± 0.00), and the higher RP (EC50 of 0.261 ± 0.00 mg/mL), compared to the acetonic and aqueous extract regarding these tests. Furthermore, the hydroethanolic and acetonic extracts expressed the highest TAC (74.40 ± 1.34, and 52.40 ± 0.20 mg EAA/g DW respectively), compared with the aqueous extract. Regarding antibacterial activity, the MIC value ranges between 1.17 and 12.50 mg/mL. The in-silico results showed that the antibacterial activity of all extracts is principally attributed to kaempferol and ferulic acid, while antioxidant capacity is attributed to ferulic acid.


Asunto(s)
Mentha , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Solventes , Antibacterianos/farmacología , Polifenoles , Fitoquímicos/farmacología , Fenoles/farmacología , Flavonoides/farmacología
9.
Adv Colloid Interface Sci ; 321: 103023, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37863014

RESUMEN

Mint essential oil (MEO) is an outstanding antibacterial and antioxidant agent, that can be considered as a promising natural preservative, flavor, insecticide, coolant, and herbal medicine. However, the low solubility and volatility of MEO limits its extensive applications. In order to utilize MEO in different products, it is essential to develop treatments that can overcome these limitations. More recently, encapsulation technology has been developed as a promising method to overcome the shortcomings of MEO. In which, sensitive compounds such as essential oils (EOs) are entrapped in a carrier to produce micro or nanoparticles with increased stability against environmental conditions. Additionally, encapsulation of EOs makes transportation and handling easier, reduces their volatility, controls their release and consequently improves the efficiency of these bioactive compounds and extends their industrial applications. Several encapsulation techniques, such as emulsification, coacervation, ionic gelation, inclusion complexation, spray drying, electrospinning, melt dispersion, melt homogenization, and so on, have been emerged to improve the stability of MEO. These encapsulated MEOs can be also used in a variety of food, bioagricultural, pharmaceutical, and health care products with excellent performance. Therefore, this review aims to summarize the physicochemical and functional properties of MEO, recent advances in encapsulation techniques for MEO, and the application of micro/nanocapsulated MEO in different products.


Asunto(s)
Mentha , Nanopartículas , Aceites Volátiles , Aceites Volátiles/química , Antioxidantes , Nanopartículas/química , Solubilidad
10.
Molecules ; 28(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37570720

RESUMEN

The incorporation of fermented camel milk with natural additives possesses numerous benefits for the treatment of various pathological and metabolic conditions. The present study investigated the impact of fortification of fermented camel milk with sage or mint leaves powder (1 and 1.5%, respectively) on glucose and insulin levels, lipid profile, and liver and kidney functions in alloxan-induced diabetic rats. The gross chemical composition of sage and peppermint leaves powder was studied. The chemical composition of sage and mint extracts was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-MS) of sage and mint extracts. Furthermore, a total of forty-two adult normal male albino rats were included in this study, whereas one group was kept as the healthy control group (n = 6 rats) and diabetes was induced in the remaining animals (n = 36 rats) using alloxan injection (150 mg/kg of body weight). Among diabetic rats groups, a control group (n = 6 rats) was kept as the diabetic control group whereas the other 5 groups (6 rats per group) of diabetic rats were fed fermented camel milk (FCM) or fermented camel milk fortified with 1 and 1.5% of sage or mint leaves powder. Interestingly, the oral administration of fermented camel milk fortified with sage or mint leaves powder, at both concentrations, caused a significant decrease in blood glucose level and lipid profile, and an increase in insulin level compared to the diabetic control and FCM groups. Among others, the best results were observed in the group of animals that received fermented camel milk fortified with 1.5% sage powder. In addition, the results revealed that the fermented camel milk fortified with sage or mint leaves powder improved the liver and kidney functions of diabetic rats. Our study concluded that the use of sage and mint leaves powder (at a ratio of 1.5%) with fermented camel milk produces functional food products with anti-diabetic activity.


Asunto(s)
Diabetes Mellitus Experimental , Insulinas , Mentha , Salvia officinalis , Ratas , Masculino , Animales , Leche/química , Mentha piperita , Salvia officinalis/química , Camelus , Polvos/análisis , Diabetes Mellitus Experimental/tratamiento farmacológico , Aloxano , Mentha/química , Lípidos/análisis , Hojas de la Planta , Extractos Vegetales/farmacología , Extractos Vegetales/análisis
11.
BMC Complement Med Ther ; 23(1): 267, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37496047

RESUMEN

BACKGROUND: Mentha arvensis has been utilized in diverse traditional medicines as an antidiabetic, anticarcinogenic, antiallergic, antifungal, and antibacterial agent. In this work, we have explored the phytochemical analyses and pharmacological potential of Mentha arvensis using both in silico and in vitro approaches for drug discovery. METHODS: To determine the extract with the highest potential for powerful bioactivity, ethanol was used as the solvent. The phytochemical components of the extracts were quantified using liquid chromatography-mass spectrometry analysis. The potential bioactivities of extracts and lead phytocompounds, including their antibacterial, cytotoxic, and anti-diabetic effects, were evaluated. RESULTS: The compounds oleanolic acid, rosmarinic acid, luteolin, isoorientin, and ursolic acid have been identified through liquid chromatography mass spectrometry analysis. Based on antimicrobial research, it has been found that the Mentha arvensis extract shows potential activity against K. pneumoniae which was 13.39 ± 0.16. Mentha arvensis has demonstrated a greater degree of efficacy in inhibiting α-glucosidase, with an inhibition rate of 58.36 ± 0.12, and in inhibiting α-amylase, with an inhibition rate of 42.18 ± 0.83. The growth of HepG2 cells was observed to be significantly suppressed upon treatment with extracts obtained from Mentha arvensis. Finally, In-silico methods demonstrated that the Luteolin and Rosmarinic acid exhibit acceptable drug-like characteristics. Furthermore, Molecular docking studies further demonstrated that both compounds have strong potential to inhibit the active sites of therapeutically relevant enzymes involved in Diabetes, Bacterial infections, and Cancer. CONCLUSIONS: The results of this study suggest that the Mentha arvensis extract possesses potent pharmacological potentials, particularly in terms of antibacterial, anti-diabetic, and cytotoxic effects. Particularly, Luteolin and Rosmarinic acid were identified as the top contenders for potential bioactivity with acceptable drug-like properties.


Asunto(s)
Mentha , Mentha/química , Luteolina , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ácido Rosmarínico
12.
Environ Res ; 236(Pt 1): 116718, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481060

RESUMEN

In ancient times, herbal plants were considered one of the greatest gifts from nature that human beings could receive, and about 80% of these plants have medicinal uses. In traditional medicine, Mentha arvensis, commonly known as mint, has many applications, and in the present study, the mint leaf extract has been used to synthesis nanoparticles using the mint leaf extract as a biosource for the extraction of nanoparticles. In addition to having a wide range of applications in various fields, calcium oxide (CaO) nanoparticles are also considered to be safe for human use. In order to assess the characteristics of the abstracted CaO nanoparticles, UV-visible absorption spectrophotometers, Fourier Transform Infrared spectrophotometers (FTIR), Scanning Electron Microscopes (SEMs), Dynamic Light Scattering (DLS), and X-ray Diffraction Spectrophotometers (XRDs) were used. By conducting a protein denaturation assay and nitric oxide scavenging assay, mint leaf mediated CaO nanoparticles were evaluated for their therapeutic applications. MTT assays were used to prove that the CaO nanoparticles mediated by mint leaf had anti-cancer properties. By examining the ability of mint leaf mediated CaO nanoparticles to degrade various dyes such as methyl red, methyl orange, and methylene blue, which are the most used azo dyes in textile industries resulting in water contamination, the ability of these nanoparticles to act as a photocatalytic agent was examined.


Asunto(s)
Mentha , Nanopartículas del Metal , Nanopartículas , Humanos , Extractos Vegetales/farmacología , Colorantes , Difracción de Rayos X , Antiinflamatorios , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos
13.
BMC Plant Biol ; 23(1): 309, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37296388

RESUMEN

Salinity, a severe worldwide issue, compromises the economic production of medicinal plants including mints and causes drug-yield decline. γ-Aminobutyric acid (GABA) is a tolerance-inducing signaling bio-molecule in various plant physiological processes. Pineapple mint (Mentha suaveolens Ehrh.) is a valuable medicinal herb with an exhilarating scent of citrus fruit. Piperitenone oxide is the major bioactive constituent of its essential oil, having significant demand by pharmaceutical industries. Nonetheless, modeling and optimizing the effective concentration of GABA remain within twin foci of interest. Therefore, a two factor-five level (NaCl 0-150 mM and GABA 0-2.4 mM) central composite design was conducted to model and optimize drug yield and physiological responses of M. suaveolens. Based on the design of experiments (DoE) approach, different linear, quadratic, cubic, and quartic models were assigned to the response variables. Change trends of shoot and root dry weights followed a simple linear model, whereas sophisticated models (i.e., multiple polynomial regression) were fitted to the other traits. NaCl stress inevitably reduced root and shoot dry weight, piperitenone oxide content, relative water content, pigments content, and maximum quantum yield of PSII. However, content of malondialdehyde (MDA) and total flavonoid, and DPPH radical scavenging activity were increased under salinity. Under severe NaCl stress (150 mM), the essential oil content (0.53%) was increased three times in comparison with control (0.18%). Optimization analysis demonstrated that the highest amount of essential oil (0.6%) and piperitenone oxide (81%) as a drug yield-determining component would be achievable by application of 0.1-0.2 mM GABA under 100 mM NaCl. The highest dry weight of root and shoot was predicted to be achieved at 2.4 mM GABA. Overall, extremely severe NaCl stress (i.e., more than 100 mM) in which a sharp drop in yield components value was observed seemed to be out of M. suaveolens salinity tolerance range. Hence, it is rationale to compensate the decrease of drug yield by foliar application of a dilute GABA solution (i.e., 0.1-0.2 mM) under 100 mM NaCl stress or lower levels.


Asunto(s)
Ananas , Mentha , Aceites Volátiles , Plantas Medicinales , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Mentha/química , Mentha/metabolismo , Aceites Volátiles/metabolismo , Óxidos/metabolismo
14.
J Nat Prod ; 86(6): 1428-1436, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37267066

RESUMEN

Traditional herbal medicine offers opportunities to discover novel therapeutics against SARS-CoV-2 mutation. The dried aerial part of mint (Mentha canadensis L.) was chosen for bioactivity-guided extraction. Seven constituents were isolated and characterized by nuclear magnetic resonance (NMR) and mass spectrometry (MS). Syringic acid and methyl rosmarinate were evaluated in drug combination treatment. Ten amide derivatives of methyl rosmarinate were synthesized, and the dodecyl (13) and 3-ethylphenyl (19) derivatives demonstrated significant improvement in the anti-SARS-CoV-2 plaque reduction assay, achieving IC50 of 0.77 and 2.70 µM, respectively, against Omicron BA.1 as compared to methyl rosmarinate's IC50 of 57.0 µM. Spike protein binding and 3CLpro inhibition assays were performed to explore the viral inhibition mechanism. Molecular docking of compounds 13 and 19 to 3CLpro was performed to reveal potential interaction. In summary, natural products with anti-Omicron BA.1 activity were isolated from Mentha canadensis and derivatives of methyl rosmarinate were synthesized, showing 21- to 74-fold improvement in antiviral activity against Omicron BA.1.


Asunto(s)
Productos Biológicos , COVID-19 , Mentha , Antivirales/farmacología , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Antiinflamatorios no Esteroideos , Antioxidantes , Productos Biológicos/farmacología , Cinamatos , Depsidos
15.
Biomed Pharmacother ; 164: 114937, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37267633

RESUMEN

Mentha suaveolens, Lavandula stoechas, and Ammi visnaga are widely used in Moroccan folk medicine against several pathological disorders, including diabetes and infectious diseases. This work was designed to determine the chemical profile of M. suaveolens (MSEO), L. stoechas (LSEO), and A. visnaga (AVEO) essential oils and assess their antimicrobial, antioxidant, and antidiabetic effects. The volatile components of LSEO, AVEO, and MSEO were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The in vitro antidiabetic activity was assessed using α-amylase and α-glucosidase enzymes, while DPPH, FRAP, and ß-carotene/linoleic acid methods were used to determine the antioxidant capacity. The antimicrobial activities were investigated using disc diffusion and broth-microdilution assays. GC-MS investigation revealed that the main components were fenchone (29.77 %) and camphor (24.9 %) for LSEO, and linalool (38.29 %) for AVEO, while MSEO was mainly represented by piperitenone oxide (74.55 %). The results of the antimicrobial evaluation showed that all examined essential oils (EOs) had noticeable antimicrobial activity against both bacteria and yeast, especially Micrococcus luteus and Bacillus subtilis. The MIC, MBC, and MFC values were ranged from 0.015 % to 0.5 %. The MBC/MIC and MFC/MIC ratios were less than or equal to 4.0 % (v/v), indicating their noticeable bactericidal and candidacidal efficacy. Moreover, the three EOs showed significant inhibitory effects on α-amylase and α-glucosidase (p < 0.05). It also exerted remarkable activity on FRAP, ß-carotene, and DPPH radicals. These findings demonstrated that the tested plants have promising biological activities, validating their ethnomedicinal value and providing potential applications as natural drugs.


Asunto(s)
Ammi , Antiinfecciosos , Lavandula , Mentha , Aceites Volátiles , Plantas Medicinales , Antioxidantes/farmacología , Antioxidantes/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Lavandula/química , Hipoglucemiantes/farmacología , beta Caroteno , alfa-Glucosidasas , Antiinfecciosos/farmacología , Fitoquímicos
16.
Environ Sci Pollut Res Int ; 30(21): 60820-60837, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37039921

RESUMEN

Due to their distinctive characteristics and widespread application across all scientific disciplines, nanoparticles have attracted a lot of attention in the current millennium. Green synthesis of ZnO-NPs is gaining a lot of interest at the moment due to a number of its advantages over traditional methods, including being quicker, less expensive, and more environmentally friendly. In the current study, two distinct plant extracts are used to quickly, cheaply, and environmentally friendly synthesize zinc oxide nanoparticles (ZnO-NPs). Mint (Mentha spicata) and basil (Ocimum basilicum) were the plants employed in this study as stabilizing agents to synthesize ZnO-NPs with a green chemistry approach. The innovative aspect of the study is the use of mint and basil extracts in the conversion of zinc chloride to zinc oxide and then determining the effect of these two types of nanoparticles produced by green synthesis on the growth parameters of the plant when they reach the plants by foliar spraying and their uptake by plants and evaluating the antibacterial properties of these nanoparticles. The physical properties of the produced nanoparticles were investigated using XRD, SEM, and FTIR. Moreover, Escherichia coli and Staphylococcus aureus were used to demonstrate the antibacterial properties of ZnO-NPs against both gram-positive and gram-negative bacteria, respectively. Synthesized ZnO-NPs were also given as foliar treatment in order to determine Zn+2 uptake by plants and potential toxic effects on the growth of wheat. The shape of ZnO-NPs was triangular, as revealed by SEM analysis. In the X-ray diffraction study, strong and clearly discernible sharp peaks were seen, with an average size of 24.5 nm for M-ZnO-NPs and 26.7 nm for B-ZnO-NPs determined using Scherrer's formula. The phytoconstituents of the plant extract served as capping/stabilizing agents during the synthesis of ZnO-NPs, as demonstrated by Fourier transform-infrared spectroscopy. The produced nanoparticles were applied to the green parts of wheat plants by spraying, and the development of the plants and the change of zinc uptake were investigated. At the same time, the effect of these three types of nanoparticles on the germination of wheat seeds in the soil medium containing these nanoparticles was investigated. According to experimental results, M-ZnO-NPs (produced from mint) and B-ZnO-NPs (produced from basil) improved the germination percentage of wheat at 400 mg/L concentration (100%), while raw ZnO-NPs showed 90% germination at the same concentration. When the Zn+2 uptake of the plant by the leaves depending on the Zn+2 concentration in the environment after spraying was examined, it was determined that the Zn+2 uptake of the plants increased due to the increase in the applied Zn+2 concentration. The highest Zn+2 uptake of the plant was determined as 50, 25, and 50 mg/L for M-ZnO-NP, B-ZnO-NPs, and raw ZnO-NPs, respectively. Therefore, it has been determined that plant growth varies depending on the type and concentration of ZnO-NPs, and therefore, if foliar nanoparticle applications are made to wheat, the threshold concentrations, sizes, and types of ZnO-NPs should be carefully evaluated. In addition, antibacterial properties results showed that S. aureus was more sensitive to all three types of ZnO-NPs than E. coli.


Asunto(s)
Mentha spicata , Mentha , Nanopartículas del Metal , Nanopartículas , Ocimum basilicum , Óxido de Zinc , Zinc/farmacología , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Triticum , Nanopartículas del Metal/química , Staphylococcus aureus , Escherichia coli , Excipientes , Bacterias Gramnegativas , Bacterias Grampositivas , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana
17.
Recent Adv Food Nutr Agric ; 14(2): 94-106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37055892

RESUMEN

Gut microbiota includes the microbes present in the gut; these microbes are an essential component in maintaining a healthy gut. Gut microbiota has a wide range of functions, including effects on colonization, pathogen resistance, intestinal epithelial maintenance, metabolizing food and pharmaceutical chemicals, and influencing immunological functions. Every disease associated with the gut starts due to a disbalance in the composition of the gut microorganisms and can be managed by balancing the composition of gut bacteria using various herbal remedies. Mentha herbs are a variety of perennial herbs that are grown commercially in various parts of the world. Mentha is a potent herb that shows anticholinergic action and can block PGE2 and GM1 receptors and interact with cholera toxins; it is used traditionally in different systems of medicines to treat various gastrointestinal diseases associated with the gut. Mentha herbs have potent bactericidal, viricidal, and fungicidal properties. Mentha has been used to cure stomach and digestion issues as well as to treat a variety of disorders. This review article summarizes diseases associated with the gut, the composition, and function of gut microbiota, and mentha's effectiveness along with its extraction methods and traditional uses. Research findings revealed that mentha could be an essential source against a wide range of diseases, especially gastrointestinal disorders. From its ayurvedic claims to its present use, various confirmed its clinically effective for human health. The present work also describes the mechanism of action along with the bioactives present in this well-known herb from Ayurveda.


Asunto(s)
Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Mentha , Humanos , Enfermedades Gastrointestinales/tratamiento farmacológico , Medicina Ayurvédica , Bacterias
18.
Minerva Gastroenterol (Torino) ; 69(1): 123-127, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36856276

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders. IBS is characterized by recurrent chronic abdominal pain and altered bowel habits in the absence of organic damage. Although there are reviews and guidelines for treating IBS, the complexity and diversity of IBS presentation make treatment difficult. Treatment of IBS focuses on relieving symptoms as mild signs and symptoms can often be controlled by managing stress and by making changes in diet and lifestyle. The use of nutraceutical compounds has been advocated as a possible alternative treatment in patients with IBS. COLONIR® (Omega Pharma Srl, Milan, Italy) may be an alternative or adjuvant treatment in patients with gastrointestinal symptoms. This study aimed to evaluate the effect of this new nutraceutical formulation in inducing symptoms remission and improve gastrointestinal habits. METHODS: An initial cohort of 1004 consecutive patients referred to 25 different Units of Internal Medicine a/o Gastroenterology in Italy to perform colonoscopy for intestinal symptoms was asked to participate. Patients were treated for 2 months with two doses of nutraceuticals/day during meals namely COLONIR®. Patients were assessed at baseline and after 2 months to evaluate the frequency and severity of gastrointestinal symptoms in the past seven days with a questionnaire based on ROMA IV criteria. RESULTS: After 2 months, 899 patients completed the follow-up. COLONIR® achieved a statistically significant reduction of severity of symptoms in the study population without any documented side effects. CONCLUSIONS: These promising results, here reported, need to be confirmed, valuating the efficacy of COLONIR® in relieving gastrointestinal symptoms in IBS patients in further studies.


Asunto(s)
Dolor Crónico , Esencias Florales , Enfermedades Gastrointestinales , Glycyrrhiza , Síndrome del Colon Irritable , Mentha , Probióticos , Humanos , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/tratamiento farmacológico , Carbón Orgánico , Triptófano , Manzanilla , Suplementos Dietéticos , Dolor Abdominal/tratamiento farmacológico , Dolor Abdominal/etiología
19.
Chem Biodivers ; 20(4): e202200247, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36882906

RESUMEN

Saline stress is responsible for significant reductions in the growth of plants, and it globally leads to limitations in the performance of crops, especially in drought-affected areas. However, a better understanding of the mechanisms involved in the resistance of plants to environmental stress can lead to a better plant breeding and selection of cultivars. Mint is one of the most important medicinal plants, and it has important properties for industry, and for the medicinal and pharmacy fields. The effects of salinity on the biochemical and enzymatic properties of 18 ecotypes of mint from six different species, that is, Mentha piperita, Mentha mozafariani, Mentha rotundifolia, Mentha spicata, Mentha pulegium and Mentha longifolia, have been examined in this study. The experimental results showed that salinity increased with increasing in stress integrity influenced the enzymatic properties, proline content, electrolyte leakage, and the hydrogen peroxide, malondialdehyde, and essential oil contents. Cluster analysis and principal component analysis were conducted, and they grouped the studied species on the basis of their biochemical characteristics. According to the obtained biplot results, M. piperita and M. rotundifolia showed better stress tolerance than the other varieties, and M. longifolia was identified as being salt sensitive. Generally, the results showed that H2 O2 and malondialdehyde had a positive connection with each other and showed a reverse relationship with all the enzymatic and non-enzymatic antioxidants. Finally, it was found that the M. spicata, M. rotundifolia and M. piperita ecotypes could be used for future breeding projects to improve the salinity tolerance of other ecotypes.


Asunto(s)
Mentha , Aceites Volátiles , Mentha/química , Antioxidantes/farmacología , Aceites Volátiles/farmacología , Estrés Salino , Malondialdehído , Salinidad
20.
J Nat Med ; 77(3): 489-495, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36933088

RESUMEN

Mentha arvensis Linné var. piperascens Malinvaud is an original plant species for "Mentha Herb (Hakka, ハッカ)" and "Mentha Oil (Hakka-yu, ハッカ)" listed in the Japanese Pharmacopoeia, whereas Mentha canadensis L. is that of "Mint oil, partly dementholised" listed in the European Pharmacopoeia. Although these two species are thought to be taxonomically identical, there are no data on whether the source plants of the Mentha Herb products distributed in the Japanese market are actually M. canadensis L. This is an important issue for international harmonization of the Japanese Pharmacopoeia and European Pharmacopoeia. In this study, 43 Mentha Herb products collected from the Japanese market and two plant samples of the original species of Japanese Mentha Herb harvested in China were identified by sequence analyses of the rpl16 regions in the chloroplast DNA, and the composition of their ether extracts was analyzed by GC-MS. Almost all samples were identified as M. canadensis L., and the main component of their ether extracts was menthol, although there were variations in their composition. However, there were some samples thought to be derived from other Mentha species, even though their main component was menthol. For quality control of Mentha Herb, it is important to be sure of not only the original plant species but also the composition of the essential oil and amount of menthol as the characteristic compound.


Asunto(s)
Mentha , Aceites Volátiles , Éteres , Éteres de Etila , Mentha/genética , Mentol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA