Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.040
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3377, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643150

RESUMEN

Zinc-alpha2-glycoprotein (AZGP1) has been implicated in peripheral metabolism; however, its role in regulating energy metabolism in the brain, particularly in POMC neurons, remains unknown. Here, we show that AZGP1 in POMC neurons plays a crucial role in controlling whole-body metabolism. POMC neuron-specific overexpression of Azgp1 under high-fat diet conditions reduces energy intake, raises energy expenditure, elevates peripheral tissue leptin and insulin sensitivity, alleviates liver steatosis, and promotes adipose tissue browning. Conversely, mice with inducible deletion of Azgp1 in POMC neurons exhibit the opposite metabolic phenotypes, showing increased susceptibility to diet-induced obesity. Notably, an increase in AZGP1 signaling in the hypothalamus elevates STAT3 phosphorylation and increases POMC neuron excitability. Mechanistically, AZGP1 enhances leptin-JAK2-STAT3 signaling by interacting with acylglycerol kinase (AGK) to block its ubiquitination degradation. Collectively, these results suggest that AZGP1 plays a crucial role in regulating energy homeostasis and glucose/lipid metabolism by acting on hypothalamic POMC neurons.


Asunto(s)
Leptina , Proopiomelanocortina , Ratones , Animales , Leptina/metabolismo , Fosforilación , Proopiomelanocortina/metabolismo , Hipotálamo/metabolismo , Homeostasis/fisiología , Metabolismo Energético/fisiología , Neuronas/metabolismo
2.
Biochem Pharmacol ; 223: 116129, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490517

RESUMEN

Leptin is a hormone that is secreted by adipocytes in proportion to adipose tissue size, and that informs the brain about the energy status of the body. Leptin acts through its receptor LepRb, expressed mainly in the hypothalamus, and induces a negative energy balance by potent inhibition of feeding and activation of energy expenditure. These actions have led to huge expectations for the development of therapeutic targets for metabolic complications based on leptin-derived compounds. However, the majority of patients with obesity presents elevated leptin production, suggesting that in this setting leptin is ineffective in the regulation of energy balance. This resistance to the action of leptin in obesity has led to the development of "leptin sensitizers," which have been tested in preclinical studies. Much research has focused on generating combined treatments that act on multiple levels of the gastrointestinal-brain axis. The gastrointestinal-brain axis secretes a variety of different anorexigenic signals, such as uroguanylin, glucagon-like peptide-1, amylin, or cholecystokinin, which can alleviate the resistance to leptin action. Moreover, alternative mechanism such as pharmacokinetics, proteostasis, the role of specific kinases, chaperones, ER stress and neonatal feeding modifications are also implicated in leptin resistance. This review will cover the current knowledge regarding the interaction of leptin with different endocrine factors from the gastrointestinal-brain axis and other novel mechanisms that improve leptin sensitivity in obesity.


Asunto(s)
Leptina , Obesidad , Humanos , Recién Nacido , Tejido Adiposo/metabolismo , Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Leptina/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
3.
Diabetes Obes Metab ; 26 Suppl 2: 34-45, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38450938

RESUMEN

Hypothalamic obesity (HO) is a rare and complex disorder that confers substantial morbidity and excess mortality. HO is a unique subtype of obesity characterized by impairment in the key brain pathways that regulate energy intake and expenditure, autonomic nervous system function, and peripheral hormonal signalling. HO often occurs in the context of hypothalamic syndrome, a constellation of symptoms that follow from disruption of hypothalamic functions, for example, temperature regulation, sleep-wake circadian control, and energy balance. Genetic forms of HO, including the monogenic obesity syndromes, often impact central leptin-melanocortin pathways. Acquired forms of HO occur as a result of tumours impacting the hypothalamus, such as craniopharyngioma, surgery or radiation to treat those tumours, or other forms of hypothalamic damage, such as brain injury impacting the region. Risk for severe obesity following hypothalamic injury is increased with larger extent of hypothalamic damage or lesions that contain the medial and posterior hypothalamic nuclei that support melanocortin signalling pathways. Structural damage in these hypothalamic nuclei often leads to hyperphagia, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue, the collective effect of which is rapid weight gain. Individuals with hyperphagia are perpetually hungry. They do not experience fullness at the end of a meal, nor do they feel satiated after meals, leading them to consume larger and more frequent meals. To date, most efforts to treat HO have been disappointing and met with limited, if any, long-term success. However, new treatments based on the distinct pathophysiology of disturbed energy homeostasis in acquired HO may hold promise for the future.


Asunto(s)
Craneofaringioma , Enfermedades Hipotalámicas , Neoplasias Hipofisarias , Humanos , Leptina/metabolismo , Enfermedades Hipotalámicas/complicaciones , Enfermedades Hipotalámicas/terapia , Enfermedades Hipotalámicas/metabolismo , Obesidad/complicaciones , Obesidad/terapia , Obesidad/genética , Hipotálamo/metabolismo , Craneofaringioma/complicaciones , Craneofaringioma/terapia , Craneofaringioma/metabolismo , Hiperfagia , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Melanocortinas/metabolismo , Metabolismo Energético/fisiología
4.
Geroscience ; 46(1): 349-365, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37368157

RESUMEN

Mitochondrial improvements resulting from behavioral interventions, such as diet and exercise, are systemic and apparent across multiple tissues. Here, we test the hypothesis that factors present in serum, and therefore circulating throughout the body, can mediate changes in mitochondrial function in response to intervention. To investigate this, we used stored serum from a clinical trial comparing resistance training (RT) and RT plus caloric restriction (RT + CR) to examine effects of blood borne circulating factors on myoblasts in vitro. We report that exposure to dilute serum is sufficient to mediate bioenergetic benefits of these interventions. Additionally, serum-mediated bioenergetic changes can differentiate between interventions, recapitulate sex differences in bioenergetic responses, and is linked to improvements in physical function and inflammation. Using metabolomics, we identified circulating factors associated with changes in mitochondrial bioenergetics and the effects of interventions. This study provides new evidence that circulating factors play a role in the beneficial effects of interventions that improve healthspan among older adults. Understanding the factors that drive improvements in mitochondrial function is a key step towards predicting intervention outcomes and developing strategies to countermand systemic age-related bioenergetic decline.


Asunto(s)
Dieta , Mitocondrias , Humanos , Masculino , Femenino , Mitocondrias/metabolismo , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Terapia por Ejercicio
5.
Mol Metab ; 79: 101840, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036170

RESUMEN

OBJECTIVE: Free fatty acid receptor-1 (FFAR1) is a medium- and long-chain fatty acid sensing G protein-coupled receptor that is highly expressed in the hypothalamus. Here, we investigated the central role of FFAR1 on energy balance. METHODS: Central FFAR1 agonism and virogenic knockdown were performed in mice. Energy balance studies, infrared thermographic analysis of brown adipose tissue (BAT) and molecular analysis of the hypothalamus, BAT, white adipose tissue (WAT) and liver were carried out. RESULTS: Pharmacological stimulation of FFAR1, using central administration of its agonist TUG-905 in diet-induced obese mice, decreases body weight and is associated with increased energy expenditure, BAT thermogenesis and browning of subcutaneous WAT (sWAT), as well as reduced AMP-activated protein kinase (AMPK) levels, reduced inflammation, and decreased endoplasmic reticulum (ER) stress in the hypothalamus. As FFAR1 is expressed in distinct hypothalamic neuronal subpopulations, we used an AAV vector expressing a shRNA to specifically knockdown Ffar1 in proopiomelanocortin (POMC) neurons of the arcuate nucleus of the hypothalamus (ARC) of obese mice. Our data showed that knockdown of Ffar1 in POMC neurons promoted hyperphagia and body weight gain. In parallel, these mice developed hepatic insulin resistance and steatosis. CONCLUSIONS: FFAR1 emerges as a new hypothalamic nutrient sensor regulating whole body energy balance. Moreover, pharmacological activation of FFAR1 could provide a therapeutic advance in the management of obesity and its associated metabolic disorders.


Asunto(s)
Ácidos Grasos no Esterificados , Proopiomelanocortina , Ratones , Animales , Ácidos Grasos no Esterificados/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Ratones Obesos , Peso Corporal , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Metabolismo Energético/fisiología
6.
Physiology (Bethesda) ; 39(2): 0, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113392

RESUMEN

White adipose tissue and brown adipose tissue (WAT and BAT) regulate fatty acid metabolism and control lipid fluxes to other organs. Dysfunction of these key metabolic processes contributes to organ insulin resistance and inflammation leading to chronic diseases such as type 2 diabetes, metabolic dysfunction-associated steatohepatitis, and cardiovascular diseases. Metabolic tracers combined with molecular imaging methods are powerful tools for the investigation of these pathogenic mechanisms. Herein, I review some of the positron emission tomography and magnetic resonance imaging methods combined with stable isotopic metabolic tracers to investigate fatty acid and energy metabolism, focusing on human WAT and BAT metabolism. I will discuss the complementary strengths offered by these methods for human investigations and current gaps in the field.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ácidos Grasos , Humanos , Ácidos Grasos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Metabolismo Energético/fisiología
7.
Trends Endocrinol Metab ; 34(12): 813-822, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37716877

RESUMEN

A thorough understanding of the mechanisms controlling energy homeostasis is needed to prevent and treat metabolic morbidities. While the contribution of organs such as the liver, muscle, adipose tissue, and pancreas to the regulation of energy has received wide attention, less is known about the interplay with the nervous system. Here, we highlight the role of the nervous systems in regulating metabolism beyond the classic hypothalamic endocrine signaling models and discuss the contribution of circadian rhythms, higher brain regions, and sociodemographic variables in the energy equation. We infer that interdisciplinary approaches are key to conceptually advancing the current research frontier and devising innovative therapies to prevent and treat metabolic disease.


Asunto(s)
Tejido Adiposo , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiología , Homeostasis , Hipotálamo , Encéfalo , Metabolismo Energético/fisiología
8.
Nature ; 621(7977): 138-145, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587337

RESUMEN

Maintaining body temperature is calorically expensive for endothermic animals1. Mammals eat more in the cold to compensate for energy expenditure2, but the neural mechanism underlying this coupling is not well understood. Through behavioural and metabolic analyses, we found that mice dynamically switch between energy-conservation and food-seeking states in the cold, the latter of which are primarily driven by energy expenditure rather than the sensation of cold. To identify the neural mechanisms underlying cold-induced food seeking, we used whole-brain c-Fos mapping and found that the xiphoid (Xi), a small nucleus in the midline thalamus, was selectively activated by prolonged cold associated with elevated energy expenditure but not with acute cold exposure. In vivo calcium imaging showed that Xi activity correlates with food-seeking episodes under cold conditions. Using activity-dependent viral strategies, we found that optogenetic and chemogenetic stimulation of cold-activated Xi neurons selectively recapitulated food seeking under cold conditions whereas their inhibition suppressed it. Mechanistically, Xi encodes a context-dependent valence switch that promotes food-seeking behaviours under cold but not warm conditions. Furthermore, these behaviours are mediated by a Xi-to-nucleus accumbens projection. Our results establish Xi as a key region in the control of cold-induced feeding, which is an important mechanism in the maintenance of energy homeostasis in endothermic animals.


Asunto(s)
Temperatura Corporal , Frío , Conducta Alimentaria , Tálamo , Animales , Ratones , Temperatura Corporal/fisiología , Mapeo Encefálico , Calcio/metabolismo , Conducta Alimentaria/fisiología , Metabolismo Energético/fisiología , Tálamo/anatomía & histología , Tálamo/citología , Tálamo/fisiología , Optogenética , Neuronas/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/fisiología , Homeostasis/fisiología , Termogénesis/fisiología
9.
Anim Sci J ; 94(1): e13857, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496108

RESUMEN

Fatty liver syndrome, a common health problem in dairy cows, occurs during the transition from pregnancy to lactation. If the energy supplied to the cow's body cannot meet its needs, a negative energy balance ensues, and the direct response is fat mobilization. Nicotinamide (NAM) has been reported to reduce the nonesterified fatty acid concentration of postpartum plasma. To study the biochemical adaptations underlying this physiologic dysregulation, 12 dairy cows were sequentially assigned to a NAM (45 g/day) treatment or control group. Blood samples were collected on day (D) 1 and D21 relative to parturition. Changes to the plasma lipid metabolism of dairy cows in the two groups were compared using lipidomics. There were significant increases in plasma sphingomyelins d18:1/18:0, d18:1/23:0, d18:1/24:1, d18:1/24:0, and d18:0/24:0 in the NAM group on D1 relative to parturition. In addition, fatty acids 18:2, 18:1, 18:0, 16:1, and 16:0 were obviously decreased on D21 relative to calving. This research has provided insights into how NAM supplementation improves lipid metabolism in perinatal dairy cows.


Asunto(s)
Dieta , Leche , Embarazo , Femenino , Bovinos , Animales , Dieta/veterinaria , Leche/metabolismo , Niacinamida/farmacología , Niacinamida/metabolismo , Lipidómica , Periodo Posparto/metabolismo , Lactancia/fisiología , Ácidos Grasos no Esterificados , Suplementos Dietéticos , Metabolismo Energético/fisiología
10.
Nat Commun ; 14(1): 4321, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468558

RESUMEN

Small humanin-like peptide 2 (SHLP2) is a mitochondrial-derived peptide implicated in several biological processes such as aging and oxidative stress. However, its functional role in the regulation of energy homeostasis remains unclear, and its corresponding receptor is not identified. Hereby, we demonstrate that both systemic and intracerebroventricular (ICV) administrations of SHLP2 protected the male mice from high-fat diet (HFD)-induced obesity and improved insulin sensitivity. In addition, the activation of pro-opiomelanocortin (POMC) neurons by SHLP2 in the arcuate nucleus of the hypothalamus (ARC) is involved in the suppression of food intake and the promotion of thermogenesis. Through high-throughput structural complementation screening, we discovered that SHLP2 binds to and activates chemokine receptor 7 (CXCR7). Taken together, our study not only reveals the therapeutic potential of SHLP2 in metabolic disorders but also provides important mechanistic insights into how it exerts its effects on energy homeostasis.


Asunto(s)
Hipotálamo , Neuronas , Masculino , Animales , Ratones , Hipotálamo/metabolismo , Neuronas/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Dieta Alta en Grasa/efectos adversos , Homeostasis , Mitocondrias/metabolismo , Proopiomelanocortina/metabolismo , Metabolismo Energético/fisiología
11.
Am J Physiol Cell Physiol ; 325(1): C141-C154, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37273237

RESUMEN

The regulation of plasma glucose levels is a complex and multifactorial process involving a network of receptors and signaling pathways across numerous organs that act in concert to ensure homeostasis. However, much about the mechanisms and pathways by which the brain regulates glycemic homeostasis remains poorly understood. Understanding the precise mechanisms and circuits employed by the central nervous system to control glucose is critical to resolving the diabetes epidemic. The hypothalamus, a key integrative center within the central nervous system, has recently emerged as a critical site in the regulation of glucose homeostasis. Here, we review the current understanding of the role of the hypothalamus in regulating glucose homeostasis, with an emphasis on the paraventricular nucleus, the arcuate nucleus, the ventromedial hypothalamus, and lateral hypothalamus. In particular, we highlight the emerging role of the brain renin-angiotensin system in the hypothalamus in regulating energy expenditure and metabolic rate, as well as its potential importance in the regulation of glucose homeostasis.


Asunto(s)
Hipotálamo , Sistema Renina-Angiotensina , Encéfalo/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Homeostasis/fisiología , Hipotálamo/metabolismo , Humanos , Animales
12.
Cell Rep ; 42(6): 112627, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339627

RESUMEN

Inflammation and thermogenesis in white adipose tissue (WAT) at different sites influence the overall effects of obesity on metabolic health. In mice fed a high-fat diet (HFD), inflammatory responses are less pronounced in inguinal WAT (ingWAT) than in epididymal WAT (epiWAT). Here we show that ablation and activation of steroidogenic factor 1 (SF1)-expressing neurons in the ventromedial hypothalamus (VMH) oppositely affect the expression of inflammation-related genes and the formation of crown-like structures by infiltrating macrophages in ingWAT, but not in epiWAT, of HFD-fed mice, with these effects being mediated by sympathetic nerves innervating ingWAT. In contrast, SF1 neurons of the VMH preferentially regulated the expression of thermogenesis-related genes in interscapular brown adipose tissue (BAT) of HFD-fed mice. These results suggest that SF1 neurons of the VMH differentially regulate inflammatory responses and thermogenesis among various adipose tissue depots and restrain inflammation associated with diet-induced obesity specifically in ingWAT.


Asunto(s)
Dieta Alta en Grasa , Obesidad , Factor Esteroidogénico 1 , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Obesidad/metabolismo , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Factor Esteroidogénico 1/farmacología , Termogénesis
13.
Am J Physiol Endocrinol Metab ; 324(6): E569-E576, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37166265

RESUMEN

Classically, the regulation of energy balance has been based on central and peripheral mechanisms sensing energy, nutrients, metabolites, and hormonal cues. Several cellular mechanisms at central level, such as hypothalamic AMP-activated protein kinase (AMPK), integrate this information to elicit counterregulatory responses that control feeding, energy expenditure, and glucose homeostasis, among other processes. Recent data have added more complexity to the homeostatic regulation of metabolism by introducing, for example, the key role of "traditional" senses and sensorial information in this complicated network. In this regard, current evidence is showing that olfaction plays a key and bidirectional role in energy homeostasis. Although nutritional status dynamically and profoundly impacts olfactory sensitivity, the sense of smell is involved in food appreciation and selection, as well as in brown adipose tissue (BAT) thermogenesis and substrate utilization, with some newly described actors, such as olfactomedin 2 (OLFM2), likely playing a major role. Thus, olfactory inputs are contributing to the regulation of both sides of the energy balance equation, namely, feeding and energy expenditure (EE), as well as whole body metabolism. Here, we will review the current knowledge and advances about the role of olfaction in the regulation of energy homeostasis.


Asunto(s)
Obesidad , Olfato , Humanos , Obesidad/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Termogénesis
14.
Poult Sci ; 102(5): 102615, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36989854

RESUMEN

Energy and P utilization in faba beans and peas were evaluated in 3 broiler chicken experiments. In Exp. 1, 240 birds were allotted to 5 diets in a randomized complete block design with BW as a blocking factor on d 18 post hatching to determine the regression-derived energy utilization of faba beans (FB) and field peas (FP). In each of the respective Exp. 2 and 3, regression-derived P utilization in FB and FP were determined with 162 birds assigned to each of 3 diets in a randomized complete block design with BW as a blocking factor on d 19 post hatching. There were 8 replicate cages with 6 birds per cage in Exp. 1, and 6 replicate cages with 9 birds per cage in Exp. 2 and 3. The test ingredients were added to a corn-soybean meal-based diet at 15% or 30% in Exp. 1, whereas FB was included at 21%, 42%, or 63% and FP at 16%, 32%, or 48% in Exp. 2 and 3, respectively. In Exp. 1, the apparent ileal digestibility (AID) of gross energy (GE) and the ileal digestible energy (IDE) in the diets decreased linearly (P < 0.01). There was a quadratic response or a linear decrease (P < 0.05) with increasing concentrations of FB or FP, respectively, on the apparent total tract utilization (ATTU) of GE, metabolizable energy (ME), and nitrogen-corrected ME (MEn). The respective IDE, ME, and MEn determined were 2,541, 2,628, and 2,394 kcal/kg DM in FB and 2,254, 2,540, and 2,331 kcal/kg DM in FP. In Exp. 2 and 3, the ileal digestible and retainable P intake were linearly increased (P < 0.01). The estimated true ileal digestibility and true total tract utilization of P in FB were 66.5% and 66.7%, respectively. The respective corresponding values for FP were 73.4% and 73.8%. In conclusion, the information on utilization of energy and P in FB and FP provided could enhance proper diet formulation when using these ingredients.


Asunto(s)
Pollos , Digestión , Animales , Pollos/fisiología , Digestión/fisiología , Metabolismo Energético/fisiología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Íleon/fisiología , Zea mays , Fósforo/metabolismo
15.
J Neuroendocrinol ; 35(9): e13234, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36735894

RESUMEN

Tackling the growing incidence and prevalence of obesity urgently requires uncovering new molecular pathways with therapeutic potential. The brain, and in particular the hypothalamus, is a major integrator of metabolic signals from peripheral tissues that regulate functions such as feeding behavior and energy expenditure. In obesity, hypothalamic capacity to sense nutritional status and regulate these functions is altered. An emerging line of research is that hypothalamic lipid metabolism plays a critical role in regulating energy balance. Here, we focus on the carnitine palmitoyltransferase 1 (CPT1) enzyme family responsible for long-chain fatty acid metabolism. The evidence suggests that two of its isoforms expressed in the brain, CPT1A and CPT1C, play a crucial role in hypothalamic lipid metabolism, and their promise as targets in food intake and bodyweight management is currently being intensively investigated. In this review we describe and discuss the metabolic actions and potential up- and downstream effectors of hypothalamic CPT1 isoforms, and posit the need to develop innovative nanomedicine platforms for selective targeting of CPT1 and related nutrient sensors in specific brain areas as potential next-generation therapy to treat obesity.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Metabolismo Energético , Humanos , Carnitina O-Palmitoiltransferasa/metabolismo , Metabolismo Energético/fisiología , Obesidad/metabolismo , Isoformas de Proteínas/metabolismo , Hipotálamo/metabolismo
16.
Physiol Behav ; 263: 114108, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36740135

RESUMEN

Reciprocal communication between neurons and glia is essential for normal brain functioning and adequate physiological functions, including energy balance. In vertebrates, the homeostatic process that adjusts food intake and energy expenditure in line with physiological requirements is tightly controlled by numerous neural cell types located within the hypothalamus and the brainstem and organized in complex networks. Within these neural networks, peculiar ependymoglial cells called tanycytes are nowadays recognized as multifunctional players in the physiological mechanisms of appetite control, partly by modulating orexigenic and anorexigenic neurons. Here, we review recent advances in tanycytes' impact on hypothalamic neuronal activity, emphasizing on arcuate neurons.


Asunto(s)
Células Ependimogliales , Hipotálamo , Animales , Células Ependimogliales/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Neuroglía , Encéfalo , Metabolismo Energético/fisiología
17.
J Neurochem ; 165(4): 467-486, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36648204

RESUMEN

The discovery of leptin in 1994 was an "eureka moment" in the field of neurometabolism that provided new opportunities to better understand the central control of energy balance and glucose metabolism. Rapidly, a prevalent model in the field emerged that pro-opiomelanocortin (POMC) neurons were key in promoting leptin's anorexigenic effects and that the arcuate nucleus of the hypothalamus (ARC) was a key region for the regulation of energy homeostasis. While this model inspired many important discoveries, a growing body of literature indicates that this model is now outdated. In this review, we re-evaluate the hypothalamic leptin-melanocortin model in light of recent advances that directly tackle previous assumptions, with a particular focus on the ARC. We discuss how segregated and heterogeneous these neurons are, and examine how the development of modern approaches allowing spatiotemporal, intersectional, and chemogenetic manipulations of melanocortin neurons has allowed a better definition of the complexity of the leptin-melanocortin system. We review the importance of leptin in regulating glucose homeostasis, but not food intake, through direct actions on ARC POMC neurons. We further highlight how non-POMC, GABAergic neurons mediate leptin's direct effects on energy balance and influence POMC neurons.


Asunto(s)
Leptina , Melanocortinas , Melanocortinas/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo , Metabolismo Energético/fisiología
18.
Am J Phys Med Rehabil ; 102(6): 489-497, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228281

RESUMEN

OBJECTIVE: The aim of this study was to evaluate whether using surface neuromuscular electrical stimulation (NMES) for paralyzed lower-limb muscles results in an increase in energy expenditure and whether the number of activated muscles and duty cycle affect the potential increase. DESIGN: This was a cross-sectional study. RESULTS: Energy expenditure during all NMES protocols was significantly higher than the condition without NMES (1.2 ± 0.2 kcal/min), with the highest increase (+51%; +0.7 kcal/min, 95% confidence interval, 0.3-1.2) for the protocol with more muscles activated and the duty cycle with a shorter rest period. A significant decrease in muscle contraction size during NMES was found with a longer stimulation time, more muscles activated, or the duty cycle with a shorter rest period. CONCLUSION: Using NMES for paralyzed lower-limb muscles can significantly increase energy expenditure compared with sitting without NMES, with the highest increase for the protocol with more muscles activated and the duty cycle with a shorter rest period. Muscle fatigue occurred significantly with the more intense NMES protocols, which might cause a lower energy expenditure in a longer protocol. Future studies should further optimize the NMES parameters and investigate the long-term effects of NMES on weight management in people with SCI.


Asunto(s)
Terapia por Estimulación Eléctrica , Traumatismos de la Médula Espinal , Humanos , Estudios Transversales , Traumatismos de la Médula Espinal/complicaciones , Músculos , Terapia por Estimulación Eléctrica/métodos , Estimulación Eléctrica/métodos , Metabolismo Energético/fisiología , Músculo Esquelético/fisiología
19.
Cell Rep Med ; 3(11): 100810, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36384093

RESUMEN

Glucagon analogs show promise as components of next-generation, multi-target, anti-obesity therapeutics. The biology of chronic glucagon treatment, in particular, its ability to induce energy expenditure and weight loss, remains poorly understood. Using a long-acting glucagon analog, G108, we demonstrate that glucagon-mediated body weight loss is intrinsically linked to the hypoaminoacidemia associated with its known amino acid catabolic action. Mechanistic studies reveal an energy-consuming response to low plasma amino acids in G108-treated mice, prevented by dietary amino acid supplementation and mimicked by a rationally designed low amino acid diet. Therefore, low plasma amino acids are a pre-requisite for G108-mediated energy expenditure and weight loss. However, preventing hypoaminoacidemia with additional dietary protein does not affect the ability of G108 to improve glycemia or hepatic steatosis in obese mice. These studies provide a mechanism for glucagon-mediated weight loss and confirm the hepatic glucagon receptor as an attractive molecular target for metabolic disease therapeutics.


Asunto(s)
Glucagón , Pérdida de Peso , Ratones , Animales , Glucagón/metabolismo , Metabolismo Energético/fisiología , Receptores de Glucagón/metabolismo , Ratones Obesos , Aminoácidos/farmacología
20.
Cell Metab ; 34(10): 1532-1547.e6, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198294

RESUMEN

The hypothalamus is key in the control of energy balance. However, strategies targeting hypothalamic neurons have failed to provide viable options to treat most metabolic diseases. Conversely, the role of astrocytes in systemic metabolic control has remained largely unexplored. Here, we show that obesity promotes anatomically restricted remodeling of hypothalamic astrocyte activity. In the paraventricular nucleus (PVN) of the hypothalamus, chemogenetic manipulation of astrocytes results in bidirectional control of neighboring neuron activity, autonomic outflow, glucose metabolism, and energy balance. This process recruits a mechanism involving the astrocytic control of ambient glutamate levels, which becomes defective in obesity. Positive or negative chemogenetic manipulation of PVN astrocyte Ca2+ signals, respectively, worsens or improves metabolic status of diet-induced obese mice. Collectively, these findings highlight a yet unappreciated role for astrocytes in the direct control of systemic metabolism and suggest potential targets for anti-obesity strategy.


Asunto(s)
Astrocitos , Hipotálamo , Animales , Astrocitos/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Hipotálamo/metabolismo , Ratones , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA