Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2827, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565528

RESUMEN

Phosphorus (P) limitation of ecosystem processes is widespread in terrestrial habitats. While a few auxiliary metabolic genes (AMGs) in bacteriophages from aquatic habitats are reported to have the potential to enhance P-acquisition ability of their hosts, little is known about the diversity and potential ecological function of P-acquisition genes encoded by terrestrial bacteriophages. Here, we analyze 333 soil metagenomes from five terrestrial habitat types across China and identify 75 viral operational taxonomic units (vOTUs) that encode 105 P-acquisition AMGs. These AMGs span 17 distinct functional genes involved in four primary processes of microbial P-acquisition. Among them, over 60% (11/17) have not been reported previously. We experimentally verify in-vitro enzymatic activities of two pyrophosphatases and one alkaline phosphatase encoded by P-acquisition vOTUs. Thirty-six percent of the 75 P-acquisition vOTUs are detectable in a published global topsoil metagenome dataset. Further analyses reveal that, under certain circumstances, the identified P-acquisition AMGs have a greater influence on soil P availability and are more dominant in soil metatranscriptomes than their corresponding bacterial genes. Overall, our results reinforce the necessity of incorporating viral contributions into biogeochemical P cycling.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Ecosistema , Fósforo , Metagenoma/genética , Suelo
2.
PLoS One ; 19(4): e0298002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635587

RESUMEN

The impact of microbiome in animal physiology is well appreciated, but characterization of animal-microbe symbiosis in marine environments remains a growing need. This study characterizes the microbial communities associated with the moon jellyfish Aurelia coerulea, first isolated from the East Pacific Ocean and has since been utilized as an experimental system. We find that the microbiome of this Pacific Aurelia culture is dominated by two taxa, a Mollicutes and Rickettsiales. The microbiome is stable across life stages, although composition varies. Mining the host sequencing data, we assembled the bacterial metagenome-assembled genomes (MAGs). The bacterial MAGs are highly reduced, and predict a high metabolic dependence on the host. Analysis using multiple metrics suggest that both bacteria are likely new species. We therefore propose the names Ca. Mariplasma lunae (Mollicutes) and Ca. Marinirickettsia aquamalans (Rickettsiales). Finally, comparison with studies of Aurelia from other geographical populations suggests the association with Ca. Mariplasma lunae occurs in Aurelia from multiple geographical locations. The low-diversity microbiome of Aurelia provides a relatively simple system to study host-microbe interactions.


Asunto(s)
Microbiota , Escifozoos , Animales , Escifozoos/fisiología , Metagenoma , Bacterias/genética , Océano Pacífico
3.
Sci Total Environ ; 926: 171746, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521276

RESUMEN

Understanding the diversity and functions of hydrocarbon-degrading microorganisms in marine environments is crucial for both advancing knowledge of biogeochemical processes and improving bioremediation methods. In this study, we leveraged nearly 20,000 metagenome-assembled genomes (MAGs), recovered from a wide array of marine samples across the global oceans, to map the diversity of aerobic hydrocarbon-degrading microorganisms. A broad bacterial diversity was uncovered, with a notable preference for degrading aliphatic hydrocarbons over aromatic ones, primarily within Proteobacteria and Actinobacteriota. Three types of broad-spectrum hydrocarbon-degrading bacteria were identified for their ability to degrade various hydrocarbons and possession of multiple copies of hydrocarbon biodegradation genes. These bacteria demonstrate extensive metabolic versatility, aiding their survival and adaptability in diverse environmental conditions. Evidence of gene duplication and horizontal gene transfer in these microbes suggested a potential enhancement in the diversity of hydrocarbon-degrading bacteria. Positive correlations were observed between the abundances of hydrocarbon-degrading genes and environmental parameters such as temperature (-5 to 35 °C) and salinity (20 to 42 PSU). Overall, our findings offer valuable insights into marine hydrocarbon-degrading microorganisms and suggest considerations for selecting microbial strains for oil pollution remediation.


Asunto(s)
Metagenoma , Petróleo , Hidrocarburos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Océanos y Mares , Petróleo/metabolismo
4.
mSystems ; 9(3): e0118823, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38415636

RESUMEN

Members of the "Candidatus Accumulibacter" genus are widely studied as key polyphosphate-accumulating organisms (PAOs) in biological nutrient removal (BNR) facilities performing enhanced biological phosphorus removal (EBPR). This diverse lineage includes 18 "Ca. Accumulibacter" species, which have been proposed based on the phylogenetic divergence of the polyphosphate kinase 1 (ppk1) gene and genome-scale comparisons of metagenome-assembled genomes (MAGs). Phylogenetic classification based on the 16S rRNA genetic marker has been difficult to attain because most "Ca. Accumulibacter" MAGs are incomplete and often do not include the rRNA operon. Here, we investigate the "Ca. Accumulibacter" diversity in pilot-scale treatment trains performing BNR under low dissolved oxygen (DO) conditions using genome-resolved metagenomics. Using long-read sequencing, we recovered medium- and high-quality MAGs for 5 of the 18 "Ca. Accumulibacter" species, all with rRNA operons assembled, which allowed a reassessment of the 16S rRNA-based phylogeny of this genus and an analysis of phylogeny based on the 23S rRNA gene. In addition, we recovered a cluster of MAGs that based on 16S rRNA, 23S rRNA, ppk1, and genome-scale phylogenetic analyses do not belong to any of the currently recognized "Ca. Accumulibacter" species for which we propose the new species designation "Ca. Accumulibacter jenkinsii" sp. nov. Relative abundance evaluations of the genus across all pilot plant operations revealed that regardless of the operational mode, "Ca. A. necessarius" and "Ca. A. propinquus" accounted for more than 40% of the "Ca. Accumulibacter" community, whereas the newly proposed "Ca. A. jenkinsii" accounted for about 5% of the "Ca. Accumulibacter" community.IMPORTANCEOne of the main drivers of energy use and operational costs in activated sludge processes is the amount of oxygen provided to enable biological phosphorus and nitrogen removal. Wastewater treatment facilities are increasingly considering reduced aeration to decrease energy consumption, and whereas successful BNR has been demonstrated in systems with minimal aeration, an adequate understanding of the microbial communities that facilitate nutrient removal under these conditions is still lacking. In this study, we used genome-resolved metagenomics to evaluate the diversity of the "Candidatus Accumulibacter" genus in pilot-scale plants operating with minimal aeration. We identified the "Ca. Accumulibacter" species enriched under these conditions, including one novel species for which we propose "Ca. Accumulibacter jenkinsii" sp. nov. as its designation. Furthermore, the MAGs obtained for five additional "Ca. Accumulibacter" species further refine the phylogeny of the "Ca. Accumulibacter" genus and provide new insight into its diversity within unconventional biological nutrient removal systems.


Asunto(s)
Betaproteobacteria , Metagenoma , ARN Ribosómico 16S/genética , Metagenoma/genética , Filogenia , Aguas Residuales , Fósforo
5.
Appl Environ Microbiol ; 90(3): e0233523, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376235

RESUMEN

Panax ginseng, a prized medicinal herb, has faced increasingly challenging field production due to soil degradation and fungal diseases in Northeast China. Wild-simulated cultivation has prevailed because of its sustainable soil management and low disease incidence. Despite the recognized benefits of rhizosphere microorganisms in ginseng cultivation, their genomic and functional diversity remain largely unexplored. In this work, we utilized shotgun metagenomic analysis to reveal that Pseudomonadota, Actinomycetota, and Acidobacteriota were dominant in the ginseng rhizobiome and recovered 14 reliable metagenome-assembled genomes. Functional analysis indicated an enrichment of denitrification-associated genes, potentially contributing to the observed decline in soil fertility, while genes associated with aromatic carbon degradation may be linked to allelochemical degradation. Further analysis demonstrated enrichment of Actinomycetota in 9-year-old wild-simulated ginseng (WSG), suggesting the need for targeted isolation of Actinomycetota bacteria. Among these, at least three different actinomycete strains were found to play a crucial role in fungal disease resistance, with Streptomyces spp. WY144 standing out for its production of actinomycin natural products active against the pathogenic fungus Ilyonectria robusta. These findings not only enhance our understanding of the rhizobiome of WSG but also present promising avenues for combating detrimental fungal pathogens, underscoring the importance of ginseng in both medicinal and agricultural contexts.IMPORTANCEWild-simulated ginseng, growing naturally without human interference, is influenced by its soil microbiome. Using shotgun metagenomics, we analyzed the rhizospheric soil microbiome of 7- and 9-year-old wild-simulated ginseng. The study aimed to reveal its composition and functions, exploring the microbiome's key roles in ginseng growth. Enrichment analysis identified Streptomycetes in ginseng soil, with three strains inhibiting plant pathogenic fungi. Notably, one strain produced actinomycins, suppressing the ginseng pathogenic fungus Ilyonectria robusta. This research accelerates microbiome application in wild-simulated ginseng cultivation, offering insights into pathogen protection and supporting microbiome utilization in agriculture.


Asunto(s)
Hypocreales , Microbiota , Panax , Streptomyces , Humanos , Niño , Panax/microbiología , Suelo/química , Rizosfera , Metagenoma , Microbiología del Suelo
6.
Microbiome ; 12(1): 17, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303006

RESUMEN

BACKGROUND: The recent recognition of the importance of the microbiome to the host's health and well-being has yielded efforts to develop therapies that aim to shift the microbiome from a disease-associated state to a healthier one. Direct manipulation techniques of the species' assemblage are currently available, e.g., using probiotics or narrow-spectrum antibiotics to introduce or eliminate specific taxa. However, predicting the species' abundances at the new state remains a challenge, mainly due to the difficulties of deciphering the delicate underlying network of ecological interactions or constructing a predictive model for such complex ecosystems. RESULTS: Here, we propose a model-free method to predict the species' abundances at the new steady state based on their presence/absence configuration by utilizing a multi-dimensional k-nearest-neighbors (kNN) regression algorithm. By analyzing data from numeric simulations of ecological dynamics, we show that our predictions, which consider the presence/absence of all species holistically, outperform both the null model that uses the statistics of each species independently and a predictive neural network model. We analyze real metagenomic data of human-associated microbial communities and find that by relying on a small number of "neighboring" samples, i.e., samples with similar species assemblage, the kNN predicts the species abundance better than the whole-cohort average. By studying both real metagenomic and simulated data, we show that the predictability of our method is tightly related to the dissimilarity-overlap relationship of the training data. CONCLUSIONS: Our results demonstrate how model-free methods can prove useful in predicting microbial communities and may facilitate the development of microbial-based therapies. Video Abstract.


Asunto(s)
Microbiota , Humanos , Microbiota/genética , Metagenoma
7.
Chin J Nat Med ; 22(2): 100-111, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38342563

RESUMEN

Natural products derived from bacterial sources have long been pivotal in the discovery of drug leads. However, the cultivation of only about 1% of bacteria in laboratory settings has left a significant portion of biosynthetic diversity hidden within the genomes of uncultured bacteria. Advances in sequencing technologies now enable the exploration of genetic material from these metagenomes through culture-independent methods. This approach involves extracting genetic sequences from environmental DNA and applying a hybrid methodology that combines functional screening, sequence tag-based homology screening, and bioinformatic-assisted chemical synthesis. Through this process, numerous valuable natural products have been identified and synthesized from previously uncharted metagenomic territories. This paper provides an overview of the recent advancements in the utilization of culture-independent techniques for the discovery of novel biosynthetic gene clusters and bioactive small molecules within metagenomic libraries.


Asunto(s)
Productos Biológicos , Metagenoma , Bacterias/genética , Biología Computacional , Metagenómica/métodos
8.
J Pharm Biomed Anal ; 241: 115970, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277707

RESUMEN

BACKGROUND: Endometriosis is a gynecological disease that causes severe chronic pelvic pain and infertility in women. The therapeutic efficacy of the traditional herbal combination of Sparganium stoloniferum-Curcuma phaeocaulis (Sangleng-Ezhu, SL-EZ) in the treatment of endometriosis has been established. However, the precise mechanism by which this treatment exerts its effects remains elusive. METHODS: To gain further insights, UPLC-MS/MS was employed to identify the primary chemical constituents of SL-EZ in serum. Additionally, network pharmacology was utilized to analyze the active ingredients and their corresponding targets. Furthermore, the impact of SL-EZ on ectopic endometrial growth in endometrial implants was assessed using a rat model. The therapeutic mechanism of SL-EZ in rats with endometriosis was further investigated through the application of 16 S rRNA gene sequencing, metagenomic sequencing, and metabolomics. RESULTS: The primary compounds in serum were zederone, p-coumaric acid, dehydrocostus lactone, curdione, curcumol. The growth of ectopic lesions in a rat model was effectively inhibited by SL-EZ. In comparison to the control group, the endometriotic rats exhibited a decrease in α-diversity of the gut microbiota, an increase in the Firmicutes/Bacteroidetes ratio, and a reduction in the abundance of Ruminococcaceae. Following SL-EZ intervention, the potential probiotic strains Lactobacillus gasseri and Lactobacillus johnsonii were able to restore the intestinal microenvironment at the species level. The altered metabolites were significantly correlated with Verrucomicrobia, Proteobacteria, and Bacteroidetes. The metabolomic analysis demonstrated significant alterations in intestinal metabolites. And SL-EZ intervention also exerted regulatory effects on various metabolic pathways in gut microbiota, including aminoacyl-tRNA biosynthesis, monobactam biosynthesis, cyanoamino acid metabolism, glycine, serine and threonine metabolism, plant secondary metabolite biosynthesis, and amino acid biosynthesis. CONCLUSION: The identification of novel treatment formulations for endometriosis was achieved through the utilization of network pharmacology and gut microbiota analyses. Our findings revealed simultaneous alterations in the microbiota within the rat model of endometriosis. The therapeutic efficacy of SL-EZ in treating endometriosis is attributed to its ability to restore the gut microbiota and regulate metabolism. This investigation offers valuable insights into the therapeutic mechanisms of traditional Chinese medicine (TCM) for endometriosis.


Asunto(s)
Medicamentos Herbarios Chinos , Endometriosis , Humanos , Ratas , Femenino , Animales , Curcuma , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Metagenoma , Cromatografía Liquida , Endometriosis/tratamiento farmacológico , Genes de ARNr , Espectrometría de Masas en Tándem , Metabolómica
9.
Water Res ; 250: 121028, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38128304

RESUMEN

With the rapid growing availability of metagenome assembled genomes (MAGs) and associated metabolic models, the identification of metabolic potential in individual community members has become possible. However, the field still lacks an unbiassed systematic evaluation of the generated metagenomic information to uncover not only metabolic potential, but also feasibilities of these models under specific environmental conditions. In this study, we present a systematic analysis of the metabolic potential in species of "Candidatus Accumulibacter", a group of polyphosphate-accumulating organisms (PAOs). We constructed a metabolic model of the central carbon metabolism and compared the metabolic potential among available MAGs for "Ca. Accumulibacter" species. By combining Elementary Flux Modes Analysis (EFMA) with max-min driving force (MDF) optimization, we obtained all possible flux distributions of the metabolic network and calculated their individual thermodynamic feasibility. Our findings reveal significant variations in the metabolic potential among "Ca. Accumulibacter" MAGs, particularly in the presence of anaplerotic reactions. EFMA revealed 700 unique flux distributions in the complete metabolic model that enable the anaerobic uptake of acetate and its conversion into polyhydroxyalkanoates (PHAs), a well-known phenotype of "Ca. Accumulibacter". However, thermodynamic constraints narrowed down this solution space to 146 models that were stoichiometrically and thermodynamically feasible (MDF > 0 kJ/mol), of which only 8 were strongly feasible (MDF > 7 kJ/mol). Notably, several novel flux distributions for the metabolic model were identified, suggesting putative, yet unreported, functions within the PAO communities. Overall, this work provides valuable insights into the metabolic variability among "Ca. Accumulibacter" species and redefines the anaerobic metabolic potential in the context of phosphate removal. More generally, the integrated workflow presented in this paper can be applied to any metabolic model obtained from a MAG generated from microbial communities to objectively narrow the expected phenotypes from community members.


Asunto(s)
Betaproteobacteria , Metagenoma , Anaerobiosis , Fósforo/metabolismo , Betaproteobacteria/metabolismo , Redes y Vías Metabólicas , Reactores Biológicos
10.
Appl Environ Microbiol ; 89(10): e0104723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37728942

RESUMEN

Many human activities contaminate terrestrial and aquatic environments with numerous chemical pollutants that not only directly alter the environment but also affect microbial communities in ways that are potentially concerning to human health, such as selecting for the spread of antibiotic-resistance genes (ARGs) through horizontal gene transfer. In the present study, metagenomes available in the public domain from polluted (with antibiotics, with petroleum, with metal mining, or with coal-mining effluents) and unpolluted terrestrial and aquatic environments were compared to examine whether pollution has influenced the abundance and composition of ARGs and mobile elements, with specific focus on IS26 and class 1 integrons (intI1). When aggregated together, polluted environments had a greater relative abundance of ARGs than unpolluted environments and a greater relative abundance of IS26 and intI1. In general, chemical pollution, notably with petroleum, was associated with an increase in the prevalence of ARGs linked to multidrug efflux pumps. Included in the suite of efflux pumps were mexK, mexB, mexF, and mexW that are polyspecific and whose substrate ranges include multiple classes of critically important antibiotics. Also, in some instances, ß-lactam resistance (TEM181 and OXA-541) genes increased, and genes associated with rifampicin resistance (RNA polymerases subunits rpoB and rpoB2) decreased in relative abundance. This meta-analysis suggests that different types of chemical pollution can enrich populations that carry efflux pump systems associated with resistance to multiple classes of medically critical antibiotics.IMPORTANCEThe United Nations has identified chemical pollution as being one of the three greatest threats to environmental health, through which the evolution of antimicrobial resistance, a seminally important public health challenge, may be favored. While this is a very plausible outcome of continued chemical pollution, there is little evidence or research evaluating this risk. The objective of the present study was to examine existing metagenomes from chemically polluted environments and evaluate whether there is evidence that pollution increases the relative abundance of genes and mobile genetic elements that are associated with antibiotic resistance. The key finding is that for some types of pollution, particularly in environments exposed to petroleum, efflux pumps are enriched, and these efflux pumps can confer resistance to multiple classes of medically important antibiotics that are typically associated with Pseudomonas spp. or other Gram-negative bacteria. This finding makes clear the need for more investigation on the impact of chemical pollution on the environmental reservoir of ARGs and their association with mobile genetic elements that can contribute to horizontal gene transfer events.


Asunto(s)
Metagenoma , Petróleo , Humanos , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Secuencias Repetitivas Esparcidas
11.
J Hazard Mater ; 457: 131834, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37327607

RESUMEN

Microorganisms play a critical role in the biogeochemical cycling of selenium (Se) in aquatic environments, particularly in reducing the toxicity and bioavailability of selenite (Se(IV)). This study aimed to identify putative Se(IV)-reducing bacteria (SeIVRB) and investigate the genetic mechanisms underlying Se(IV) reduction in anoxic Se-rich sediment. Initial microcosm incubation confirmed that Se(IV) reduction was driven by heterotrophic microorganisms. DNA stable-isotope probing (DNA-SIP) analysis identified Pseudomonas, Geobacter, Comamonas, and Anaeromyxobacter as putative SeIVRB. High-quality metagenome-assembled genomes (MAGs) affiliated with these four putative SeIVRB were retrieved. Annotation of functional gene indicated that these MAGs contained putative Se(IV)-reducing genes such as DMSO reductase family, fumarate and sulfite reductases. Metatranscriptomic analysis of active Se(IV)-reducing cultures revealed significantly higher transcriptional levels of genes associated with DMSO reductase (serA/PHGDH), fumarate reductase (sdhCD/frdCD), and sulfite reductase (cysDIH) compared to those in cultures not amended with Se(IV), suggesting that these genes played important roles in Se(IV) reduction. The current study expands our knowledge of the genetic mechanisms involved in less-understood anaerobic Se(IV) bio-reduction. Additinally, the complementary abilities of DNA-SIP, metagenomics, and metatranscriptomics analyses are demonstrated in elucidating the microbial mechanisms of biogeochemical processes in anoxic sediment.


Asunto(s)
Metagenoma , Selenio , Selenio/metabolismo , Ácido Selenioso/metabolismo , Metagenómica , Anaerobiosis , Bacterias/metabolismo , Isótopos/metabolismo , Bacterias Anaerobias/metabolismo , ADN/química
12.
Food Res Int ; 169: 112909, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254344

RESUMEN

In this work, raw Pu-erh tea (RAPT) was employed for kombucha preparation, and the microbial composition and volatile flavor compounds of the fermented tea had been investigated during natural fermentation process. The head space-solid phase microextraction-gas chromatograph mass spectrometry (HS-SPME-GC-MS) was performed for volatiles analysis of unfermented tea and kombucha fermented for 3 days (KF-3) and 6 days (KF-6). Meanwhile, the microbial community of KF-3 and KF-6 were evaluated by metagenomic analysis. A total of 72 volatile compounds were identified and obvious changes in volatiles were observed during the fermentation process based on the results of GC-MS and principal component analysis (PCA). Metagenomic sequencing analysis demonstrated that bacterium Komagataeibacter saccharivorans and unclassified-g-komagataeibacter and yeast Saccharomyces cerevisiae and Brettanomyces bruxellensis were the most common microbes contained in the sampled kombucha communities. Furthermore, the relevance among microbial community and volatile compounds was evaluated through correlation heatmap analysis. The results suggested that the main flavor volatiles of kombucha (i.e., acids, esters and terpenes) were closely related to species of genus Komagataeibacter, Gluconacetobacter, Saccharomyces, Brettanomyces, Acetobacter, Novacetimonas and Pichia microorganisms. The obtained results would help to better understand microbial communities and volatile compounds of kombucha, which could provide useful information for enhancing the flavor quality of kombucha products.


Asunto(s)
Microbiota , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Microbiota/genética , Metagenoma , Saccharomyces cerevisiae , Té/química
13.
Funct Integr Genomics ; 23(2): 122, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37043060

RESUMEN

Bacterial and archaeal CRISPR-Cas systems provide adaptive immune protection against foreign mobile genetic elements. When viruses infect bacteria, a small portion of the viral DNA is inserted into the bacterial DNA in a specific pattern to produce segments known as CRISPR arrays. Metagenome assembled genomes (MAGs) were used in our study to identify the CRISPR sequence for determining the interacted phage. Metagenomic data from a coal mine was used to perform a computational study. From raw reads, 206151 contigs were assembled. Then contigs were clustered into 150 Metagenome assembled genomes from which 78 non-redundant MAGs were selected. Using the CHECKM standard, seven MAGs were found to have >80 completeness and <20 contaminations. Those MAGs were analyzed for the presence of CRISPR elements. Out of seven MAGs, four MAGs have the CRISPR elements and are searched against the VIROblast database. CRISPR arrays have 4, 1, 3, and 7 spacer sequences in the MAGs of Burkholderia, Acinetobacter, Oxalobacteraceae, and Burkholderia multivorans respectively. The uncultured Caudovirales phage genomic regions were present in the genomes of Burkholderia, Oxalobacteriaceae, and Burkholderia multivorans. This study follows the unconventional metagenomics workflow to provide a better understanding of bacteria and phage interactions.


Asunto(s)
Bacteriófagos , Burkholderia , Metagenoma , Burkholderia/genética , Bacteriófagos/genética , Carbón Mineral , Metagenómica
14.
Viruses ; 15(2)2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36851611

RESUMEN

The Colorado potato beetle (CPB) is one of the most serious insect pests due to its high ecological plasticity and ability to rapidly develop resistance to insecticides. The use of biological insecticides based on viruses is a promising approach to control insect pests, but the information on viruses which infect leaf feeding beetles is scarce. We performed a metagenomic analysis of 297 CPB genomic and transcriptomic samples from the public National Center for Biotechnology Information Sequence Read Archive (NCBI SRA) database. The reads that were not aligned to the reference genome were assembled with metaSPAdes, and 13314 selected contigs were analyzed with BLAST tools. The contigs and non-aligned reads were also analyzed with Kraken2 software. A total of 3137 virus-positive contigs were attributed to different viruses belonging to 6 types, 17 orders, and 32 families, matching over 97 viral species. The annotated sequences can be divided into several groups: those that are homologous to genetic sequences of insect viruses (Adintoviridae, Ascoviridae, Baculoviridae, Dicistroviridae, Chuviridae, Hytrosaviridae, Iflaviridae, Iridoviridae, Nimaviridae, Nudiviridae, Phasmaviridae, Picornaviridae, Polydnaviriformidae, Xinmoviridae etc.), plant viruses (Betaflexiviridae, Bromoviridae, Kitaviridae, Potyviridae), and endogenous retroviral elements (Retroviridae, Metaviridae). Additionally, the full-length genomes and near-full length genome sequences of several viruses were assembled. We also found sequences belonging to Bracoviriform viruses and, for the first time, experimentally validated the presence of bracoviral genetic fragments in the CPB genome. Our work represents the first attempt to discover the viral genetic material in CPB samples, and we hope that further studies will help to identify new viruses to extend the arsenal of biopesticides against CPB.


Asunto(s)
Escarabajos , Dicistroviridae , Insecticidas , Solanum tuberosum , Animales , Metagenoma
15.
ISME J ; 17(5): 720-732, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36841901

RESUMEN

The ever-increasing number of available microbial genomes and metagenomes provides new opportunities to investigate the links between niche partitioning and genome evolution in the ocean, especially for the abundant and ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus. Here, by combining metagenome analyses of the Tara Oceans dataset with comparative genomics, including phyletic patterns and genomic context of individual genes from 256 reference genomes, we show that picocyanobacterial communities thriving in different niches possess distinct gene repertoires. We also identify clusters of adjacent genes that display specific distribution patterns in the field (eCAGs) and are thus potentially involved in the same metabolic pathway and may have a key role in niche adaptation. Several eCAGs are likely involved in the uptake or incorporation of complex organic forms of nutrients, such as guanidine, cyanate, cyanide, pyrimidine, or phosphonates, which might be either directly used by cells, for example for the biosynthesis of proteins or DNA, or degraded to inorganic nitrogen and/or phosphorus forms. We also highlight the enrichment of eCAGs involved in polysaccharide capsule biosynthesis in Synechococcus populations thriving in both nitrogen- and phosphorus-depleted areas vs. low-iron (Fe) regions, suggesting that the complexes they encode may be too energy-consuming for picocyanobacteria thriving in the latter areas. In contrast, Prochlorococcus populations thriving in Fe-depleted areas specifically possess an alternative respiratory terminal oxidase, potentially involved in the reduction of Fe(III) to Fe(II). Altogether, this study provides insights into how phytoplankton communities populate oceanic ecosystems, which is relevant to understanding their capacity to respond to ongoing climate change.


Asunto(s)
Prochlorococcus , Synechococcus , Agua de Mar/microbiología , Ecosistema , Compuestos Férricos/metabolismo , Océanos y Mares , Synechococcus/genética , Synechococcus/metabolismo , Metagenoma , Familia de Multigenes , Nitrógeno/metabolismo , Fósforo/metabolismo , Prochlorococcus/genética , Filogenia
16.
J Agric Food Chem ; 70(38): 12095-12106, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36121066

RESUMEN

In vitro ruminal fermentation is considered an efficient way to degrade crop residue. To better understand the microbial communities and their functions during in vitro ruminal fermentation, the microbiome and short chain fatty acid (SCFA) production were investigated using the metagenomic sequencing and rumen simulation technique (RUSITEC) system. A total of 1677 metagenome-assembled genomes (MAGs) were reconstructed, and 298 MAGs were found copresenting in metagenomic data of the current work and 58 previously ruminal representative samples. Additionally, the domains related to pectin and xylan degradation were overrepresented in the copresent MAGs compared with total MAGs. Among the copresent MAGs, we obtained 14 MAGs with SCFA-synthesis-related genes positively correlated with SCFA concentrations. The MAGs obtained from this study enable a better understanding of dominant microbial communities across in vivo and in vitro ruminal fermentation and show promise for pointing out directions for further research on in vitro ruminal fermentation.


Asunto(s)
Metagenoma , Microbiota , Animales , Biomasa , Ácidos Grasos Volátiles/metabolismo , Fermentación , Pectinas/metabolismo , Rumen/metabolismo , Xilanos/metabolismo
17.
Cells ; 11(15)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35892598

RESUMEN

Attenuating acetylcholinesterase and insulin/insulin-like growth factor-1 signaling in the hippocampus is associated with Alzheimer's disease (AD) development. Fucoidan and carrageenan are brown and red algae, respectively, with potent antibacterial, anti-inflammatory, antioxidant and antiviral activities. This study examined how low-molecular-weight (MW) and high-MW fucoidan and λ-carrageenan would improve memory impairment in Alzheimer's disease-induced rats caused by an infusion of toxic amyloid-ß(Aß). Fucoidan and λ-carrageenan were dissected into low-MW by Luteolibacter algae and Pseudoalteromonas carrageenovora. Rats receiving an Aß(25-35) infusion in the CA1 region of the hippocampus were fed dextrin (AD-Con), 1% high-MW fucoidan (AD-F-H), 1% low-MW fucoidan (AD-F-L), 1% high-MW λ-carrageenan (AD-C-H), and 1% low-MW λ-carrageenan (AD-C-L) for six weeks. Rats to receive saline infusion (Normal-Con) had an AD-Con diet. The AD-F-L group showed an improved memory function, which manifested as an enhanced Y-maze spontaneous alternation test, water maze, and passive avoidance tests, similar to the Normal-Con group. AD-F-L also potentiated hippocampal insulin signaling and increased the expression of ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) in the hippocampus. AD-C-L improved the memory function mainly by increasing the BDNF content. AD-F-H and AD-C-H did not improve the memory function. Compared to AD-Con, the ascending order of AD-C-H, AD-F-H, AD-C-L, and AD-F-L increased insulin signaling by enhancing the pSTAT3®pAkt®pGSK-3ß pathway. AD-F-L improved glucose tolerance the most. Compared to AD-CON, the AD-F-L treatment increased the serum acetate concentrations and compensated for the defect of cerebral glucose metabolism. AD-Con increased Clostridium, Terrisporobacter and Sporofaciens compared to Normal-Con, and AD-F-L and AD-C-L increased Akkermentia. In conclusion, AD-F-L and AD-C-L alleviated the memory function in the rats with induced AD symptoms by modulating.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Carragenina/metabolismo , Suplementos Dietéticos , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Insulina/metabolismo , Trastornos de la Memoria/complicaciones , Metagenoma , Polisacáridos , Ratas
18.
Microbiome ; 10(1): 101, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787295

RESUMEN

BACKGROUND: Phosphorus (P) is one of the most essential macronutrients on the planet, and microorganisms (including bacteria and archaea) play a key role in P cycling in all living things and ecosystems. However, our comprehensive understanding of key P cycling genes (PCGs) and microorganisms (PCMs) as well as their ecological functions remains elusive even with the rapid advancement of metagenome sequencing technologies. One of major challenges is a lack of a comprehensive and accurately annotated P cycling functional gene database. RESULTS: In this study, we constructed a well-curated P cycling database (PCycDB) covering 139 gene families and 10 P metabolic processes, including several previously ignored PCGs such as pafA encoding phosphate-insensitive phosphatase, ptxABCD (phosphite-related genes), and novel aepXVWPS genes for 2-aminoethylphosphonate transporters. We achieved an annotation accuracy, positive predictive value (PPV), sensitivity, specificity, and negative predictive value (NPV) of 99.8%, 96.1%, 99.9%, 99.8%, and 99.9%, respectively, for simulated gene datasets. Compared to other orthology databases, PCycDB is more accurate, more comprehensive, and faster to profile the PCGs. We used PCycDB to analyze P cycling microbial communities from representative natural and engineered environments and showed that PCycDB could apply to different environments. CONCLUSIONS: We demonstrate that PCycDB is a powerful tool for advancing our understanding of microbially driven P cycling in the environment with high coverage, high accuracy, and rapid analysis of metagenome sequencing data. The PCycDB is available at https://github.com/ZengJiaxiong/Phosphorus-cycling-database . Video Abstract.


Asunto(s)
Microbiota , Fósforo , Bacterias/genética , Bases de Datos Factuales , Metagenoma/genética
19.
mSystems ; 7(3): e0015722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35670539

RESUMEN

Despite the popularity of kombucha tea, the distribution of different microbes across kombucha ferments and how those microbes interact within communities are not well characterized. Using metagenomics, comparative genomics, synthetic community experiments, and metabolomics, we determined the taxonomic, ecological, and functional diversity of 23 distinct kombuchas from across the United States. Shotgun metagenomic sequencing demonstrated that the bacterium Komagataeibacter rhaeticus and the yeast Brettanomyces bruxellensis were the most common microbes in the sampled kombucha communities. To determine the specificity of bacterium-yeast interactions, we experimentally quantified microbial interactions within kombucha biofilms by measuring densities of interacting species and biofilm production. In pairwise combinations of bacteria and yeast, B. bruxellensis and individual strains of Komagataeibacter spp. were sufficient to form kombucha fermentations with robust biofilms, but Zygosaccharomyces bisporus, another yeast found in kombucha, did not stimulate bacteria to produce biofilms. Profiling the spent media of both yeast species using nuclear magnetic resonance spectroscopy suggested that the enhanced ability of B. bruxellensis to ferment and produce key metabolites in sucrose-sweetened tea may explain why it stimulates biofilm formation. Comparative genomics demonstrated that Komagataeibacter spp. with >99% genomic similarity can still have dramatic differences in biofilm production, with strong producers yielding five times more biofilm than the weakest producers. IMPORTANCE Through an integration of metagenomic and experimental approaches, our work reveals the diversity and nature of interactions among key taxa in kombucha microbiomes through the construction of synthetic microbial pairs. Manipulation of these microbes in kombucha has the potential to shape both the fermentation qualities of kombucha and the production of biofilms and is valuable for kombucha beverage producers, biofilm engineers, and synthetic ecologists.


Asunto(s)
Té de Kombucha , Té de Kombucha/análisis , Fermentación , Bebidas/microbiología , Bacterias/genética , Metagenoma
20.
Environ Res ; 212(Pt C): 113373, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35526585

RESUMEN

Denitrifying sulfur conversion-assisted enhanced biological phosphorus removal (DS-EBPR) was recently developed for saline wastewater treatment. However, the main functional bacteria and the interrelationship of functional bacteria of the DS-EBPR have not been defined and identified so far. This study used metagenomics and multivariate statistics to deduce the functional microbial community and distribution of functional genes associated with the critical metabolic pathways of carbon (C), nitrogen (N), phosphorus (P) and sulfur (S), particularly regarding how they would behave under the alternating anaerobic-anoxic conditions inside a long-term DS-EBPR system. An analysis of the metagenomics and metabolic functions identified 11 major microbial species which were classifiable into four groups: sulfate reducing bacteria (SRB, 0.8-2.2%), sulfur oxidizing bacteria (SOB, 31.9-37.7%), denitrifying phosphate accumulating organisms (DPAOs, 10.0-15.8%) and glycogen accumulating organisms (GAOs, 3.7-7.7%). The four groups of microorganisms performed their respective metabolisms synergistically. In terms of distribution of functional genes, SRB (Desulfococcus and Desulfobacter) and SOB (Chromatiaceae and Thiobacillus) are not only encoded by the related sulfur conversion genes (sqr, dsrAB, aprAB and sat), but also encoded by the necessary ppx and ppk1 gene for P removal that they can be considered as the potential S-related PAOs. Between the anaerobic and anoxic conditions, the metagenome-based microbial community remained structurally similar, but the functional genes, which encode various key enzymes for the P, N, and S pathways, changed in abundance. This study contributes to our understanding on the interactions and competition between the SRB, SOB, DPAOs, and GAOs in a DS-EBPR system.


Asunto(s)
Reactores Biológicos , Metagenómica , Anaerobiosis , Bacterias/genética , Bacterias/metabolismo , Reactores Biológicos/microbiología , Metagenoma , Fósforo/metabolismo , Aguas del Alcantarillado/microbiología , Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA