Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37511578

RESUMEN

Garlic (Allium sativum L.) is a popular condiment used as both medicine and food. Garlic production in China is severely affected by continuous cropping and is especially affected by leaf blight disease. Garlic is sterile, so it is very important to develop specialized genotypes, such as those for disease resistance, nutritional quality, and plant architecture, through genetic modification and innovation. In this experiment, we applied the induction method using EMS to mutate garlic cloves of cultivar G024. From the mutations, 5000 M0 mutants were generated and planted in the field. Then, 199 M1 mutant lines were screened according to growth potential and resistance to leaf blight. From M2 to M3, 169 generational lines were selected that grew well and were resistant to leaf blight in the field. Thereafter, their resistance to leaf blight was further analyzed in the lab; 21 lines resistant to leaf blight that had good growth potential were identified, among which 3 mutants were significantly different, and these were further screened. Also, transcriptome analysis of two mutants infected with Pleospora herbarum, A150 and G024, was performed, and the results revealed 2026 and 4678 differentially expressed genes (DEGs), respectively. These DEGs were highly enriched in hormone signaling pathway, plant-pathogen interaction, and MAPK signaling pathway. Therefore, the results provide a theoretical and technical basis for the creation of garlic germplasm resistant to leaf blight.


Asunto(s)
Ascomicetos , Ajo , Ajo/genética , Metanosulfonato de Etilo/metabolismo , Plantas , Metano/metabolismo
2.
Phytochemistry ; 203: 113422, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36055422

RESUMEN

Catharanthus roseus is a medicinal plant that produces an abundance of monoterpenoid indole alkaloids (MIAs), notably including the anticancer compounds vinblastine and vincristine. While the canonical pathway leading to these drugs has been resolved, the regulatory and catalytic mechanisms controlling many lateral branches of MIA biosynthesis remain largely unknown. Here, we describe an ethyl methanesulfonate (EMS) C. roseus mutant (M2-117523) that accumulates high levels of MIAs. The mutant exhibited stunted growth, partially chlorotic leaves, with deficiencies in chlorophyll biosynthesis, and a lesion-mimic phenotype. The lesions were sporadic and spontaneous, appearing after the first true bifoliate and continuing throughout development. The lesions are also the site of high concentrations of akuammicine, a minor constituent of wild type C. roseus leaves. In addition to akuammicine, the lesions were enriched in 25 other MIAs, resulting, in part, from a higher metabolic flux through the pathway. The unique metabolic shift was associated with significant upregulation of biosynthetic and regulatory genes involved in the MIA pathway, including the transcription factors WRKY1, CrMYC2, and ORCA2, and the biosynthetic genes STR, GO, and Redox1. Following the lesion-mimic mutant (LMM) phenotype, the accumulation of akuammicine is jasmonate (JA)-inducible, suggesting a role in plant defence response. Akuammicine is medicinally significant, as a weak opioid agonist, with a preference for the κ-opioid receptor, and a potential anti-diabetic. Further study of akuammicine biosynthesis and regulation can guide plant and heterologous engineering for medicinal uses.


Asunto(s)
Catharanthus , Alcaloides de Triptamina Secologanina , Alcaloides , Analgésicos Opioides/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Clorofila/metabolismo , Metanosulfonato de Etilo/metabolismo , Regulación de la Expresión Génica de las Plantas , Indoles , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores Opioides/genética , Receptores Opioides/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Alcaloides de Triptamina Secologanina/farmacología , Factores de Transcripción/genética , Vinblastina , Vincristina
3.
J Toxicol Environ Health A ; 80(4): 208-217, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28304234

RESUMEN

Peumus boldus Mol. ("Boldo") and Cryptocarya alba Mol. Looser ("Peumo") are medicinal shrubs with wide geographical distribution in South America. Their leaves and fruits are commonly used in traditional medicine because they exhibit natural medicinal properties for treatment of liver disorders and rheumatism. However, there are no apparent data regarding potential protective effects on cellular genetic components. In order to examine potential mutagenic and/or antimutagenic effects of these medicinal plants, the Drosophila melanogaster (D. melanogaster) wing-spot test was employed. This assay detects a wide range of mutational events, including point mutations, deletions, certain types of chromosomal aberrations (nondisjunction), and mitotic recombination. Qualitative and quantitative analyses of phenolic and anthocyanin compounds were carried out using biochemical and high-performance liquid chromatography methodologies. In addition, the antioxidant capacity of P. boldus and C. alba leaf extracts was also analyzed. P. boldus and C. alba extracts did not induce significant mutagenic effects in the D. melanogaster model. However, simultaneous treatment of extracts concurrently with the mutagen ethyl methane sulphonate showed a decrease of mutant spots in somatic cells of D. melanogaster, indicating desmutagenic effects in this in vivo model. Flavonoids and anthocyanins were detected predominantly in the extracts, and these compounds exerted significant antioxidant capacity. The observed antimutagenic effects may be related to the presence of phytochemicals with high antioxidant capacity, such as flavonoids and antohocyanins, in the extracts.


Asunto(s)
Antimutagênicos/farmacología , Cryptocarya/química , Drosophila melanogaster/efectos de los fármacos , Peumus/química , Plantas Medicinales/química , Animales , Antocianinas/análisis , Antocianinas/farmacología , Antioxidantes/análisis , Antioxidantes/farmacología , Chile , Drosophila melanogaster/crecimiento & desarrollo , Metanosulfonato de Etilo/metabolismo , Larva/efectos de los fármacos , Mutágenos/metabolismo , Fenoles/análisis , Fenoles/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Alas de Animales/efectos de los fármacos
4.
Toxicol Lett ; 190(3): 271-85, 2009 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19442710

RESUMEN

In this subacute toxicity study, ethyl methanesulfonate (EMS) was administered daily by oral gavage to SPF-bred Wistar rats of both sexes at dose levels of 20, 60 and 180/120 mg/kg body weight (bw)/day for a period of 28 days (for 19 days in the high-dose group). A control group was treated similarly with the vehicle, bidistilled water, only. The groups comprised 10 animals per sex, which were sacrificed after 28 days, respectively 19 days in the high-dose group, of treatment. Additional five rats per sex and group were treated accordingly and then allowed a 14 days treatment-free recovery period. Additional six rats per sex and group (three rats per sex in the control group) were treated accordingly and used for hemoglobin adduct analysis after EMS exposure. All animals survived until their scheduled necropsy. Treatment with EMS had a direct dose-dependent effect on food consumption and consequently on body weight at doses > or =20mg/kgbw/day in male rats and at > or =60 mg/kgbw/day in females rats. Hence, treatment with the high dose of 180 mg/kgbw/day had to be interrupted for 9 days after which, the animals were re-dosed at 120 mg/kgbw/day. This dose was also poorly tolerated over the remaining two treatment weeks causing again a marked reduction in food consumption and body weight. A dose of 60 mg/kgbw/day was moderately tolerated over 4 weeks treatment with mean daily food consumption and body weight distinctly lower than in controls. Primary targets of systemic toxicity were the hematopoietic system, thymolymphatic system and sexual organs. Characteristic changes in hematology parameters were decreased red blood cell counts, hematocrit, and hemoglobin concentration. White blood cell counts were also decreased due to reduced lymphocyte and granulocyte populations of each fraction. The corresponding histopathology findings were fatty atrophy of bone marrow and minimal hypocellularity of the white pulp of the spleen. Similarly, treatment with EMS caused an involution of the thymolymphatic system characterized by decreased organ weight of thymus, lymph nodes, and spleen microscopically associated with atrophy of the thymus and hypocellularity of Peyer's patches, lymph nodes and the white pulp of the spleen. The effects on sexual organs included lower organ weight/reduced size for testes, epididymides, seminal vesicles, prostate, and uterus. Tubular atrophy, single cell necrosis of the germ cells and in epididymides reduced spermatozoa were recorded microscopically. The described findings occurred at doses of 60 and 180/120 mg/kgbw/day and were dose-dependent with regard to incidence and severity. Other target organs were the pancreas (acinar cell vacuolation), thyroid gland (follicular cell hypertrophy), and salivary gland (secretory depletion of convoluted ducts). The systemic exposure to EMS was monitored by hemoglobin ethylvaline adduct measurement. The concentration of hemoglobin ethylvaline adducts was linear with the dose and accumulated 11-26-fold over the treatment period. In summary, decreases in food consumption and body weight were the dose-limiting effects of treatment with EMS. Organ toxicity was characterized by depression of cell proliferation (hematopoiesis and spermatogenesis) and changes suggestive of reduced metabolism and/or physiological imbalances (e.g. thymolymphatic system and thyroid gland) without signs of inflammatory or necrotic lesions. For some findings, especially the effects on the thymolymphatic system and sexual organs, it cannot be excluded that starvation-like condition contributed to the occurrence of such changes. The low dose of 20 mg/kgbw/day was basically free of adverse effects despite of a clear evidence for hemoglobin adducts.


Asunto(s)
Contaminación de Medicamentos , Metanosulfonato de Etilo/toxicidad , Mutágenos/toxicidad , Animales , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Metanosulfonato de Etilo/química , Metanosulfonato de Etilo/metabolismo , Femenino , Genitales/efectos de los fármacos , Genitales/patología , Inhibidores de la Proteasa del VIH/química , Pruebas Hematológicas , Hemoglobinas/química , Hemoglobinas/efectos de los fármacos , Hemoglobinas/metabolismo , Masculino , Mutágenos/química , Mutágenos/metabolismo , Nelfinavir/química , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Wistar , Medición de Riesgo , Organismos Libres de Patógenos Específicos , Pruebas de Toxicidad
5.
Nature ; 445(7127): 541-5, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17237762

RESUMEN

The nervous system senses peripheral damage through nociceptive neurons that transmit a pain signal. TRPA1 is a member of the Transient Receptor Potential (TRP) family of ion channels and is expressed in nociceptive neurons. TRPA1 is activated by a variety of noxious stimuli, including cold temperatures, pungent natural compounds, and environmental irritants. How such diverse stimuli activate TRPA1 is not known. We observed that most compounds known to activate TRPA1 are able to covalently bind cysteine residues. Here we use click chemistry to show that derivatives of two such compounds, mustard oil and cinnamaldehyde, covalently bind mouse TRPA1. Structurally unrelated cysteine-modifying agents such as iodoacetamide (IA) and (2-aminoethyl)methanethiosulphonate (MTSEA) also bind and activate TRPA1. We identified by mass spectrometry fourteen cytosolic TRPA1 cysteines labelled by IA, three of which are required for normal channel function. In excised patches, reactive compounds activated TRPA1 currents that were maintained at least 10 min after washout of the compound in calcium-free solutions. Finally, activation of TRPA1 by disulphide-bond-forming MTSEA is blocked by the reducing agent dithiothreitol (DTT). Collectively, our data indicate that covalent modification of reactive cysteines within TRPA1 can cause channel activation, rapidly signalling potential tissue damage through the pain pathway.


Asunto(s)
Cisteína/metabolismo , Disulfuros/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Noxas/farmacología , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/metabolismo , Acroleína/análogos & derivados , Acroleína/química , Acroleína/metabolismo , Acroleína/farmacología , Animales , Cisteína/química , Disulfuros/química , Ditiotreitol/farmacología , Conductividad Eléctrica , Metanosulfonato de Etilo/análogos & derivados , Metanosulfonato de Etilo/química , Metanosulfonato de Etilo/metabolismo , Metanosulfonato de Etilo/farmacología , Humanos , Ratones , Planta de la Mostaza/química , Planta de la Mostaza/metabolismo , Noxas/química , Noxas/metabolismo , Dolor/inducido químicamente , Dolor/fisiopatología , Aceites de Plantas/química , Aceites de Plantas/metabolismo , Aceites de Plantas/farmacología , Canales de Potencial de Receptor Transitorio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA