Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(5): 125, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647720

RESUMEN

KEY MESSAGE: The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metabolómica , Pinellia , Reguladores del Crecimiento de las Plantas , Hojas de la Planta , Transcriptoma , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Pinellia/genética , Pinellia/metabolismo , Pinellia/fisiología , Pinellia/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma/genética , Senescencia de la Planta/genética , Perfilación de la Expresión Génica , Azúcares/metabolismo , Metaboloma/genética , Redes Reguladoras de Genes , Metabolismo de los Hidratos de Carbono/genética
2.
Plant Mol Biol ; 114(1): 10, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319430

RESUMEN

Quinoa seeds are gluten- and cholesterol-free, contain all amino acids required by the human body, have a high protein content, provide endocrine regulation, protein supplementation, and cardiovascular protection effects. However, metabolite accumulation and transcriptional regulatory networks in quinoa seed development are not well understood. Four key stages of seed development in Dianli-3260 and Dianli-557 were thus analyzed and 849 metabolites were identified, among which sugars, amino acids, and lipids were key for developmental processes, and their accumulation showed a gradual decrease. Transcriptome analysis identified 40,345 genes, of which 20,917 were differential between the M and F phases, including 8279 and 12,638 up- and down-regulated genes, respectively. Grain development processes were mainly enriched in galactose metabolism, pentose and glucuronate interconversions, the biosynthesis of amino acids, and carbon metabolism pathways, in which raffinose, phosphoenolpyruvate, series and other metabolites are significantly enriched, gene-LOC110689372, Gene-LOC110710556 and gene-LOC110714584 are significantly expressed, and these metabolites and genes play an important role in carbohydrate metabolism, lipid and Amino acid synthesis of quinoa. This study provides a theoretical basis to expand our understanding of the molecular and metabolic development of quinoa grains.


Asunto(s)
Chenopodium quinoa , Transcriptoma , Humanos , Chenopodium quinoa/genética , Metaboloma/genética , Semillas/genética , Aminoácidos
3.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834288

RESUMEN

Low phosphorus (LP) stress leads to a significant reduction in wheat yield, primarily in the reduction of biomass, the number of tillers and spike grains, the delay in heading and flowering, and the inhibition of starch synthesis and grouting. However, the differences in regulatory pathway responses to low phosphorus stress among different wheat genotypes are still largely unknown. In this study, metabolome and transcriptome analyses of G28 (LP-tolerant) and L143 (LP-sensitive) wheat varieties after 72 h of normal phosphorus (CK) and LP stress were performed. A total of 181 and 163 differentially accumulated metabolites (DAMs) were detected for G28CK vs. G28LP and L143CK vs. L143LP, respectively. Notably, the expression of pilocarpine (C07474) in G28CK vs. G28LP was significantly downregulated 4.77-fold, while the expression of neochlorogenic acid (C17147) in L143CK vs. L143LP was significantly upregulated 2.34-fold. A total of 4023 differentially expressed genes (DEGs) were acquired between G28 and L143, of which 1120 DEGs were considered as the core DEGs of LP tolerance of wheat after LP treatment. The integration of metabolomics and transcriptomic data further revealed that the LP tolerance of wheat was closely related to 15 metabolites and 18 key genes in the sugar and amino acid metabolism pathway. The oxidative phosphorylation pathway was enriched to four ATPases, two cytochrome c reductase genes, and fumaric acid under LP treatment. Moreover, PHT1;1, TFs (ARFA, WRKY40, MYB4, MYB85), and IAA20 genes were related to the Pi starvation stress of wheat roots. Therefore, the differences in LP tolerance of different wheat varieties were related to energy metabolism, amino acid metabolism, phytohormones, and PHT proteins, and precisely regulated by the levels of various molecular pathways to adapt to Pi starvation stress. Taken together, this study may help to reveal the complex regulatory process of wheat adaptation to Pi starvation and provide new genetic clues for further study on improving plant Pi utilization efficiency.


Asunto(s)
Plantones , Transcriptoma , Plantones/genética , Plantones/metabolismo , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Metaboloma/genética , Fósforo/metabolismo , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant Biotechnol J ; 21(1): 150-164, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36148785

RESUMEN

Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual-purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome-wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3-MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP-glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large-scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat.


Asunto(s)
Fagopyrum , Humanos , Fagopyrum/genética , Fagopyrum/metabolismo , Filogenia , Estudio de Asociación del Genoma Completo , Domesticación , Proteínas de Plantas/metabolismo , Semillas/genética , Metaboloma/genética , Regulación de la Expresión Génica de las Plantas/genética
5.
Nature ; 610(7930): 199-204, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36071162

RESUMEN

Selenium is an essential micronutrient in diverse organisms. Two routes are known for its insertion into proteins and nucleic acids, via selenocysteine and 2-selenouridine, respectively1. However, despite its importance, pathways for specific incorporation of selenium into small molecules have remained elusive. Here we use a genome-mining strategy in various microorganisms to uncover a widespread three-gene cluster that encodes a dedicated pathway for producing selenoneine, the selenium analogue of the multifunctional molecule ergothioneine2,3. We elucidate the reactions of all three proteins and uncover two novel selenium-carbon bond-forming enzymes and the biosynthetic pathway for production of a selenosugar, which is an unexpected intermediate en route to the final product. Our findings expand the scope of biological selenium utilization, suggest that the selenometabolome is more diverse than previously thought, and set the stage for the discovery of other selenium-containing natural products.


Asunto(s)
Vías Biosintéticas , Genes Microbianos , Histidina/análogos & derivados , Compuestos de Organoselenio , Selenio , Productos Biológicos/química , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Carbono/metabolismo , Enzimas , Ergotioneína , Genes Microbianos/genética , Histidina/biosíntesis , Metaboloma/genética , Micronutrientes/biosíntesis , Familia de Multigenes/genética , Proteínas , Selenio/metabolismo
6.
Mol Genet Genomics ; 297(4): 1081-1100, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35616707

RESUMEN

Eucalyptus urophylla is an economically important tree species that widely planted in tropical and sub-tropical areas around the world, which suffers significant losses due to Ralstonia solanacearum. However, little is known about the molecular mechanism of pathogen-response of Eucalyptus. We collected the vascular tissues of a E. urophylla clone infected by R. solanacearum in the laboratory, and combined transcriptome and metabolome analysis to investigate the defense responses of Eucalyptus. A total of 11 flavonoids that differentially accumulated at the first stage or a later stage after infection. The phenylpropanoid of p-coumaraldehyde, the two alkaloids trigonelline and DL-ephedrine, two types of traditional Chinese medicine with patchouli alcohol and 3-dihydrocadambine, and the amino acid phenylalanine were differentially accumulated after infection, which could be biomarkers indicating a response to R. solanacearum. Differentially expressed genes involved in plant hormone signal transduction, phenylpropanoids, flavonoids, mitogen-activated protein kinase (MAPK) signaling, and amino acid metabolism were activated at the first stage of infection or a later stage, indicating that they may participate in the defense against infection. This study is expected to deliver several insights into the molecular mechanism in response to pathogens in E. urophylla, and the findings have far-reaching implications in the control of E. urophylla pathogens.


Asunto(s)
Eucalyptus , Ralstonia solanacearum , Aminoácidos/genética , Células Clonales/metabolismo , Eucalyptus/genética , Flavonoides/metabolismo , Metaboloma/genética , Enfermedades de las Plantas/genética , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Transcriptoma/genética
7.
BMC Plant Biol ; 22(1): 132, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35317751

RESUMEN

BACKGROUND: Syringa pinnatifolia Hemsl. is a shrub belonging to the Oleaceae family. The peeled woody stems and roots of S. pinnatifolia are used in Chinese traditional medicine. This plant has been used for centuries, and modern pharmacological research has revealed its medicinal value. However, the wild populations of S. pinnatifolia have been decreasing, and it has been listed as an endangered plant in China. To elucidate the molecular mechanism leading to the synthesis of the major components of S. pinnatifolia for its further development and sustainable use, this study compared peeled stems and twigs at the metabolic and molecular levels. RESULTS: Peeled stems with the purple substance visible (SSP) and peeled twigs without the purple substance (TSP) were compared at different levels. Microscopic observation showed resin-like fillers in SSP and wood fiber cell walls approximately 1.0 µm thicker than those in TSP (wood fiber cell thickness approximately 2.7 µm). In addition, 104 volatile organic compounds and 870 non-volatile metabolites were detected in the non-targeted and widely-targeted metabolome analyses, respectively. Among the 76 differentially accumulated metabolites (DAMs) detected, 62 were up-accumulated in SSP. Most of these DAMs were terpenes, of which 90% were identified as sesquiterpenes in the volatile organic compound analysis. In the analysis of the non-volatile metabolites, 21 differentially accumulated lignans were identified, of which 18, including five subtypes, were accumulated in SSP. RNA sequencing revealed 4,421 upregulated differentially expressed genes (DEGs) and 5,522 downregulated DEGs in SSP compared with TSP, as well as 33,452 genes that were not differentially expressed. Analysis of the DEGs suggested that sesquiterpenes and lignans were mostly biosynthesized via the mevalonate and phenylpropanoid pathways, respectively. Additionally, in SSP, the enriched Gene Ontology terms included response to biotic stimulus and defense response, while the enriched Kyoto Encyclopedia of Genes and Genomes pathways included plant-pathogen interaction and many other pathways related to plant immunity. CONCLUSIONS: This study provides metabolome and transcriptome information for S. pinnatifolia, suggesting that biotic stimuli, including pathogens, are potential and valuable approaches to promoting the biosynthesis of the metabolites linked to the medicinal properties of this plant.


Asunto(s)
Lignanos , Sesquiterpenos , Syringa , Perfilación de la Expresión Génica , Metaboloma/genética , Inmunidad de la Planta , Syringa/genética
8.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34830002

RESUMEN

Lily (Lilium spp.) is a widely cultivated horticultural crop that has high ornamental and commercial value but also the serious problem of pollen pollution. However, mechanisms of anther dehiscence in lily remain largely unknown. In this study, the morphological characteristics of the stomium zone (SZ) from different developmental stages of 'Siberia' lily anthers were investigated. In addition, transcriptomic and metabolomic data were analyzed to identify the differentially expressed genes (DEGs) and secondary metabolites involved in stomium degeneration. According to morphological observations, SZ lysis occurred when flower buds were 6-8 cm in length and was completed in 9 cm. Transcriptomic analysis identified the genes involved in SZ degeneration, including those associated with hormone signal transduction, cell structure, reactive oxygen species (ROS), and transcription factors. A weighted co-expression network showed strong correlations between transcription factors. In addition, TUNEL (TdT-mediated dUTP nick-end labeling) assays showed that programmed cell death was important during anther SZ degeneration. Jasmonates might also have key roles in anther dehiscence by affecting the expression of the genes involved in pectin lysis, water transport, and cysteine protease. Collectively, the results of this study improve our understanding of anther dehiscence in lily and provide a data platform from which the molecular mechanisms of SZ degeneration can be revealed.


Asunto(s)
Lilium/genética , Metaboloma/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Lilium/crecimiento & desarrollo , Lilium/metabolismo , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Factores de Transcripción/genética
9.
Sci Rep ; 11(1): 22414, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789813

RESUMEN

In pasture-based systems, there are nutritional and climatic challenges exacerbated across lactation; thus, dairy cows require an enhanced adaptive capacity compared with cows in confined systems. We aimed to evaluate the effect of lactation stage (21 vs. 180 days in milk, DIM) and Holstein genetic strain (North American Holstein, NAH, n = 8; New Zealand Holstein, NZH, n = 8) on metabolic adaptations of grazing dairy cows through plasma metabolomic profiling and its association with classical metabolites. Although 67 metabolites were affected (FDR < 0.05) by DIM, no metabolite was observed to differ between genetic strains while only alanine was affected (FDR = 0.02) by the interaction between genetic strain and DIM. However, complementary tools for time-series analysis (ASCA analysis, MEBA ranking) indicated that alanine and the branched-chain amino acids (BCAA) differed between genetic strains in a lactation-stage dependent manner. Indeed, NZH cows had lower (P-Tukey < 0.05) plasma concentrations of leucine, isoleucine and valine than NAH cows at 21 DIM, probably signaling for greater insulin sensitivity. Metabolic pathway analysis also revealed that, independently of genetic strains, AA metabolism might be structurally involved in homeorhetic changes as 40% (19/46) of metabolic pathways differentially expressed (FDR < 0.05) between 21 and 180 DIM belonged to AA metabolism.


Asunto(s)
Aminoácidos de Cadena Ramificada/sangre , Bovinos/sangre , Bovinos/genética , Lactancia/sangre , Leche/química , Ácido 3-Hidroxibutírico/sangre , Alanina/sangre , Animales , Glucemia/metabolismo , Dieta/veterinaria , Ácidos Grasos no Esterificados/sangre , Femenino , Insulina/sangre , Metaboloma/genética , Metabolómica/métodos , Urea/sangre
10.
BMC Plant Biol ; 21(1): 315, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215189

RESUMEN

BACKGROUND: Plant-produced specialised metabolites are a powerful part of a plant's first line of defence against herbivorous insects, bacteria and fungi. Wild ancestors of present-day cultivated tomato produce a plethora of acylsugars in their type-I/IV trichomes and volatiles in their type-VI trichomes that have a potential role in plant resistance against insects. However, metabolic profiles are often complex mixtures making identification of the functionally interesting metabolites challenging. Here, we aimed to identify specialised metabolites from a wide range of wild tomato genotypes that could explain resistance to vector insects whitefly (Bemisia tabaci) and Western flower thrips (Frankliniella occidentalis). We evaluated plant resistance, determined trichome density and obtained metabolite profiles of the glandular trichomes by LC-MS (acylsugars) and GC-MS (volatiles). Using a customised Random Forest learning algorithm, we determined the contribution of specific specialised metabolites to the resistance phenotypes observed. RESULTS: The selected wild tomato accessions showed different levels of resistance to both whiteflies and thrips. Accessions resistant to one insect can be susceptible to another. Glandular trichome density is not necessarily a good predictor for plant resistance although the density of type-I/IV trichomes, related to the production of acylsugars, appears to correlate with whitefly resistance. For type VI-trichomes, however, it seems resistance is determined by the specific content of the glands. There is a strong qualitative and quantitative variation in the metabolite profiles between different accessions, even when they are from the same species. Out of 76 acylsugars found, the random forest algorithm linked two acylsugars (S3:15 and S3:21) to whitefly resistance, but none to thrips resistance. Out of 86 volatiles detected, the sesquiterpene α-humulene was linked to whitefly susceptible accessions instead. The algorithm did not link any specific metabolite to resistance against thrips, but monoterpenes α-phellandrene, α-terpinene and ß-phellandrene/D-limonene were significantly associated with susceptible tomato accessions. CONCLUSIONS: Whiteflies and thrips are distinctly targeted by certain specialised metabolites found in wild tomatoes. The machine learning approach presented helped to identify features with efficacy toward the insect species studied. These acylsugar metabolites can be targets for breeding efforts towards the selection of insect-resistant cultivars.


Asunto(s)
Resistencia a la Enfermedad/genética , Variación Genética , Hemípteros/fisiología , Metaboloma/genética , Solanum/genética , Thysanoptera/fisiología , Tricomas/genética , Tricomas/metabolismo , Algoritmos , Animales , Ecotipo , Genotipo , Fenotipo , Compuestos Orgánicos Volátiles/análisis
11.
PLoS One ; 16(5): e0251390, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34038434

RESUMEN

Lonicera macranthoides Hand.-Mazz (L. macranthoides) is a medicinal herb that is widely distributed in South China. The developmental stage and corolla dehiscence of the flower are the important factors affecting the quality of medicinal ingredients. However, neither the regulatory mechanism controlling chlorogenic acids biosynthesis in L. macranthoides nor the molecular basis of effect of corolla dehiscence on the quality of medicinal materials is fully understood. In this study, metabolomics and transcriptomics were used to analyze the metabolic and transcriptional differences of two different cultivars closed bud type (Bt), and flowering type (Ft), as well as the effect of jasmonic acid methyl ester (MeJA) on chlorogenic acids (CGAs) biosynthesis. In total, large number of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were filtered among three lines of samples. Gene metabolite correlation analyses revealed a 'core set' of 30 genes and 54 genes that were strongly correlated with CGAs biosynthesis and regulating the flowering, respectively. Quantitative real-time polymerase chain reaction results proved the alterations in the expression levels of genes encoding the pathways involved in CGAs biosynthesis. The ion abundances of CGAs were most significantly increased, while some of the CGAs derived and Caffeoyl-CoA-derived substances showed the most largely reduced abundances in the closed bud type (Bt) compared to the flowering type (Ft). MeJA may leads to the activation of downstream genes in CGAs biosynthesis pathway. Overall, there were significant differences in the transcriptional and metabolic levels of CGAs biosynthesis pathway in flower buds of different flowering cultivars. The redirection of metabolic flux may contribute to increased accumulation of CGAs. However, whether MeJA and flowering have direct effects on the accumulation of CGAs needs further studied. These researches effectively expanded the functional genomic library and provide new insights into CGAs biosynthesis in L. macranthoides.


Asunto(s)
Vías Biosintéticas/genética , Ácido Clorogénico/metabolismo , Lonicera/genética , Metaboloma/genética , Plantas Medicinales/genética , Transcriptoma/genética , Flores/genética , Perfilación de la Expresión Génica/métodos , Metabolómica/métodos
12.
Mol Genet Genomics ; 296(4): 953-970, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34009475

RESUMEN

Flavonoids belong to polyphenolic compounds, which are widely distributed in plants and have rich functions. Euryale ferox Salisb is an important medicinal and edible homologous plant, and flavonoids are its main functional substances. However, the biosynthesis mechanism of flavonoids in E. ferox is still poorly understood. To explore the dynamic changes of flavonoid biosynthesis during the development of E. ferox seeds, the targeted flavonoid metabolome was determined. A total of 129 kinds of flavonoid metabolites were characterized in the seeds of E. ferox, including 11 flavanones, 8 dihydroflavanols, 16 flavanols, 29 flavones, 3 isoflavones, 12 anthocyanins, 29 flavonols, 6 flavonoid carbonosides, 3 chalcones and 13 proanthocyanidins. The relative content of flavonoid metabolites accumulated continuously during the development of E. ferox seeds, and reached the highest at T30. In transcriptome, the expression of key genes in the flavonoid pathway, such as PAL, CHS, F3H, FLS, ANS, was highest in T30, which was consistent with the trend of metabolites. Six candidate transcription factors (R2R3MYBs and bHLHs) may affect the biosynthesis of flavonoids by regulating the expression of structural genes. Furthermore, transcriptome analysis and exogenous ABA and SA treatment demonstrated that ABA (PYR1, PP2Cs, SnRK2s) and SA (NPR1) are involved in the positive regulation of flavonoid biosynthesis. This study clarified the differential changes of flavonoid metabolites during the development of E. ferox seeds, confirmed that ABA and SA promote the synthesis of flavonoids, and found key candidate genes that are involved in the regulation of ABA and SA in the positive regulation of flavonoid biosynthesis.


Asunto(s)
Flavonoides/biosíntesis , Redes y Vías Metabólicas/genética , Nymphaeaceae , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaboloma/genética , Metabolómica , Nymphaeaceae/genética , Nymphaeaceae/crecimiento & desarrollo , Nymphaeaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
13.
Molecules ; 26(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920081

RESUMEN

The metabolite profiling of saffron (Crocus sativus L.) from several countries was measured by using ultra-performance liquid chromatography combined with high resolution mass spectrometry (UPLC-HR MS). Multivariate statistical analysis was employed to distinguish among the several samples of C. sativus L. from Greece, Italy, Morocco, Iran, India, Afghanistan and Kashmir. The results of this study showed that the phytochemical content in the samples of C. sativus L. were obviously diverse in the different countries of origin. The metabolomics approach was deemed to be the most suitable in order to evaluate the enormous array of putative metabolites among the saffron samples studied, and was able to provide a comparative phytochemical screening of these samples. Several markers have been identified that aided the differentiation of a group from its counterparts. This can be important for the selection of the appropriate saffron sample, in view of its health-promoting effect which occurs through the modulation of various biological and physiological processes.


Asunto(s)
Crocus/metabolismo , Metaboloma/genética , Fitoquímicos/metabolismo , Extractos Vegetales/química , Biomarcadores , Crocus/química , Crocus/clasificación , Crocus/genética , Cromatografía de Gases y Espectrometría de Masas , Grecia , Humanos , India , Irán , Italia , Metabolómica/métodos , Marruecos , Fitoquímicos/química , Fitoquímicos/clasificación , Extractos Vegetales/clasificación , Extractos Vegetales/metabolismo
14.
Sci Rep ; 11(1): 3951, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597589

RESUMEN

Metabolism differs in women and men at homeostasis. Critically ill patients have profound dysregulation of homeostasis and metabolism. It is not clear if the metabolic response to critical illness differs in women compared to men. Such sex-specific differences in illness response would have consequences for personalized medicine. Our aim was to determine the sex-specific metabolomic response to early critical illness. We performed a post-hoc metabolomics study of the VITdAL-ICU trial where subjects received high dose vitamin D3 or placebo. Using mixed-effects modeling, we studied sex-specific changes in metabolites over time adjusted for age, Simplified Acute Physiology Score II, admission diagnosis, day 0 25-hydroxyvitamin D level, and 25-hydroxyvitamin D response to intervention. In women, multiple members of the sphingomyelin and lysophospholipid metabolite classes had significantly positive Bonferroni corrected associations over time compared to men. Further, multiple representatives of the acylcarnitine, androgenic steroid, bile acid, nucleotide and amino acid metabolite classes had significantly negative Bonferroni corrected associations over time compared to men. Gaussian graphical model analyses revealed sex-specific functional modules. Our findings show that robust and coordinated sex-specific metabolite differences exist early in critical illness.


Asunto(s)
Metabolismo Basal/fisiología , Metaboloma/genética , Metaboloma/fisiología , Anciano , Anciano de 80 o más Años , Colecalciferol/administración & dosificación , Enfermedad Crítica , Femenino , Humanos , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Caracteres Sexuales , Factores Sexuales , Deficiencia de Vitamina D/tratamiento farmacológico
15.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003500

RESUMEN

Water limitation represents the main environmental constraint affecting crop yield worldwide. Photosynthesis is a primary drought target, resulting in over-reduction of the photosynthetic electron transport chain and increased production of reactive oxygen species in plastids. Manipulation of chloroplast electron distribution by introducing alternative electron transport sinks has been shown to increase plant tolerance to multiple environmental challenges including hydric stress, suggesting that a similar strategy could be used to improve drought tolerance in crops. We show herein that the expression of the cyanobacterial electron shuttle flavodoxin in potato chloroplasts protected photosynthetic activities even at a pre-symptomatic stage of drought. Transcriptional and metabolic profiling revealed an attenuated response to the adverse condition in flavodoxin-expressing plants, correlating with their increased stress tolerance. Interestingly, 5-6% of leaf-expressed genes were affected by flavodoxin in the absence of drought, representing pathways modulated by chloroplast redox status during normal growth. About 300 of these genes potentially contribute to stress acclimation as their modulation by flavodoxin proceeds in the same direction as their drought response in wild-type plants. Tuber yield losses under chronic water limitation were mitigated in flavodoxin-expressing plants, indicating that the flavoprotein has the potential to improve major agronomic traits in potato.


Asunto(s)
Cloroplastos/genética , Metaboloma/genética , Solanum tuberosum/genética , Estrés Fisiológico/genética , Cloroplastos/metabolismo , Productos Agrícolas/genética , Sequías , Transporte de Electrón/genética , Regulación de la Expresión Génica de las Plantas/genética , Oxidación-Reducción , Fotosíntesis/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Plastidios/genética , Plastidios/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Nicotiana/genética , Transcriptoma/genética
16.
Nat Genet ; 52(10): 1111-1121, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32989321

RESUMEN

Wild tomato species represent a rich gene pool for numerous desirable traits lost during domestication. Here, we exploited an introgression population representing wild desert-adapted species and a domesticated cultivar to establish the genetic basis of gene expression and chemical variation accompanying the transfer of wild-species-associated fruit traits. Transcriptome and metabolome analysis of 580 lines coupled to pathogen sensitivity assays resulted in the identification of genomic loci associated with levels of hundreds of transcripts and metabolites. These associations occurred in hotspots representing coordinated perturbation of metabolic pathways and ripening-related processes. Here, we identify components of the Solanum alkaloid pathway, as well as genes and metabolites involved in pathogen defense and linking fungal resistance with changes in the fruit ripening regulatory network. Our results outline a framework for understanding metabolism and pathogen resistance during tomato fruit ripening and provide insights into key fruit quality traits.


Asunto(s)
Resistencia a la Enfermedad/genética , Metaboloma/genética , Solanum lycopersicum/genética , Transcriptoma/genética , Alcaloides/genética , Domesticación , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/parasitología , Hongos/genética , Hongos/patogenicidad , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Redes y Vías Metabólicas/genética , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Solanum/genética , Solanum/microbiología
17.
Metabolomics ; 16(8): 86, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32748036

RESUMEN

INTRODUCTION: Unroasted green coffee bean is an increasingly popular beverage and weight loss supplement that contains higher levels of chlorogenic acid derivatives and lower alkaloid levels than roasted beans. Nonetheless, how the gut microbiome metabolizes green coffee constituents has not been studied. OBJECTIVES: To identify possible biotransformation products of green coffee extract by the human gut microbiome, and the potential implications of this process on its biological effects or fate inside the body. METHODS: Molecular networking via the GNPS platform was employed for the visualization of green coffee metabolite profiles acquired using LC-tandem mass spectrometry post-incubation with an ex vivo culture of the human gut microbiome. RESULTS: 36 Metabolites were annotated including four unreported alkyl cinnamate esters in green coffee along with six novel biotransformation products. CONCLUSION: Our finding reveals new biotransformation products of cinnamate esters by the gut microbiome mediated via oxidative reactions such as dehydrogenation and hydroxylation, along with methylation, decarboxylation, and deglycosylation. These findings reveal potential interactions between the gut microbiome and green coffee constituents, and paves the way towards studying the effects of these interactions on both microbiome and the human host.


Asunto(s)
Café/metabolismo , Microbioma Gastrointestinal/fisiología , Metaboloma/fisiología , Biomarcadores/análisis , Biotransformación , Cromatografía Liquida/métodos , Cinamatos/metabolismo , Café/química , Humanos , Espectrometría de Masas/métodos , Metaboloma/genética , Metabolómica/métodos , Microbiota/fisiología , Fenoles/metabolismo , Hojas de la Planta/metabolismo
18.
Z Naturforsch C J Biosci ; 75(11-12): 451-457, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-32706756

RESUMEN

Nectaroscordum siculum ssp. bulgaricum (Janka) Stearn (Allium siculum subsp. dioscoridis (Sm.) K. Richt.) is a traditional culinary spice from South-East Europe. Studies of N. siculum have focused mainly on the botanical and taxonomic characteristics of this species and there is no data available in the scientific literature about its metabolite profile. Thus, the aim of the current study was metabolite profiling of four wild populations of N. siculum grown in Bulgaria by gas chromatography coupled to mass spectrometry (GC-MS) and subsequent principal component analysis (PCA) of the data obtained. The identified primary metabolites (carbohydrates, amino acids, organic acids and lipids) are initial compounds for the biosynthesis of different plant secondary metabolites, such as polyphenols and flavour compounds with valuable biological activities for humans. The health benefits of the phenolic acids identified in this study have been a prerequisite for the implementation of N. siculum in different food systems in order to increase their quality and biological value.


Asunto(s)
Allium/química , Carbohidratos/química , Metaboloma/genética , Extractos Vegetales/química , Allium/genética , Bulgaria , Cromatografía de Gases y Espectrometría de Masas , Humanos , Extractos Vegetales/genética , Análisis de Componente Principal
19.
Sci Rep ; 10(1): 9749, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546786

RESUMEN

Globalization facilitated the spread of invasive alien species (IAS), undermining the stability of the world's ecosystems. We investigated the metabolomic profiles of three IAS species: Chromolaena odorata (Asteraceae) Datura stramonium (Solanaceae), and Xanthium strumarium (Asteraceae), comparing metabolites of individual plants in their native habitats (USA), to their invasive counterparts growing in and around Kruger National Park (South Africa, ZA). Metabolomic samples were collected using RApid Metabolome Extraction and Storage (RAMES) technology, which immobilizes phytochemicals on glass fiber disks, reducing compound degradation, allowing long-term, storage and simplifying biochemical analysis. Metabolomic differences were analyzed using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) of samples eluted from RAMES disks. Partial Least Squares-Discriminant Analysis (PLS-DA) of metabolomes of individual plants allowed statistical separation of species, native and invasive populations of each species, and some populations on the same continent. Invasive populations of all species were more phytochemically diverse than their native counterparts, and their metabolomic profiles were statistically distinguishable from their native relatives. These data may elucidate the mechanisms of successful invasion and rapid adaptive evolution of IAS. Moreover, RAMES technology combined with PLS-DA statistical analysis may allow taxonomic identification of species and, possibly, populations within each species.


Asunto(s)
Chromolaena/metabolismo , Datura stramonium/metabolismo , Especies Introducidas/tendencias , Xanthium/metabolismo , Cromatografía Liquida/métodos , Chromolaena/genética , Datura stramonium/genética , Análisis Discriminante , Ecosistema , Metaboloma/genética , Metabolómica/métodos , Sudáfrica , Especificidad de la Especie , Espectrometría de Masas en Tándem/métodos , Xanthium/genética
20.
Lipids Health Dis ; 19(1): 143, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32563253

RESUMEN

BACKGROUND: Amaranth seed oil (ASO) and rapeseed oil (RSO) are functional foods that display antioxidant and hepatoprotective properties. These oils are also known to lower glucose and cholesterol levels. The current study compared the effects exerted by RSO and ASO on weight loss and metabolic parameters during a 3-week body mass reduction program. METHODS: Eighty-one obese subjects (BMI > 30 kg/m2), aged 25-70 years, were enrolled in a 3-week body mass reduction program based on a calorie-restricted diet and physical activity. Participants were randomly categorized into an AO group (administered 20 mL/d of ASO), a RO group (administered 20 mL/d of RSO), and a C group (control; untreated). Anthropometric and metabolic parameters were measured at baseline and endpoint. RESULTS: Significant decreases in weight, body mass index (BMI), waist circumference (WC), hip circumference (HC), fat mass (FM), lean body mass (LBM), visceral fat mass (VFM), and total body water (TBW%) were observed in all groups (P <  0.05). No significant improvements were observed in the clinical parameters of group C. Fasting insulin (Δ - 5.9, and Δ - 5.7) and homeostatic model assessment of insulin resistance (HOMA-IR) (Δ - 1.1 and Δ - 0.5) were decreased in both RO and AO groups, respectively. Fasting glucose (Δ -8.5; P = 0.034), total cholesterol (Δ -14.6; P = 0.032), non-HDL cholesterol (Δ 15.9; P = 0.010), TG/HDL ratio (Δ -0.6; P = 0.032), LDL cholesterol (Δ -12.3; P = 0.042), and triglycerides (Δ -6.5; P = 0.000) were significantly improved in the AO group, compared to the RO group. CONCLUSIONS: The 3-week body mass reduction intervention caused a significant reduction in the weight, BMI, WC, HC, FM, and VFM of all groups. Except for HOMA-IR, there were no statistical differences between the clinical parameters of all groups. However, a trend toward improved insulin levels and HDL% was noticeable in AO and RO. Therapies involving edible oils with high nutritional value, such as RSO and ASO, show potential for improving metabolic measurements during body mass reduction programs. Thus, obese patients undertaking weight reduction programs may benefit from RSO and ASO supplementation. TRIAL REGISTRATION: retrospectively registered, DRKS00017708.


Asunto(s)
Metaboloma/genética , Obesidad/dietoterapia , Aceites de Plantas/administración & dosificación , Aceite de Brassica napus/administración & dosificación , Pérdida de Peso/efectos de los fármacos , Amaranthus/química , Antropometría , Glucemia/efectos de los fármacos , Composición Corporal/efectos de los fármacos , Índice de Masa Corporal , Peso Corporal/efectos de los fármacos , Restricción Calórica/efectos adversos , Suplementos Dietéticos , Femenino , Humanos , Resistencia a la Insulina/genética , Grasa Intraabdominal/efectos de los fármacos , Masculino , Metaboloma/efectos de los fármacos , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/patología , Triglicéridos/sangre , Circunferencia de la Cintura/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA