Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Med Mol Morphol ; 55(1): 47-59, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34796378

RESUMEN

Polycystic ovary syndrome (PCOS) is a common endocrinopathy related to female infertility. We investigated the function of the microRNA-98-3p (miR-98-3p)/Yin-Yang-1 (YY1) axis to the pathophysiological processes in PCOS mice. A mouse model of PCOS was established using dehydroepiandrosterone (DHEA). Hematoxylin and eosin (HE) staining was used to assess morphologic changes of the ovaries. Hormonal serum levels were measured by ELISA. Estrogen synthesis in OGCs was measured using chemiluminescence immunoassay. The viability, cell cycle, and apoptosis of ovarian granulosa cells (OGCs) were assessed by CCK-8, flow cytometry, and western blot. Luciferase reporter assays were conducted to examine the binding of miR-98-3p to YY1. YY1 was upregulated, while miR-98-3p was downregulated both in the ovarian tissues of PCOS mice and OGCs separated from PCOS mice and patients. YY1 Knockdown promoted OGC proliferation and inhibited apoptosis as well as increased estrogen production in OGCs. YY1 was verified to be targeted by miR-98-3p. Additionally, YY1 overexpression prevented the effects of miR-98-3p overexpression on the proliferation and apoptosis of OGCs. Importantly, miR-98-3p attenuated ovarian injury in PCOS mice. MiR-98-3p targets and downregulates YY1 expression, thereby affecting the proliferation and apoptosis of OGCs in PCOS.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , Factor de Transcripción YY1 , Animales , Apoptosis/genética , Proliferación Celular , Femenino , Células de la Granulosa/metabolismo , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , MicroARNs/fisiología , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
2.
BMC Plant Biol ; 21(1): 520, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753417

RESUMEN

BACKGROUND: Brassica napus is the third leading source of edible oil in the world. Genic male sterility (GMS) lines provide crucial material for harnessing heterosis for rapeseed. GMS lines have been used successfully for rapeseed hybrid production in China. MicroRNAs (miRNAs) play crucial regulatory roles in various plant growth, development, and stress response processes. However, reports on miRNAs that regulate the pollen development of GMS lines in B. napus are few. RESULTS: In this study, 12 small RNA and transcriptome libraries were constructed and sequenced for the flower buds from the fertile and sterile lines of two recessive GMS (RGMS) lines, namely, "6251AB" and "6284AB". At the same time, 12 small RNA and transcriptome libraries were also constructed and sequenced for the flower buds from the fertile and sterile lines of two dominant GMS (DGMS) lines, namely, "4001AB" and "4006AB". Based on the results, 46 known miRNAs, 27 novel miRNAs on the other arm of known pre-miRNAs, and 44 new conserved miRNAs were identified. Thirty-five pairs of novel miRNA-3p/miRNA-5p were found. Among all the identified miRNAs, fifteen differentially expressed miRNAs with over 1.5-fold change between flower buds of sterile and fertile lines were identified, including six differentially expressed miRNAs between "4001A" and "4001B", two differentially expressed miRNAs between "4006A" and "4006B", four differentially expressed miRNAs between "6251A" and "6251B", and ten differentially expressed miRNAs between "6284A" and "6284B". The correlation analysis of small RNA and transcriptome sequencing was conducted. And 257 candidate target genes were predicted for the 15 differentially expressed miRNAs. The results of 5' modified RACE indicated that BnaA09g48720D, BnaA09g11120D, and BnaCnng51960D were cleaved by bna-miR398a-3p, bna-miR158-3p and bna-miR159a, respectively. Among the differentially expressed miRNAs, miR159 was chosen to analyze its function. Overexpression of bna-miR159 in Arabidopsis resulted in decreased seed setting rate, and shortened siliques, illustrating that miR159 may regulate the fertility and silique development in rapeseed. CONCLUSIONS: Our findings provide an overview of miRNAs that are potentially involved in GMS and pollen development. New information on miRNAs and their related target genes are provided to exploit the GMS mechanism and reveal the miRNA networks in B. napus.


Asunto(s)
Brassica napus/genética , MicroARNs/fisiología , Infertilidad Vegetal/genética , Polen/genética , ARN de Planta/fisiología , Brassica napus/crecimiento & desarrollo , Biblioteca de Genes , Desarrollo de la Planta/genética , Transcriptoma
3.
Kaohsiung J Med Sci ; 37(12): 1027-1037, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34405943

RESUMEN

In recent years, circular RNA (circRNA) has been found to be involved in a variety of cancer processes. More and more attention has been paid to the research of circRNA in lung cancer. This study aims to investigate whether circ_0000517 affected the physiology of non-small cell lung cancer (NSCLC) and the underlying mechanism. The results demonstrated that circ_0000517 was highly expressed in lung cancer tissues and cells, and overexpression of circ_0000517 was negatively correlated with the prognosis of NSCLC patients. Silencing of circ_0000517 significantly inhibited the proliferation, glycolysis, and glutamine decomposition of NSCLC cells in vitro and repressed the growth of xenografted tumors in vivo. Moreover, knockdown of circ_0000517 attenuated the expression of PCNA, HK2, LDHA, ASCT2, and GLS1. Further study found that circ_0000517 targeted miR-330-5p and miR-330-5p targeted YY1. In addition, miR-330-5p inhibitor reversed inhibition of cancer cell proliferation, glycolysis, and glutamine decomposition induced by si-circ_0000517. In conclusion, our study revealed that silencing of circ_0000517 improved the progression of NSCLC through regulating miR-330-5p/YY1 axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Glutamina/metabolismo , Glucólisis , Neoplasias Pulmonares/metabolismo , MicroARNs/fisiología , ARN Circular/fisiología , Factor de Transcripción YY1/fisiología , Adulto , Anciano , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones , Persona de Mediana Edad , Transducción de Señal/fisiología , Factor de Transcripción YY1/genética
4.
Food Funct ; 12(8): 3381-3392, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33900350

RESUMEN

The effect of non-cytotoxic doses of epigallocatechin-3-gallate (EGCG) on the metastatic capability of human hepatocellular carcinoma (HCC) cells was investigated in vitro and in vivo. miR483-3p, a microRNA whose expression correlates inversely with survival and positively with disease progression in HCC patients, was found to promote HCC cell migration and invasion in vitro as well as lung metastasis in nude mice established by the tail-vein injection of HCC cells. The induction of reactive oxygen species (ROS) and downregulation of antioxidant defense factors Nrf2 and SOD2 appeared to be an important underlying mechanism and treatment with a non-cytotoxic dose of EGCG effectively reversed the miR483-3p-induced enhancement of HCC cell migration and invasion in vitro. Moreover, administration through drinking water at doses (0.1% and 0.5% EGCG solution, respectively) equivalent to the intake of regular to heavy tea drinkers could also significantly inhibit lung metastasis of HCC cells based on the estimation from the USDA Database for the Flavonoid Content of Selected Foods and FDA guidelines for the conversion of animal dose to human equivalent dose. EGCG also significantly counteracted the miR483-3p-induced alteration in the expression of epithelial-mesenchymal transition (EMT) markers, E-cadherin and vimentin, and downregulated the endogenous expression of miR483-3p in HCC cells through an epigenetic mechanism that led to the hypermethylation of the miR483-3p promoter region. The data from our study illustrate that miR483-3p promotes HCC metastasis likely through the induction of oxidative stress and uncover a novel role of EGCG for protection against miR483-3p-mediated HCC metastasis via the epigenetic modulation of miR483-3p expression. These findings therefore provide further evidence supporting that regular tea consumption may contribute to protection against miR-483-3p-induced ROS and the associated HCC progression.


Asunto(s)
Carcinoma Hepatocelular/patología , Catequina/análogos & derivados , Neoplasias Hepáticas/patología , MicroARNs/genética , Metástasis de la Neoplasia/genética , Animales , Catequina/administración & dosificación , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/fisiología , Metástasis de la Neoplasia/prevención & control , Especies Reactivas de Oxígeno/análisis , Soluciones , , Transducción Genética
5.
BMC Plant Biol ; 21(1): 132, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750309

RESUMEN

BACKGROUND: Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs) have been identified as the important negative regulators of gene expression and performed crucial regulatory roles in various plant biological processes. However, whether miRNAs participate in Tartary buckwheat seed development remains unexplored. RESULTS: In this study, we first identified 26 miRNA biosynthesis genes in the Tartary buckwheat genome and described their phylogeny and expression profiling. Then we performed small RNA (sRNA) sequencing for Tartary buckwheat seeds at three developmental stages to identify the miRNAs associated with seed development. In total, 230 miRNAs, including 101 conserved and 129 novel miRNAs, were first identified in Tartary buckwheat, and 3268 target genes were successfully predicted. Among these miRNAs, 76 exhibited differential expression during seed development, and 1534 target genes which correspond to 74 differentially expressed miRNAs (DEMs) were identified. Based on integrated analysis of DEMs and their targets expression, 65 miRNA-mRNA interaction pairs (25 DEMs corresponding to 65 target genes) were identified that exhibited significantly opposite expression during Tartary buckwheat seed development, and 6 of the miRNA-mRNA pairs were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) and ligase-mediated rapid amplification of 5' cDNA ends (5'-RLM-RACE). Functional annotation of the 65 target mRNAs showed that 56 miRNA-mRNA interaction pairs major involved in cell differentiation and proliferation, cell elongation, hormones response, organogenesis, embryo and endosperm development, seed size, mineral elements transport, and flavonoid biosynthesis, which indicated that they are the key miRNA-mRNA pairs for Tartary buckwheat seed development. CONCLUSIONS: Our findings provided insights for the first time into miRNA-mediated regulatory pathways in Tartary buckwheat seed development and suggested that miRNAs play important role in Tartary buckwheat seed development. These findings will be help to study the roles and regulatory mechanism of miRNAs in Tartary buckwheat seed development.


Asunto(s)
Fagopyrum/crecimiento & desarrollo , Fagopyrum/genética , MicroARNs/fisiología , ARN Mensajero/fisiología , ARN de Planta/fisiología , Semillas/crecimiento & desarrollo , Evolución Molecular , Perfilación de la Expresión Génica , Reacción en Cadena de la Ligasa , MicroARNs/genética , Filogenia , Desarrollo de la Planta/genética , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/genética
6.
Front Immunol ; 12: 630112, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643314

RESUMEN

Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease characterized by continuous inflammation and the production of autoantibodies. Exosomes, acting as a critical tool for communication between cells, are involved in the pathogenesis of SLE, particularly in inflammation and immune imbalance. In this study, we aimed to extract and confirm the pro-inflammatory effect of serum exosomes in SLE. Then, we attempted to find differentially expressed exosomal microRNAs in the serum of healthy subjects and SLE patients via miRNA microarray analysis and validated the target exosomal microRNA, exosomal miR-451a, which expression level decreased in serum of SLE patients by RT-qPCR. Furtherly, we analyzed the correlation between exosomal miR-451a and disease activity, kidney damage and typing, and traditional medicine therapy. Finally, we investigated the intercellular communication role of exosomal miR-451a in SLE by co-culture assay in vitro. Taken together, our study demonstrated that downregulated serum exosomal miR-451a expression correlated with SLE disease activity and renal damage as well as its intercellular communication role in SLE which provided potential therapeutic strategies.


Asunto(s)
Comunicación Celular , Exosomas/fisiología , Riñón/patología , Lupus Eritematoso Sistémico/etiología , MicroARNs/fisiología , Adulto , Regulación hacia Abajo , Exosomas/química , Femenino , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/patología , Nefritis Lúpica/clasificación , Masculino , MicroARNs/sangre , Adulto Joven
7.
Plant J ; 106(3): 862-875, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33595875

RESUMEN

Gray blight (GB) is one of the most destructive diseases of tea plants, causing considerable damage and productivity losses; however, the dynamic roles of defense genes during pathogen infection remain largely unclear. To explore the numerous molecular interactions associated with GB stress in tea plants, we employed transcriptome, sRNAome and degradome sequencing from 1 to 13 days post-inoculation (dpi) at 3-day intervals. The transcriptomics results showed that differentially expressed genes (DEGs) related to flavonoid synthesis, such as chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL), were particularly induced at 4 dpi. Consistent with this, the contents of catechins (especially gallocatechin), which are the dominant flavonoids in tea plants, also increased in the leaves of tea plants infected with GB. Combined analysis of the sRNAome and degradome revealed that microRNAs could mediate tea plant immunity by regulating DEG expression at the post-transcriptional level. Co-expression network analysis demonstrated that miR530b-ethylene responsive factor 96 (ERF96) and miRn211-thaumatin-like protein (TLP) play crucial roles in the response to GB. Accordingly, gene-specific antisense oligonucleotide assays suggested that suppressing ERF96 decreased the levels of reactive oxygen species (ROS), whereas suppressing TLP increased the levels of ROS. Furthermore, ERF96 was induced, but TLP was suppressed, in susceptible tea cultivars. Our results collectively demonstrate that ERF96 is a negative regulator and TLP is a positive regulator in the response of tea plants to GB. Taken together, our comprehensive integrated analysis reveals a dynamic regulatory network linked to GB stress in tea plants and provides candidate genes for improvement of tea plants.


Asunto(s)
Camellia sinensis/genética , Genes de Plantas/genética , Enfermedades de las Plantas/microbiología , Transcriptoma/genética , Camellia sinensis/inmunología , Camellia sinensis/microbiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , MicroARNs/fisiología , Pestalotiopsis , Enfermedades de las Plantas/inmunología , ARN de Planta/genética , ARN de Planta/fisiología
8.
J Orthop Surg Res ; 16(1): 16, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413477

RESUMEN

BACKGROUND: MicroRNA (miRNA) plays a vital role in the intervertebral disc (IVD) degeneration. The expression level of miR-573 was downregulated whereas Bax was upregulated notably in human degenerative nucleus pulposus cells. In this study, we aimed to investigate the role of miR-573 in human degenerative nucleus pulposus (NP) cells following hyperbaric oxygen (HBO) treatment. METHODS: NP cells were separated from human degenerated IVD tissues. The control cells were maintained in 5% CO2/95% air and the hyperoxic cells were exposed to 100% O2 at 2.5 atmospheres absolute. MiRNA expression profiling was performed via microarray and confirmed by real-time PCR, and miRNA target genes were identified using bioinformatics and luciferase reporter assays. The mRNA and protein levels of Bax were measured. The proliferation of NPCs was detected using MTT assay. The protein expression levels of Bax, cleaved caspase 9, cleaved caspase 3, pro-caspase 9, and pro-caspase 3 were examined. RESULTS: Bioinformatics analysis indicated that the 3' untranslated region (UTR) of the Bax mRNA contained the "seed-matched-sequence" for hsa-miR-573, which was validated via reporter assays. MiR-573 was induced by HBO and simultaneous suppression of Bax was observed in NP cells. Knockdown of miR-573 resulted in upregulation of Bax expression in HBO-treated cells. In addition, overexpression of miR-573 by HBO increased cell proliferation and coupled with inhibition of cell apoptosis. The cleavage of pro-caspase 9 and pro-caspase 3 was suppressed while the levels of cleaved caspase 9 and caspase 3 were decreased in HBO-treated cells. Transfection with anti-miR-573 partly suppressed the effects of HBO. CONCLUSION: Mir-573 regulates cell proliferation and apoptosis by targeting Bax in human degenerative NP cells following HBO treatment.


Asunto(s)
Apoptosis/genética , Proliferación Celular/genética , Oxigenoterapia Hiperbárica , MicroARNs/fisiología , Núcleo Pulposo/citología , Proteína X Asociada a bcl-2/metabolismo , Anciano , Células Cultivadas , Femenino , Expresión Génica/genética , Humanos , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Masculino , Persona de Mediana Edad , Núcleo Pulposo/metabolismo , Proteína X Asociada a bcl-2/genética
9.
Biosci Rep ; 41(1)2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33274736

RESUMEN

Osteogenic differentiation is an important process of new bone formation, microRNA-409-3p (miR-409-3p) has been reported to be up-regulated in the osteogenic differentiation of human bone marrow mesenchymal stem cells (MSCs). The present study aimed to investigate the regulatory effect of miR-409-3p on osteogenic differentiation of MSCs and its molecular mechanism. The expression of miR-409-3p in osteoblast (human skull osteoblast, HCO) and bone marrow-derived MSCs (MSC-A, MSC-B, MSC-U) were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The binding of miR-409-3p to suppressor of cancer cell invasion (SCAI) in MSC-B was investigated by performing a dual-luciferase reporter gene assay. MSC-B was selected to transfect with miR-409-3p analog/complementary sequence (cs), miR-409-3p analog + SCAI and miR-409-3p cs + small interfering (si)-SCAI, as well as control, respectively. The alkaline phosphatase (ALP) activity, Alizarin Red staining, and the expression of osteogenic markers (ALP, osteocalcin (OCN), osteopontin (OPN), runt-related transcription factor 2 (RUNX2)) in MSC-B during osteoblastic differentiation were tested by RT-qPCR and Western blotting, respectively. Additionally, the Wnt/ß-catenin pathway was inhibited by dickkopf-related protein 1 (DKK-1) to get the roles of miR-409-3p during the osteoblastic differentiation of MSC-B when transfected with miR-409-3p analog. The expression of miR-409-3p in HCO was higher than that in these three MSCs and showed an increasing time-dependent trend on the 0 and 21st day of osteoblastic differentiation. MiR-409-3p directly regulated SCAI by targeting SCAI 3'UTR. Further, miR-409-3p suppressed SCAI expression, but SCAI up-regulation suppressed the osteoblastic differentiation, as well as reduced the relative mRNA/protein expression of Wnt/ß-catenin signaling pathway-related genes (Axis inhibition protein 1 (AXIN1), ß-catenin, Lymphoid Enhancer Binding Factor 1, Cellular-myelocytomatosis (c-myc) and cyclin D1). Importantly, disruption of Wnt signaling also blocked miR-409-3p induced osteoblastic differentiation of MSCs. Therefore, miR-409-3p promotes osteoblastic differentiation through the activation of the Wnt/ß-catenin pathway by down-regulating SCAI expression.


Asunto(s)
Diferenciación Celular/fisiología , MicroARNs/fisiología , Osteoblastos/citología , Factores de Transcripción/genética , Vía de Señalización Wnt , beta Catenina/metabolismo , Fosfatasa Alcalina/metabolismo , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , MicroARNs/genética , Osteocalcina/metabolismo , Osteopontina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Chin J Integr Med ; 26(8): 633-640, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32761339

RESUMEN

Acupuncture has been widely used for treating diseases since the ancient days in China, but the mechanism by which acupuncture exerts such powerful roles is unclear. Epigenetics, including DNA methylation, histone modification, and post-transcriptional regulation of miRNAs, is the study of heritable changes in gene expression that do not include DNA sequence alterations. Epigenetics has become a new strategy for the basic and clinical research of acupuncture in the last decade. Some investigators have been trying to illustrate the mechanism of acupuncture from an epigenetics perspective, which has shed new lights on the mechanisms and applications of acupuncture. Moreover, the introduction of epigenetics into the regulatory mechanism in acupuncture treatment has provided more objective and scientific support for acupuncture theories and brought new opportunities for the improvement of acupuncture studies. In this paper, we reviewed the literatures that has demonstrated that acupuncture could directly or indirectly affect epigenetics, in order to highlight the progress of acupuncture studies correlated to epigenetic regulations. We do have to disclose that the current evidence in this review is not enough to cover all the complex interactions between multiple epigenetic modifications and their regulations. However, the up-to-date results can help us to better understand acupuncture's clinical applications and laboratory research.


Asunto(s)
Terapia por Acupuntura , Epigenómica/métodos , Ensamble y Desensamble de Cromatina/fisiología , Metilación de ADN/fisiología , Código de Histonas/fisiología , Humanos , MicroARNs/fisiología
11.
Am J Physiol Endocrinol Metab ; 319(2): E320-E329, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32603601

RESUMEN

Complex organisms rely heavily on intercellular communication. The rapidly expanding field of extracellular vesicle biology has made it clear that the necessary intercellular communication occurs partly through their paracrine and endocrine actions. Extracellular vesicles are nanoscale lipid membranes (30-2,000 nm in diameter) that shuttle functional biological material between cells. They are released from numerous tissues and are isolated from nearly all biofluids and cell cultures. Although their biogenesis, cell targeting, and functional roles are incompletely understood, they appear to have crucial roles in physiological and disease processes. Their enormous potential to serve as sensitive biomarkers of disease and also new therapeutic interventions for diseases have gained them considerable attention in recent years. Regular physical exercise training confers systemic health benefits and consequently prevents many age-related degenerative diseases. Many of the molecular mechanisms responsible for the salubrious effects of exercise are known, yet a common underlying mechanism potentially responsible for the holistic health benefits of exercise has only recently been explored (i.e., via extracellular vesicle transport of biological material). Here, we provide an overview of extracellular vesicle biology before outlining the current evidence on the capacity for a single bout and chronic exercise to elicit changes in extracellular vesicle content and modulate their molecular cargo (e.g., small RNAs). We highlight areas for future research and emphasize their potential utility as biomarkers and therapeutic strategies of disease and its prevention.


Asunto(s)
Comunicación Celular/fisiología , Ejercicio Físico/fisiología , Espacio Extracelular/fisiología , Vesículas Extracelulares/fisiología , Animales , Vesículas Extracelulares/química , Promoción de la Salud , Cardiopatías/prevención & control , Humanos , MicroARNs/fisiología , Condicionamiento Físico Animal/fisiología , Prevención Primaria/métodos
12.
Recent Pat Anticancer Drug Discov ; 15(2): 174-184, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32603285

RESUMEN

BACKGROUND: A large number of Euphorbia species have been evaluated for anticancer effects; however, their anticancer mechanisms have not been established up to now. OBJECTIVE: The present study aimed to evaluate the effects of Euphorbia microsciadia (E. microsciadia) Boiss on the modulation of micro (mi) RNAs in MDA-MB-231 cell line. METHODS: As the first step, the inhibitory concentration of hydroalcoholic extract of E. microsciadia on MDA-MB-231 cells was examined using the MTT assay, bypassing 24 and 48h from seeding. The real-time quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) was also utilized to determine Let-7, miR-15, miR-16, miR-29, miR-151, miR-155, miR-21, miR-146b, miR-181b, miR-221, miR-222, miR-21, and miR-146b expressions in MDA-MB-231 cells, by passing 24 and 48h from treating with the extract of E. microsciadia. RESULTS: The results reveal the cytotoxic effects of E. microsciadia on MDA-MB-231 cell line in a dose-dependent manner. The half maximal Inhibitory Concentrations (IC50) were also equal to 275 and 240µg/ml for E. microsciadia, by passing 24 and 48h from the treatment, respectively. Furthermore, it was confirmed that, E. microsciadia had augmented the expression levels of Let-7, miR-15, miR-16, miR-29, and miR-34a, which lead to an increase in apoptosis. CONCLUSION: E. microsciadia could modulate some miRNAs involved in cell cycle arrest and apoptosis in MDA-MB-231 cell line. Accordingly, targeting miRNAs by E. microsciadia can open some newer avenues for breast cancer therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Euphorbia , MicroARNs/análisis , Extractos Vegetales/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , MicroARNs/fisiología
13.
Biomed Pharmacother ; 127: 110127, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32325349

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a commonly-encountered chronic liver disease which lacks verified pharmacological interventions. Gan-Jiang-Ling-Zhu decoction (GJLZ) is a classic formula utilized in clinical practice. In this study, we aimed to evaluate the therapeutic effect of GJLZ in NAFLD and explore the possible underlying mechanisms. METHODS: Twenty-four rats were randomly divided into three groups: normal group, fed with chow diet for 8 weeks; model group, fed with high fat diet for 8 weeks; and GJLZ group, initially fed HFD for 4 weeks, and then administered the GJLZ decoction for 4 weeks by oral gavage while continuously feeding HFD. Rats were sacrificed after the intervention, and liver tissues and blood samples were harvested. Liver steatosis was detected by HE and Oil Red O staining. Body weight and liver index were analyzed. Liver triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), serum almandine aminotransferase (ALT), aspartate aminotransferase (AST), and nonesterified fatty acid (NEFA) were assayed using commercial kits. Differentially expressed genes were identified by RNA-sequencing and verified using real-time PCR (RT-PCR) and western blotting. Whole miRNAs were detected by RNA-sequence analysis, and mRNA-targeted miRNAs were verified by RT-PCR. The miRNA-mRNA regulation pattern was confirmed using the dual-luciferase reporter assay. RESULTS: Treatment with GJLZ significantly improved hepatic steatosis and inflammation, reduced liver index and liver TG content, and also significantly reduced serum ALT and AST levels. Based on the results of RNA-sequence analysis, five differentially expressed genes (DEGs) in the peroxisome proliferator-activated receptor (PPAR) signaling pathway were recognized. RT-PCR confirmed that carnitine palmitoyltransferase 1b (CPT1B) expression was significantly regulated by GJLZ treatment. GJLZ decoction intervention also increased significantly hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA) expression. Next, miRNA profiling and screening were performed based on CPT1B alteration. Rno-miR-138-5p likely responded to GJLZ intervention, and rno-miR-138-5p inhibitor increased CPT1B expression while rno-miR-138-5p mimic reduced CPT1B expression. When CPT1B mutated, miR-138-5p mimic and inhibitor could not regulate the luciferase activity of CPT1B. CONCLUSIONS: GJLZ is an effective formula for NAFLD management, and its possible mechanism of action involves the regulation of CPT1B expression via rno-miR-138-5p.


Asunto(s)
Carnitina O-Palmitoiltransferasa/genética , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , MicroARNs/fisiología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Carnitina O-Palmitoiltransferasa/fisiología , Medicamentos Herbarios Chinos/farmacología , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Masculino , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/fisiología , Ratas , Ratas Wistar , Triglicéridos/metabolismo
14.
J Zhejiang Univ Sci B ; 21(3): 204-217, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133798

RESUMEN

Microglia are important cells involved in the regulation of neuropathic pain (NPP) and morphine tolerance. Information on their plasticity and polarity has been elucidated after determining their physiological structure, but there is still much to learn about the role of this type of cell in NPP and morphine tolerance. Microglia mediate multiple functions in health and disease by controlling damage in the central nervous system (CNS) and endogenous immune responses to disease. Microglial activation can result in altered opioid system activity, and NPP is characterized by resistance to morphine. Here we investigate the regulatory mechanisms of microglia and review the potential of microglial inhibitors for modulating NPP and morphine tolerance. Targeted inhibition of glial activation is a clinically promising approach to the treatment of NPP and the prevention of morphine tolerance. Finally, we suggest directions for future research on microglial inhibitors.


Asunto(s)
Microglía/fisiología , Morfina/farmacología , Neuralgia/etiología , Péptido Relacionado con Gen de Calcitonina/antagonistas & inhibidores , Tolerancia a Medicamentos , Humanos , Hipoglucemiantes/farmacología , MicroARNs/fisiología , Microglía/efectos de los fármacos , Minociclina/farmacología , Neuralgia/tratamiento farmacológico , Extractos Vegetales/farmacología , Transducción de Señal/fisiología
15.
Pak J Pharm Sci ; 33(1(Special)): 403-408, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32173634

RESUMEN

Inflammatory response that occur post-ischemia is a serious problem in the treatment of ischemic brain disease. MicroRNA-155 is a brain-specific or brain-enriched miRNA, which mediates inflammatory reactions in cerebral ischemic tissue by regulating inflammatory signal and the expression level of SOCS1. The present study was aimed to assess the effect of GuaLou GuiZhi Decoction (GLGZD) on miR-155 expression in activated microglia following inflammation and further explore the role of GLGZD on expression of the inflammation-related gene. BV2 cells were used to simulated by LPS to make the inflammatory model. Expression level of miR-155 was detected by Real-Time PCR. BV2 cells after simulated by LPS were then transfected with miR-155 mimic and its negative controls. Cytokines release were measured by corresponding purchased ELISA kits, respectively. Then target protein expression of miR-155 were detected by western blotting assay. After miRNA over expression transfections, expressions of inflammation-related factors, SOCS-1 and SAMD in BV2 cells after activation were measured by Western blot assay. Results showed that in BV2 cells after simulated by LPS, miR-155 was upregulated. The elevated miR-155 expression enhanced the inflammatory cytokine release. miR-155 directly target and negatively regulated SOCS-1 and SMAD-1 expression. Over expression of SOCS-1 and SMAD reduced inflammatory action that was enhanced by miR-155 mimic transfection. miR-155 was positively related with activation of NF-Ï°B signal pathways via SOCS-1 and SMAD. In conclusion, GuaLou GuiZhi Decoction (GLGZD) might exert its anti-inflammatory action by inhibiting the expression of miR-155, indicating that miR-155 may be used as a treatment target in clinical treatment with GuaLou GuiZhi Decoction (GLGZD) in ischemic brain.


Asunto(s)
Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Lipopolisacáridos/farmacología , MicroARNs/fisiología , Microglía/efectos de los fármacos , Animales , Isquemia Encefálica/tratamiento farmacológico , Células Cultivadas , Citocinas/biosíntesis , Ratones , MicroARNs/antagonistas & inhibidores , Microglía/fisiología , Proteína Smad1/antagonistas & inhibidores , Proteína 1 Supresora de la Señalización de Citocinas/antagonistas & inhibidores
16.
Phytother Res ; 34(4): 721-728, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31972874

RESUMEN

Effective management and treatment of cancer depend on developing novel antitumor drugs with the capability of targeting various molecular pathways. Identification and subsequent targeting of these pathways are of importance in cancer therapy. MicroRNAs (miRNAs) are small noncoding RNA molecules responsible for post-transcriptional regulation of genes. Notably, miRNAs participate in a number of biological processes such as proliferation, apoptosis, differentiation, and cell cycle regulation. So, any impairment in the expression and function of miRNAs is associated with development of disorders, particularly cancer. Naturally occurring nutraceutical compounds have attracted much attention due to their great antitumor activity. Among them, sulforaphane isolated from Brassica oleracea (broccoli) is of interest due to its therapeutic and biological activities such as antidiabetic, antioxidant, anti-inflammatory, hepatoprotection, and cardiprotection. Sulforaphane has demonstrated great antitumor activity and is able to significantly inhibit proliferation, viability, migration, malignancy, and epithelial-to-mesenchymal transition of cancer cells. These antitumor effects have widely been investigated, and it appears that there is a need for a precise review to demonstrate the molecular pathway that sulforaphane follows to exert its antitumor activity. At the present review, we focus on the modulatory impact of sulforaphane on miRNAs and exhibit that how various miRNAs in different cancers are regulated by sulforaphane.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Isotiocianatos/farmacología , MicroARNs/fisiología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Brassica/química , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Isotiocianatos/aislamiento & purificación , MicroARNs/metabolismo , Neoplasias/patología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Sulfóxidos
17.
Plant Cell Environ ; 43(5): 1148-1159, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31833568

RESUMEN

Inorganic phosphorus (Pi) deficiency induces anthocyanin accumulation in the leaves of some plant species; however, the molecular mechanisms underlying this phenomenon have not been well characterized. Here, we showed that microRNA399d (miR399d), high-affinity Pi transporter McPHT1;4, and McMYB10 are strongly induced in Malus leaves suffering from Pi deficiency. By culturing explants of transiently transformed plants in MS medium under conditions of Pi sufficiency and Pi deficiency, miR399d and McPHT1;4 were shown to play essential roles in the response to Pi deficiency and to play positive roles in the regulation of anthocyanin biosynthesis. Silencing of McHDA6 expression and treatment with the inhibitor trichostatin A suggested that the low expression of McHDA6 simultaneously reduced the transcription of McMET1 and decreased the methylation level of the McMYB10 promoter; however, the expression of McMYB10 and anthocyanin content were increased. Bimolecular fluorescence complementation and yeast two-hybrid assays revealed that McHDA6 binds directly to McMET1 through its BAH2 and DNMT1-RFD domains. Based on the results of our study, we propose a mechanism for the molecular regulation of anthocyanin biosynthesis, namely, the miR399d and epigenetic modification comodulation model, to explain the phenomenon in which leaves turn red under conditions of Pi deficiency.


Asunto(s)
Antocianinas/metabolismo , Epigénesis Genética , Malus/metabolismo , MicroARNs/metabolismo , Fósforo/deficiencia , Hojas de la Planta/metabolismo , ARN de Planta/metabolismo , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , MicroARNs/fisiología , ARN de Planta/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Técnicas del Sistema de Dos Híbridos
18.
Br J Nutr ; 122(11): 1201-1211, 2019 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-31782376

RESUMEN

Disturbances in lipid metabolism are at the core of several health issues facing modern society, including fatty liver and obesity. The sterol regulatory element-binding protein 1 (SREBP-1) is one important transcription factor regulating lipid metabolism, but the relevant mechanism still remains unknown. The present study determined the transcriptional regulation of SREBP-1 and its target genes (including acetyl-CoA carboxylase α (accα), fatty acid synthase (fas) and stearoyl-CoA desaturase 1 (scd1)) in a freshwater teleost, grass carp Ctenopharyngodon idella. We cloned and characterised the 1988 bp, 2043 bp, 1632 bp and 1889 bp sequences of srebp-1, accα, scd1 and fas promoters, respectively. A cluster of putative binding sites of transcription factors, such as specific protein, yin yang 1, nuclear factor Y, sterol response elements (SRE) and enhancer box (E-box) element, were predicted on their promoter regions. Overexpression of nSREBP-1 reduced srebp-1 promoter activity, increased scd1 and fas promoter activity but did not influence accα promoter activity. The site-mutation and electrophoretic mobility shift assay analysis indicated that srebp-1, fas and scd1 promoters, but not accα promoter, possessed SRE. In Ctenopharyngodon idella kidney (CIK) cells of grass carp, nSREBP-1 overexpression significantly reduced srebp-1 mRNA expression and up-regulated miR-29 mRNA expression. The 3'UTR of srebp-1 possessed the potential miR-29 binding site and miR-29 up-regulated the luciferase activity of srebp-1 3'UTR and srebp-1 mRNA expression, implying a self-activating loop of SREBP-1 and miR-29 in grass carp. Based on the above-mentioned results, we found two novel transcriptional mechanisms for SREBP-1 in grass carp: (1) the auto-regulation sited on the SREBP-1 promoter regions was suppressive and (2) there was a self-activating loop of SREBP-1 and miR-29.


Asunto(s)
Carpas/metabolismo , Lipogénesis/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología , Acetil-CoA Carboxilasa/genética , Animales , Carpas/genética , Células Cultivadas , Clonación Molecular , Ácido Graso Sintasas/genética , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Riñón/química , Riñón/metabolismo , Lipogénesis/genética , MicroARNs/genética , MicroARNs/fisiología , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ADN/veterinaria , Estearoil-CoA Desaturasa/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Transcripción Genética/fisiología , Transfección
19.
PLoS Biol ; 17(11): e3000532, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31697675

RESUMEN

Mkrn3, the maternally imprinted gene encoding the makorin RING-finger protein-3, has recently emerged as putative pubertal repressor, as evidenced by central precocity caused by MKRN3 mutations in humans; yet, the molecular underpinnings of this key regulatory action remain largely unexplored. We report herein that the microRNA, miR-30, with three binding sites in a highly conserved region of its 3' UTR, operates as repressor of Mkrn3 to control pubertal onset. Hypothalamic miR-30b expression increased, while Mkrn3 mRNA and protein content decreased, during rat postnatal maturation. Neonatal estrogen exposure, causing pubertal alterations, enhanced hypothalamic Mkrn3 and suppressed miR-30b expression in female rats. Functional in vitro analyses demonstrated a strong repressive action of miR-30b on Mkrn3 3' UTR. Moreover, central infusion during the juvenile period of target site blockers, tailored to prevent miR-30 binding to Mkrn3 3' UTR, reversed the prepubertal down-regulation of hypothalamic Mkrn3 protein and delayed female puberty. Collectively, our data unveil a novel hypothalamic miRNA pathway, involving miR-30, with a prominent role in the control of puberty via Mkrn3 repression. These findings expand our current understanding of the molecular basis of puberty and its disease states.


Asunto(s)
Hipotálamo/metabolismo , MicroARNs/fisiología , Maduración Sexual/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Sitios de Unión , Línea Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , MicroARNs/metabolismo , Ratas , Análisis de Secuencia de ADN
20.
J Nutr Biochem ; 73: 108220, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31630081

RESUMEN

We examined the role of hepatocyte micro-RNA-122 and hypothalamic neuropeptides, in weanling (21d) female rats exposed to calorie restriction induced growth restriction either prenatally (IUGR), postnatally (PNGR) or both (IPGR) vs. ad lib fed controls (CON). IUGR were hyperinsulinemic, hyperleptinemic and dyslipidemic with high circulating miR-122. In contrast, PNGR and IPGR displayed insufficient glucose, insulin and leptin amidst high ketones with a dichotomy in circulating miR-122 of PNGR

Asunto(s)
Restricción Calórica/efectos adversos , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , MicroARNs/fisiología , Animales , Peso Corporal , Ritmo Circadiano , Metabolismo Energético , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Femenino , Retardo del Crecimiento Fetal/etiología , Expresión Génica , Trastornos del Crecimiento/etiología , Hipotálamo/química , Hígado/química , Hígado/metabolismo , MicroARNs/genética , Tamaño de los Órganos , Embarazo , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA