Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Food Res Int ; 180: 114086, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395583

RESUMEN

This study aimed to explore the concentrations of Se and Hg in marine fish along the Gulf of Mannar (southeast coast of India) and to assess related risks and risk-based consumption limits for children, pregnant women, and adults. Se concentrations in pelagic and benthic fish ranged from 0.278 to 0.470 mg/kg and 0.203 to 0.294 mg/kg, respectively, whereas Hg concentrations ranged from 0.028 to 0.106 mg/kg and 0.026 to 0.097 mg/kg, respectively. Se and Hg contents in demersal fish (Nemipterus japonicus) were 0.282 and 0.039 mg/kg, respectively. The lowest and highest Hg concentrations in pelagic fish were found in Scomberomorus commersoni and Euthynnus affinis whereas the lowest and highest Se concentrations in benthic fish were found in Scarus ghobban and Siganus javus. Se concentrations in marine fishes were found in the following order: pelagic > demersal > benthic whereas Hg concentrations were found in the following order: pelagic > benthic > demersal. The presence of Se in fish was positively correlated with trophic level (TL) and size whereas that of Hg was weakly correlated with TL and habitat and negatively correlated with size. Se risk-benefit analysis, the AI/RDI (actual intake/recommended daily intake) ratio was > 100 % and the AI/UL (upper limit) ratio was < 100 %, indicating that all fish have sufficient levels of Se to meet daily requirements without exceeding the UL. Hg level was below the maximum residual limit (MRL) of 0.5 mg/kg for most fish but it was 1 mg/kg in E. affinis and Lethrinus lentjan. The target hazard quotient (THQ < 1) and hazard index (HI < 1) imply that the consumption of fish poses no noncarcinogenic health risks. However, all examined fish had a mean Se/Hg molar ratio > 1, indicating that human intake of fishwas rather safe relative to Hg content. Health benefit indexes (Se-HBV and HBVse) with high positive values in all fish supported the protective effect of Se against Hg toxicity, suggesting the overall safety of fish consumption. The high Se/Hg ratio in fish could be attributed to the replacement of Se bound to Hg, thereby suppressing Hg toxicity and maintaining normal selenoprotein synthesis. This insight is useful for a better understanding of food safety analysis.


Asunto(s)
Mercurio , Selenio , Contaminantes Químicos del Agua , Embarazo , Animales , Niño , Adulto , Humanos , Femenino , Selenio/análisis , Mercurio/análisis , Mercurio/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Peces/metabolismo , Medición de Riesgo
2.
Biol Trace Elem Res ; 202(4): 1752-1766, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37491615

RESUMEN

The current study evaluated the potential ameliorative effect of a dietary immune modulator, Nannochloropsis oculata microalga, on the mercuric chloride (HgCl2)-induced toxicity of Nile tilapia. Nile tilapia (45-50 g) were fed a control diet or exposed to » LC50 of HgCl2 (0.3 mg/L) and fed on a medicated feed supplemented with N. oculata (5% and 10% (50 or 100 g/kg dry feed)) for 21 days. Growth and somatic indices, Hg2+ bioaccumulation in muscles, and serum acetylcholinesterase (AChE) activity were investigated. Antioxidant and stress-related gene expression analyses were carried out in gills and intestines. Histopathological examinations of gills and intestines were performed to monitor the traits associated with Hg2+ toxicity or refer to detoxification. Hg2+ toxicity led to significant musculature bioaccumulation, inhibited AChE activity, downregulated genes related to antioxidants and stress, and elicited histopathological changes in the gills and intestine. Supplementation with N. oculata at 10% was able to upregulate the anti-oxidative-related genes while downregulated the stress apoptotic genes in gills and intestines compared to the unexposed group. In addition, minor to no histopathological traits were detected in the gills and intestines of the N. oculata-supplemented diets. Our data showed the benefit of dietary N. oculata in suppressing Hg2+ toxicity, which might support its efficacy as therapeutic/preventive agent to overcome environmental heavy metal pollution in aquatic habitats.


Asunto(s)
Cíclidos , Mercurio , Animales , Mercurio/toxicidad , Mercurio/metabolismo , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Dieta , Suplementos Dietéticos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Inmunidad , Alimentación Animal/análisis
3.
Environ Pollut ; 342: 123050, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042473

RESUMEN

Interaction of different environmental constrains pose severe threats to plants that cannot be predicted from individual stress exposure. In this context, mercury (Hg), as a typical toxic and hazardous heavy metal, has recently attracted particular attention. Nitrogen (N2)-fixing legumes can be used for phytoremediation of Hg accumulation, whereas N availability could greatly affect its N2-fixation efficiency. However, information on the physiological responses to combined Hg exposure and excess N supply of woody legume species is still lacking. Here, we investigated the interactive effects of rhizobia inoculation, Hg exposure (+Hg), and high N (+N) supply, individually and in combination (+N*Hg), on photosynthesis and biochemical traits in Robinia pseudoacacia L. seedlings of two provenances, one from Northeast (DB) and one from Northwest (GS) China. Our results showed antagonistic effects of combined + N*Hg exposure compared to the individual treatments that were provenance-specific. Compared to individual Hg exposure, combined + N*Hg stress significantly increased foliar photosynthesis (+50.6%) of inoculated DB seedlings and resulted in more negative (-137.4%) δ15N abundance in the roots. Furthermore, combined + N*Hg stress showed 47.7% increase in amino acid N content, 39.4% increase in NR activity, and 14.8% decrease in MDA content in roots of inoculated GS seedlings. Inoculation with rhizobia significantly promoted Hg uptake in both provenances, reduced MDA contents of leaves and roots, enhanced photosynthesis and maintained the nutrient balance of Robinia. Among the two Robinia provenances investigated, DB seedlings formed more nodules, had higher biomass and Hg accumulation than GS seedlings. For example, total Hg concentrations in leaves and roots and total biomass of inoculated DB seedlings were 1.3,1.9 and 3.4 times higher than in inoculated GS seedlings under combined + N*Hg stress, respectively. Therefore, the DB provenance is considered to possess a higher potential for phytoremediation of Hg contamination compared to the GS provenance in environments subjected to N deposition.


Asunto(s)
Fabaceae , Mercurio , Rhizobium , Robinia , Robinia/metabolismo , Simbiosis , Mercurio/toxicidad , Mercurio/metabolismo , Biodegradación Ambiental , Nitrógeno/metabolismo , Plantones
4.
Chemosphere ; 350: 141038, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147928

RESUMEN

Wastewater containing selenium (Se) and soil contaminated by mercury (Hg) are two environmental problems, but they are rarely considered for synergistic treatment. In this work, anaerobic granular sludge (AnGS) was used to address both of the aforementioned issues simultaneously. The performance and mechanisms of Se(IV) removal from wastewater and Hg(II) immobilization in soil were investigated using various technologies. The results of the reactor operation indicated that the AnGS efficiently removed Se from wastewater, with a removal rate of 99.94 ± 0.05%. The microbial communities in the AnGS could rapidly reduce Se(IV) to Se0 nanoparticles (SeNPs). However, the AnGS lost the ability to reduce Se(IV) once the Se0 content reached the saturation value of 5.68 g Se/L. The excess sludge of Se0-rich AnGS was applied to remediate soil contaminated with Hg(II). The Se0-rich AnGS largely decreased the percentage of soil Hg in the mobile, extractable phase, with up to 99.1 ± 0.3% immobilization. Soil Hg(II) and Hg0 can react with Se (-II) and Se0, respectively, to form HgSe. The formation of inert HgSe was an important pathway for immobilizing Hg. Subsequently, the pot experiments indicated that soil remediation using Se0-rich AnGS significantly decreased the Hg content in pea plants. Especially, the content of Hg decreased from 555 ± 100 to 24 ± 3 µg/kg in roots after remediation. In summary, AnGS is an efficient and cost-effective material for synergistically treating Se-contaminated wastewater and Hg-contaminated soil.


Asunto(s)
Mercurio , Selenio , Mercurio/metabolismo , Selenio/metabolismo , Aguas del Alcantarillado , Aguas Residuales , Anaerobiosis , Suelo
5.
Sci Rep ; 13(1): 21132, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036518

RESUMEN

Mercury (Hg) pollution in agricultural soils and its potential pathway to the human food chain can pose a serious health concern. Understanding the pathway of Hg in plants and how the speciation may change upon interaction with other elements used for biofortification can be critical to assess the real implications for the final plant-based product. In that respect, selenium (Se) biofortification of crops grown in Se-poor soil regions is becoming a common practice to overcome Se deficient diets. Therefore, it is important to assess the interplay between these two elements since Se may form complexes with Hg reducing its bioavailability and toxicity. In this work, the speciation of Hg in wheat plants grown hydroponically under the presence of Hg (HgCl2) and biofortified with Se (selenite, selenate, or a 1:1 mixture of both) has been investigated by X-ray absorption spectroscopy at the Hg L3-edge. The main Hg species found in wheat grains was the highly toxic methylmercury. It was found that the Se-biofortification of wheat did not prevent, in general, the Hg translocation to grains. Only the 1:1 mixture treatment seemed to have an effect in reducing the levels of Hg and the presence of methylmercury in grains.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Selenio , Humanos , Selenio/metabolismo , Mercurio/toxicidad , Mercurio/metabolismo , Compuestos de Metilmercurio/toxicidad , Compuestos de Metilmercurio/metabolismo , Triticum/metabolismo , Suelo/química , Productos Agrícolas/metabolismo
6.
Environ Pollut ; 329: 121679, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37088257

RESUMEN

As the global human population increases, demand for protein will surpass our current production ability without an increase in land use or intensification. Microalgae cultivation offers a high yield of protein, and utilization of wastewater from municipal or agricultural sources in place of freshwater for microalgae aquaculture may increase the sustainability of this practice. However, wastewater from municipal and agricultural sources may contain contaminants, such as mercury (Hg), cadmium (Cd), selenium (Se), and arsenic (As). Association of these elements with algal biomass may present an exposure risk to product consumers, while volatilization may present an exposure hazard to industry workers. Thus, the partitioning of these elements should be evaluated before wastewater can be confidently used in an aquaculture setting. This study explored the potential for exposure associated with Arthrospira maxima and Chlamydomonas reinhardtii aquaculture in medium contaminated with 0.33 µg Hg L-1, 60 µg As L-1, 554 µg Se L-1, and 30 µg Cd L-1. Gaseous effluent from microalgae aquaculture was analyzed for Hg, As, Se, and Cd to quantify volatilization. A mass balance approach was used to describe the partitioning of elements between the biomass, medium, and gas phases at the end of exponential growth. Contaminants were recovered predominantly in medium and biomass, regardless of microalgae strain. In the case of Hg, 48 ± 2% was associated with A. maxima biomass and 55 ± 8% with C. reinhardtii when Hg was present as the only contaminant, but this increased to 85 ± 11% in C. reinhardtii biomass when As, Se, and Cd were also present. A small and highly variable abiotic volatilization of Hg was observed in the gas phase of both A. maxima and C. reinhardtii cultures. Evidence presented herein suggests that utilizing wastewater containing Hg, Cd, Se, and As for microalgae cultivation may present health hazards to consumers.


Asunto(s)
Arsénico , Chlamydomonas reinhardtii , Mercurio , Microalgas , Selenio , Spirulina , Humanos , Cadmio/metabolismo , Mercurio/metabolismo , Selenio/metabolismo , Arsénico/metabolismo , Chlamydomonas reinhardtii/metabolismo , Aguas Residuales , Gases , Microalgas/metabolismo , Biomasa
7.
Metallomics ; 15(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36869799

RESUMEN

Understanding of how mercury species cause cellular impairments at the molecular level is critical for explaining the detrimental effects of mercury exposure on the human body. Previous studies have reported that inorganic and organic mercury compounds can induce apoptosis and necrosis in a variety of cell types, but more recent advances reveal that mercuric mercury (Hg2+) and methylmercury (CH3Hg+) may result in ferroptosis, a distinct form of programmed cell death. However, it is still unclear which protein targets are responsible for ferroptosis induced by Hg2+ and CH3Hg+. In this study, human embryonic kidney 293T cells were used to investigate how Hg2+ and CH3Hg+ trigger ferroptosis, given their nephrotoxicity. Our results demonstrate that glutathione peroxidase 4 (GPx4) plays a key role in lipid peroxidation and ferroptosis in renal cells induced by Hg2+ and CH3Hg+. The expression of GPx4, the only lipid repair enzyme in mammal cells, was downregulated in response to Hg2+ and CH3Hg+ stress. More importantly, the activity of GPx4 could be markedly inhibited by CH3Hg+, owing to the direct binding of the selenol group (-SeH) in GPx4 to CH3Hg+. Selenite supplementation was demonstrated to enhance the expression and activity of GPx4 in renal cells, and consequently relieve the cytotoxicity of CH3Hg+, suggesting that GPx4 is a crucial modulator implicated in the Hg-Se antagonism. These findings highlight the importance of GPx4 in mercury-induced ferroptosis, and provide an alternative explanation for how Hg2+ and CH3Hg+ induce cell death.


Asunto(s)
Ferroptosis , Mercurio , Selenio , Animales , Humanos , Mercurio/toxicidad , Mercurio/metabolismo , Selenio/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Riñón/metabolismo , Glutatión Peroxidasa/metabolismo , Mamíferos/metabolismo
8.
J Hazard Mater ; 451: 131098, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36893598

RESUMEN

Mushrooms may incorporate significant levels of Hg making its consumption harmful to human health. Mercury remediation induced by Se competition in edible mushrooms represents a valuable alternative since Se plays effective roles against Hg uptake, accumulation, and toxicity. In this way, Pleurotus ostreatus and Pleurotus djamor were cultivated on Hg-contaminated substrate simultaneously supplemented with Se(IV) or Se(VI) under different dosages in this study. The protective role of Se was assessed taking into account morphological characteristics and Hg and Se total concentrations determined by ICP-MS, as well as proteins and protein-bound Hg and Se distribution by SEC-UV-ICP-MS, and Hg speciation studies (Hg(II) and MeHg) by HPLC-ICP-MS. Both Se(IV) and Se(VI) supplementation were able to recover the morphology mainly of Hg-contaminated Pleurotus ostreatus. The mitigation effects induced by Se(IV) stood out more than Se(VI) in terms of Hg incorporation, decreasing the total Hg concentration up to 96 %. Also, it was found that supplementation mainly with Se(IV) reduced the fraction of Hg bound to medium molecular weight compounds (17-44 kDa) up to 80 %. Finally, it was shown a Se-induced inhibitory effect on Hg methylation, decreasing MeHg species content in mushrooms exposed to Se(IV) (51.2 µg g-1) up to 100 %.


Asunto(s)
Agaricales , Mercurio , Compuestos de Metilmercurio , Pleurotus , Selenio , Humanos , Mercurio/metabolismo , Agaricales/química , Pleurotus/metabolismo , Selenio/metabolismo , Estudios de Factibilidad , Compuestos de Metilmercurio/metabolismo
9.
Molecules ; 28(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770623

RESUMEN

The aqueous Trigonella foenum-graecum L. leaf extract belonging to variety HM 444 was used as reducing agent for silver nanoparticles (AgNPs) synthesis. UV-Visible spectroscopy, Particle size analyser (PSA), Field emission scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (FESEM-EDX) and High-resolution transmission electron microscopy (HRTEM) were used to characterize AgNPs. Selected area electron diffraction (SAED) confirmed the formation of metallic Ag. Fourier Transform Infrared Spectroscopy (FTIR) was done to find out the possible phytochemicals responsible for stabilization and capping of the AgNPs. The produced AgNPs had an average particle size of 21 nm, were spherical in shape, and monodispersed. It showed catalytic degradation of Methylene blue (96.57%, 0.1665 ± 0.03 min-1), Methyl orange (71.45%, 0.1054 ± 0.002 min-1), and Rhodamine B (92.72%, 0.2004 ± 0.01 min-1). The produced AgNPs were excellent solid bio-based sensors because they were very sensitive to Hg2+ and Fe3+ metal ions with a detection limit of 11.17 µM and 195.24 µM, respectively. From the results obtained, it was suggested that aqueous leaf extract demonstrated a versatile and cost-effective method and should be utilized in future as green technology for the fabrication of nanoparticles.


Asunto(s)
Mercurio , Nanopartículas del Metal , Trigonella , Colorantes/metabolismo , Plata/química , Trigonella/química , Colorimetría , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Mercurio/metabolismo , Tecnología Química Verde/métodos , Extractos Vegetales/química , Difracción de Rayos X
10.
Food Chem ; 398: 133866, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35964561

RESUMEN

Seaweeds are a rich source of nutritional and functional compounds, but they also accumulate heavy metals. Here, the chemical composition (crude protein, total lipids, Nitrogen Free Extract and fiber) and the presence of minerals (Na, K, Ca, Mg, P, Fe, Mn, Cu, Zn, Mo, Se) and unwanted elements (As, Cd, Hg, Pb, Ni, Cr, Al) were determined in eleven seaweeds from Chile. Depending on the species, a good contribution to the Recommended Dietary Allowance for K, Ca, Mg, Fe, Mn and Se was observed, and low Na/K ratios (<1.0) as well. The health risk assessment indicated low hazard due to intake of seaweed meal. The mean values of As, Hg, and Pb were below the maximum limits set for food supplements and feed ingredients. The seaweeds studied have a suitable chemical composition for their uses as food and feed ingredients, although Cd levels should be monitoring especially in brown seaweeds.


Asunto(s)
Mercurio , Metales Pesados , Algas Marinas , Cadmio/metabolismo , Chile , Monitoreo del Ambiente , Plomo/metabolismo , Mercurio/metabolismo , Metales Pesados/análisis , Algas Marinas/química
11.
Poult Sci ; 101(12): 102190, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252503

RESUMEN

This study investigated the effect of nano-selenium (nano-Se) in protecting laying hens from mercury (Hg)-induced prehierarchical follicular atresia. Furthermore, the endoplasmic reticulum stress (ERS) was explored to reveal the molecular mechanism. In vivo, 720 Hyline-Brown laying hens were treated with Hg and nano-Se alone or in combination. In vitro, the prehierarchical follicles were treated with Hg, nano-Se and 4-phenyl butyric acid (4-PBA) alone or in combination (Control, 25 µM Hg group, 10 µM nano-Se group, 20 µM nano-Se group, 25 µM Hg + 10 µM nano-Se group, 25 µM Hg + 20 µM nano-Se group, 25 µM Hg + 4-PBA group, and 25 µM Hg + 20 µM nano-Se + 4-PBA group). The GCs were treated with Hg and nano-Se alone or in combination (Control, 15 µM Hg group, 6 µM nano-Se group, 12 µM nano-Se group, 15 µM Hg + 6 µM nano-Se group, 15 µM Hg + 12 µM nano-Se group). The results revealed that dietary Hg significantly reduced laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se addition prevented these reductions (P < 0.05). Hg exposure significantly induced the accumulation of Hg in PHFs (P < 0.05), prehierarchical follicular atresia (P < 0.05) and apoptosis in PHFs, whereas nano-Se addition significantly prevented these effects (P < 0.05). The levels of sex hormones (P < 0.05) were significantly decreased after Hg exposure in vivo and in vitro, while nano-Se addition prevented the reductions. Furthermore, the RNA-Seq results showed that the key factors of the ERS presented differential expression, including C/EBP homologous protein, protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6) in GCs. Hg exposure significantly increased the key gene expression of endoplasmic reticulum stress in GCs, whereas nano-Se addition prevented the induction of expression of these genes. In addition, the protein levels of PERK, inositol requiring protein 1α (IRE1α) and ATF6 were significantly increased, whereas nano-Se addition prevented the enhancements of protein expression in GCs. In conclusion, this study shows that Hg exposure can reduce induce prehierarchical follicular atresia, whereas nano-Se can prevent these effects. Our results also elucidate a key role of ERS in these protective effects of nano-Se in laying hens.


Asunto(s)
Mercurio , Selenio , Femenino , Animales , Selenio/farmacología , Selenio/metabolismo , Pollos/fisiología , Endorribonucleasas/metabolismo , Atresia Folicular , Mercurio/metabolismo , Proteínas Serina-Treonina Quinasas
12.
Ecotoxicol Environ Saf ; 240: 113681, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35653978

RESUMEN

Biosynthetic nano-selenium (bio-SeNP), as a plant growth regulator, has better bioavailability and lower toxicity than selenite and selenate. This study investigated the beneficial role of bio-SeNP in mitigating the adverse effects of multiple heavy metals (HMs, e.g., Cd, Pb, and Hg) on growth and yield of pak choi (Brassica chinensis) grown in slightly or heavily polluted (SP or HP) soil by regulating metabolic and antioxidant systems. The results revealed that foliar application of bio-SeNP (5, 10, 20 mg L-1 Se) at the 6-leaf stage greatly reduced the levels of Cd, Pb, and Hg in shoots and roots of pak choi. Application of 5 mg L-1 bio-SeNP significantly (p < 0.05) decreased the translocation factor (TF) of Cd, Pb, and Hg from root to shoot by 9.83%, 44.21%, and 46.99% for SP soil, 24.17%, 56.00%, and 39.36% for HP soil, respectively. Meanwhile, all bio-SeNP treatments led to a significant improvement in plants growth by enhancing the antioxidant defense system (e.g., AsA-GSH) and promoting chlorophyll synthesis as well as suppressed the lipid peroxidation products contents (MDA) in shoots. Moreover, the enhanced levels of mineral nutrient elements (e.g., Ca, Mg, Fe, or Zn) and organic selenium (e.g., selenocystine, Se-methylselenocysteine, and selenomethionine) in the edible shoots of bio-SeNP-treated pak choi plant under multiple HMs stress indicated the positive impacts of bio-SeNP on the improvement of shoot quality and nutritional values. Collectively, our results indicated that bio-SeNP play an important role in the management of multiple HMs-induced adverse effects on pak choi. Foliar application of bio-SeNP at appropriate concentration (≤ 5 mg L-1 Se) can be considered as a promising agronomic measure for safety leafy vegetable production in multiple HMs polluted soils when bio-SeNP application.


Asunto(s)
Brassica , Mercurio , Metales Pesados , Selenio , Contaminantes del Suelo , Adsorción , Antioxidantes/metabolismo , Antioxidantes/farmacología , Brassica/metabolismo , Cadmio/metabolismo , Plomo/metabolismo , Mercurio/metabolismo , Mercurio/toxicidad , Metales Pesados/metabolismo , Selenio/metabolismo , Selenio/farmacología , Suelo , Contaminantes del Suelo/análisis
13.
Biol Trace Elem Res ; 200(12): 5205-5217, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35094234

RESUMEN

This study investigated that the effect of nano-selenium (nano-Se) addition preventing prehierarchical follicular atresia induced by mercury (Hg) exposure in laying hens. Furthermore, endoplasmic reticulum (ER) stress pathway was explored to reveal the protective mechanism of nano-Se in vitro. The results revealed that Hg could significantly reduce laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se addition partially reversed the reductions. Besides, Hg significantly induced the deposition of Hg in prehierarchical follicles (P < 0.05) and prehierarchical follicular atresia (P < 0.05), whereas nano-Se addition could alleviate these toxicities in vitro. In addition, Hg exposure could significantly reduce cell viability (P < 0.05) and induce pyknotic nucleus in prehierarchical granulosa cells, while nano-Se addition reversed these effects. The levels of follicle-stimulating hormone (P < 0.05), luteinizing hormone (P < 0.05), progesterone (P < 0.05), and estradiol (P < 0.05) were significantly decreased after Hg exposure in vitro. However, nano-Se addition reversed the decreases of sex hormone levels. Furthermore, Hg exposure significantly increased the gene expressions of CHOP (P < 0.05), PERK (P < 0.05), ATF4 (P < 0.05), ATF6 (P < 0.05), ASK1 (P < 0.05), IRE1α (P < 0.05), TRAF2 (P < 0.05), caspase-9 (P < 0.05), caspase-3 (P < 0.05), and Bax/Bcl-2 (P < 0.05), whereas nano-Se addition reversed these increases of gene expressions in vitro. In summary, this study provides that Hg can induce prehierarchical follicular atresia, whereas nano-Se addition can ameliorate it, and elucidates an important role of ER stress in nano-Se alleviating prehierarchical follicular atresia induced by Hg in laying hens.


Asunto(s)
Mercurio , Selenio , Animales , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Pollos/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Estradiol , Femenino , Hormona Folículo Estimulante/metabolismo , Atresia Folicular , Hormona Luteinizante/metabolismo , Mercurio/metabolismo , Progesterona/metabolismo , Proteínas Serina-Treonina Quinasas , Selenio/metabolismo , Selenio/farmacología , Factor 2 Asociado a Receptor de TNF/metabolismo , Proteína X Asociada a bcl-2/metabolismo
14.
Chem Res Toxicol ; 34(12): 2471-2484, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34841876

RESUMEN

It is widely recognized that the toxicity of mercury (Hg) is attenuated by the simultaneous administration of selenium (Se) compounds in various organisms. In this study, we revealed the mechanisms underlying the antagonistic effect of sodium selenite (Na2SeO3) on inorganic Hg (Hg2+) toxicity in human hepatoma HepG2 cells. Observations by transmission electron microscopy indicated that HgSe (tiemannite) granules of up to 100 nm in diameter were accumulated in lysosomal-like structures in the cells. The HgSe granules were composed of a number of HgSe nanoparticles, each measuring less than 10 nm in diameter. No accumulation of HgSe nanoparticles in lysosomes was observed in the cells exposed to chemically synthesized HgSe nanoparticles. This suggests that intracellular HgSe nanoparticles were biologically generated from Na2SeO3 and Hg2+ ions transported into the cells and were not derived from HgSe nanoparticles formed in the extracellular fluid. Approximately 85% of biogenic HgSe remained in the cells at 72 h post culturing, indicating that biogenic HgSe was hardly excreted from the cells. Moreover, the cytotoxicity of Hg2+ was ameliorated by the simultaneous exposure to Na2SeO3 even before the formation of insoluble HgSe nanoparticles. Our data confirmed for the first time that HepG2 cells can circumvent the toxicity of Hg2+ through the direct interaction of Hg2+ with a reduced form of Se (selenide) to form HgSe nanoparticles via a Hg-Se soluble complex in the cells. Biogenic HgSe nanoparticles are considered the ultimate metabolite in the Hg detoxification process.


Asunto(s)
Mercurio/efectos adversos , Nanopartículas/efectos adversos , Selenio/efectos adversos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Mercurio/metabolismo , Nanopartículas/metabolismo , Selenio/metabolismo , Células Tumorales Cultivadas
15.
Biol Pharm Bull ; 44(4): 522-527, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790104

RESUMEN

Methylmercury (MeHg) exposure during pregnancy is a concern because of its potential health risks to fetuses. Intestinal microbiota has important roles in the decomposition and fecal excretion of MeHg. We investigated the effect of nondigestible saccharides on the accumulation and excretion of Hg after MeHg exposure. Female BALB/cByJ mice were fed a basal diet or the same diet supplemented with 5% fructooligosaccharides (FOS) or 2.5% glucomannan. Six weeks after feeding, mice were administered MeHg chloride (4 mg Hg/kg, per os (p.o.)), and urine and feces were collected for 28 d. FOS-fed mice had lower total Hg levels in all tissues (including the brain) compared with that of controls. The glucomannan diet had no effect on tissue Hg levels. No differences in tissue concentrations of inorganic Hg among groups were found. Fecal Hg excretion was markedly higher in FOS-fed mice than that in controls, but urinary Hg excretion was similar. FOS-fed mice had a higher proportion of inorganic Hg in feces than that of controls, with a significant increase in fecal Hg excretion. Analysis of fecal bacterial population showed the relative abundance of Bacteroides in FOS-fed mice to be higher than that in controls. The results suggest that FOS enhanced fecal Hg excretion and decreased tissue Hg levels after MeHg administration, possibly by accelerating MeHg demethylation by intestinal bacteria (the candidate genus Bacteroides). This demethylation also reduces MeHg absorption in the large intestine. In conclusion, daily FOS intake may decrease tissue Hg levels in animals and humans exposed to MeHg.


Asunto(s)
Encéfalo/metabolismo , Suplementos Dietéticos , Mercurio/metabolismo , Compuestos de Metilmercurio/farmacocinética , Oligosacáridos/farmacología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Heces/química , Heces/microbiología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Riñón/metabolismo , Hígado/metabolismo , Mananos/farmacología , Compuestos de Metilmercurio/sangre , Ratones Endogámicos BALB C , ARN Ribosómico 16S
16.
Aquat Toxicol ; 235: 105828, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33901865

RESUMEN

Among toxic pollutants, Mercury (Hg) is a toxic heavy metal that induces harmful impacts on aquatic ecosystems directly and human being's health indirectly. This study confirmed the in vitro magnetic potential of magnetite Nano-Particles (Fe3O4 NPs) against waterborne Hg exposure-induced toxicity in Nile tilapia (Oreochromis niloticus). We further evaluate the safety profile of Fe3O4 NPs on fish growth, hemato-biochemical, histological parameters, bioaccumulation in muscles, and economy. Magnetite nanoparticles were characterized, adsorption loading to Hg ions was investigated, and testing different concentrations of Fe3O4 NPs (0.2, 0.4, 0.6, 0.8, and 1.0 mg/L) was applied to determine the highest concentration of adsorption. An in vivo experiment includes 120 fish with an average weight of 26.2 ± 0.26 g were randomly divided into 4 equal groups, each group had three replicates (n = 30 fish/group; 10 fish/ replicate). All groups were fed on a reference basal diet and the experiment was conducted for 30 days. The first group (G1) was allocated as a control. The second group (G2) received 1.0 mg/L aqueous suspension of Fe3O4 NPs. The third group (G3) was exposed to an aqueous solution of Hg ions at a concentration of 0.025 mg/L. Meanwhile, the fourth group (G4) acquired an aqueous suspension composed of a mixture of Hg ions and Fe3O4 NPs as previously mentioned. Throughout the exposure period, the clinical signs, symptoms, and mortalities were recorded. The Hg ions-exposed group induced the following consequences; reduced appetite resulting in reduced growth and less economic efficiency; microcytic hypochromic anemia, leukocytosis, lymphopenia, and neutrophilia; sharp and clear depletion in the immune indicators including lysozymes activity, immunoglobulin M (IgM), and Myeloperoxidase activities (MPO); significant higher levels of ALT, AST, urea, creatinine, and Superoxide dismutase (SOD); histological alterations of gill, hepatic and muscular tissues with strong expression of apoptotic marker (caspase 3); and a higher accumulation of Hg ions in the muscles. Surprisingly, Fe3O4 NPs-supplemented groups exhibited strong adsorption capacity against the Hg ions and mostly removed the Hg ions accumulation in the muscles. Also, the hematological, biochemical, and histological parameters were recovered. Thus, in order to assess the antitoxic role of Fe3O4 NPs against Hg and their safety on O. niloticus, and fill the gap of the research, the current context was investigated to evaluate the promising role of Fe3O4 NPs to prevent Hg-exposure-induced toxicity and protection of fish health, which ascertains essentiality for sustainable development of nanotechnology in the aquatic environment.


Asunto(s)
Cíclidos/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro , Mercurio/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/metabolismo , Bioacumulación , Dieta , Suplementos Dietéticos/análisis , Ecosistema , Óxido Ferrosoférrico/metabolismo , Branquias/metabolismo , Humanos , Hígado/metabolismo , Músculos/metabolismo , Superóxido Dismutasa/metabolismo
17.
Chemosphere ; 273: 129673, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33497984

RESUMEN

Mercury (Hg) in high exposures can be a potent life threatening heavy metal that bioaccumulate in aquatic food-chain mainly as organic methylmercury (MeHg). In this regard, fish and seafood consumptions could be the primary sources of MeHg exposure for human and fish-eating animals. The objective of the present study was to elucidate the effects of dietary supplementation of some antioxidants on induced mercury toxicity in mice model. In this study, a 30-day long investigation has been conducted to evaluate the dietary effect of selenium (Se) in combination with vitamin C and vitamin E on methylmercury induced toxicity in mice. Total 54 mice fed the diets with three levels of Hg (0, 50 or 500 µg kg-1) and two levels of Se in combination with vitamin C and E (Se: 0, 2 mg kg-1; vitamin C: 0, 400 mg kg-1; vitamin E: 0, 200 mg kg-1) in triplicates. The results show that Hg accumulated in blood and different tissues such as muscle, liver and kidney tissues of mice on dose dependent manner. The bioaccumulation pattern of dietary Hg, in decreasing order, kidney > liver > muscle > blood. Superoxide dismutase levels in blood serum showed no significant differences in mice fed the diets. However, dietary antioxidants significantly reduced the levels of thiobarbituric acid reactive substances in mice fed the mercury containing diets. Cytochrome c oxidase enzyme activities showed no significant differences as the mercury level increases in liver and kidney tissues of mice. Kaplan-Meier curve showed a dose- and time-dependent survivability of mice. Cumulative survival rate of Hg intoxicated mice fed the antioxidant supplemented diets were increased during the experimental period. Overall, the results showed that dietary Se, vitamin C and vitamin E had no effect on reducing the mercury bioaccumulation in tissues but reduced the serum lipid peroxidation as well as prolonged the cumulative survival rate in terms of high Hg exposures in mice.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Selenio , Animales , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Bioacumulación , Peroxidación de Lípido , Hígado/metabolismo , Mercurio/metabolismo , Mercurio/toxicidad , Compuestos de Metilmercurio/metabolismo , Compuestos de Metilmercurio/toxicidad , Ratones , Estrés Oxidativo , Selenio/metabolismo , Selenio/farmacología
18.
Ecotoxicol Environ Saf ; 207: 111262, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916531

RESUMEN

Mercury (Hg) in its all forms, including inorganic Hg (iHg) is an environmental contaminant due to toxicity and diseases in human. However, a little is known about the underlying mechanisms responsible for iHg toxicity. Selenium (Se) is an essential trace element, recognized as an antioxidant and protective agent against metal toxicities. The purpose of this research was to investigate ameliorations of Se counter to iHg-mediated toxicity in PC12 cells. Cytotoxic assays have been shown that iHg (5 µM) caused oxidative stress and intrinsic apoptosis via ROS generation, oxidizing glutathione, damaging DNA, degrading cell membrane integrity, down-regulating mTOR, p-mTOR, akt and ERK1, and up-regulating cleaved caspase 3 and cytochrome c release in PC12 cells 48 h after incubation. Co-treatment of Se (5 µM) inhibited intrinsic apoptosis and oxidative stress induced by iHg (5 µM) via inhibiting ROS formation, boosting GPx contents, increasing reduced glutathione, limiting DNA degradation, improving cell membrane integrity, up-regulating mTOR, p-mTOR, akt, ERK1 and caspase 3, and down-regulating cleaved caspase 3 and cytochrome c leakage in PC12 cells. In conclusion, these results recommended that excessive ROS generation acts a critical role in iHg-influenced oxidative stress and co-treatment of Se attenuates iHg-cytotoxicity through its antioxidant properties.


Asunto(s)
Sustancias Peligrosas/toxicidad , Mercurio/toxicidad , Sustancias Protectoras/farmacología , Selenio/farmacología , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Caspasa 3 , Citocromos c/metabolismo , Glutatión/metabolismo , Humanos , Mercurio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Ratas , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR
19.
Arch Environ Contam Toxicol ; 79(3): 354-370, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33025049

RESUMEN

Heavy metals threaten communities near biodiversity hotspots, as their protein sources come from the environment. This study assessed Hg, Cd, and Se concentrations in fish, as well as the magnitude of exposure and hematological conditions of adult citizens from Puerto Nariño (Colombian Amazon). Among fish samples, greater Hg concentrations were found in higher trophic level species, including Rhaphiodon vulpinus (880 ± 130 ng/g) and Pseudoplatystoma tigrinum (920 ± 87 ng/g). These species presented the highest hazard quotients and lowest Se:Hg molar ratios among those studied, showing their consumption represents a health risk to consumers. Moreover, some samples of Mylossoma duriventre and Prochilodus magdalenae had Cd levels greater than the regulated limit (100 ng/g). The average total Hg (T-Hg) concentrations in human hair and blood were 5.31 µg/g and 13.7 µg/L, respectively. All hair samples exceeded the 1.0 µg/g threshold set by the USEPA, whereas 93% of the volunteers had T-Hg blood levels greater than 5 µg/L, suggesting elevated exposure. The mean Cd level was 3.1 µg/L, with 21% of samples surpassing 5 µg/L, value at which mitigating actions should be taken. Eighty-four percent of participants presented Se deficiencies (<100 µg/L). There was a significant association between fish consumption and T-Hg in hair (ρ = 0.323; p = 0.032) and blood (ρ = 0.381; p = 0.011). In this last matrix, Se correlated with Cd content, whereas lymphocytes were inversely linked to Hg concentrations. The results of this study show that there is  extensive exposure to Hg in fish, the consumption of which may promote detrimental impacts on hematology parameters within the community.


Asunto(s)
Monitoreo Biológico/métodos , Cadmio/análisis , Peces/metabolismo , Cabello/química , Mercurio/análisis , Selenio/análisis , Adulto , Animales , Cadmio/metabolismo , Colombia , Exposición Dietética/análisis , Femenino , Contaminación de Alimentos/análisis , Humanos , Masculino , Mercurio/metabolismo , Selenio/metabolismo
20.
Food Chem Toxicol ; 145: 111717, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32890690

RESUMEN

Human exposure to mercury (Hg) and methylmercury (MeHg) through the ingestion of seafood raises human health-related concerns. In contrast, green tea has health benefits and its consumption potentially reduces bioaccessibility of dietary Hg. The present study aimed to assess the effect of green tea in total mercury (THg) and MeHg bioaccessibility in raw and cooked marine fish species commonly having high Hg levels. Preliminary results demonstrated that significantly higher reductions of bioaccessible THg were attained after the co-ingestion of green tea infusion (1 cup or more) in the oral and intestinal phases. Overall, the present findings clearly show that the co-ingestion of green tea along with seafood grilling strongly reduces THg and MeHg bioaccessibility in all fish species and consequently diminishes the probability of exceeding MeHg provisional tolerable weekly intakes through the consumption of these species with high Hg levels. Such results point out the need to better understand the beneficial/preventive role of green tea infusions and other food processing techniques in bioaccessibility reduction of other chemical contaminants present in food products. Such information is certainly useful to help consumers to wisely select their food, and to enable food safety authorities to integrate such information in risk assessment.


Asunto(s)
Camellia sinensis/química , Exposición Dietética/efectos adversos , Peces/metabolismo , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Té/metabolismo , Animales , Disponibilidad Biológica , Culinaria , Exposición Dietética/análisis , Digestión , Peces/clasificación , Contaminación de Alimentos/análisis , Humanos , Carne/análisis , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA