Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.430
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Physiol Plant ; 176(2): e14293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38641970

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs in eukaryotes. Plant endogenous miRNAs play pivotal roles in regulating plant development and defense responses. MicroRNA394 (miR394) has been reported to regulate plant development, abiotic stresses and defense responses. Previous reports showed that miR394 responded to P. infestans inoculation in potato, indicating that miR394 may be involved in defense responses. In this study, we further investigated its role in potato defense against P. infestans. Stable expression of miR394 in tobacco and potato enhances the susceptibility to P. infestans, which is accompanied with the reduced accumulation of ROS and down-regulation of the PTI (pattern-triggered immunity) marker genes. Besides well-known target StLCR, miR394 also targets StA/N-INVE, which encodes a chloroplast Alkaline/Neutral Invertases (A/N-INVE). Both StLCR and StA/N-INVE positively regulate late blight resistance, while miR394 degrades them. Interestingly, StA/N-INVE is located in the chloroplast, indicating that miR394 may manipulate chloroplast immunity. Degradation of StA/N-INVE may affect the chloroplast function and hence lead to the compromised ROS (reactive oxygen species) burst and reduced retrograde signaling from the chloroplast to the nucleus and cytoplasm. In summary, this study provides new information that miR394 targets and degrades StA/N-INVE and StLCR, which are positive regulators, to enhance potato susceptibility to P. infestans.


Asunto(s)
MicroARNs , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Plantas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1073-1081, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621914

RESUMEN

The present study aimed to investigate the effect and mechanism of Bupleuri Radix-Paeoniae Radix Alba medicated plasma on HepG2 hepatoma cells by regulating the microRNA-1297(miR-1297)/phosphatase and tensin homologue deleted on chromosome 10(PTEN) signaling axis. Real-time quantitative PCR(RT-qPCR) was carried out to determine the mRNA levels of miR-1297 and PTEN in different hepatoma cell lines. The dual luciferase reporter assay was employed to verify the targeted interaction between miR-1297 and PTEN. The cell counting kit-8(CCK-8) was used to detect cell proliferation, and the optimal concentration and intervention time of the medicated plasma were determined. The cell invasion and migration were examined by Transwell assay and wound healing assay. Cell cycle distribution was detected by PI staining, and the apoptosis of cells was detected by Annexin V-FITC/PI double staining. The mRNA levels of miR-1297, PTEN, protein kinase B(Akt), and phosphatidylinositol 3-kinase(PI3K) were determined by RT-qPCR. Western blot was employed to determine the protein levels of PTEN, Akt, p-Akt, caspase-3, caspase-9, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). The results showed that HepG2 cells were the best cell line for subsequent experiments. The dual luciferase reporter assay confirmed that miR-1297 could bind to the 3'-untranslated region(3'UTR) in the mRNA of PTEN. The medicated plasma inhibited the proliferation of HepG2 cells, and the optimal intervention concentration and time were 20% and 72 h. Compared with the blank plasma, the Bupleuri Radix-Paeoniae Radix Alba medicated plasma, miR-1297 inhibitor, miR-1297 inhibitor + medicated plasma all inhibited the proliferation, invasion, and migration of HepG2 cells, increased the proportion of cells in the G_0/G_1 phase, decreased the proportion of cells in the S phase, and increased the apoptosis rate. The medicated plasma down-regulated the mRNA levels of miR-1297, PI3K, and Akt and up-regulated the mRNA level of PTEN. In addition, it up-regulated the protein levels of PTEN, Bax, caspase-3, and caspsae-9 and down-regulated the protein levels of p-Akt, p-PI3K, and Bcl-2. In conclusion, Bupleuri Radix-Paeoniae Radix Alba medicated plasma can inhibit the expression of miR-1297 in HepG2 hepatoma cells, promote the expression of PTEN, and negatively regulate PI3K/Akt signaling pathway, thereby inhibiting the proliferation and inducing the apoptosis of HepG2 cells.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , MicroARNs , Paeonia , Extractos Vegetales , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Hep G2 , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2 , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Apoptosis , Proliferación Celular , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , ARN Mensajero , Luciferasas/metabolismo , Luciferasas/farmacología , Línea Celular Tumoral
3.
J Ethnopharmacol ; 330: 118208, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636581

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zhilong Huoxue Tongyu Capsule (ZL) is clinically prescribed for acute ischemic stroke (AIS). However, only a few studies have addressed the mechanisms of ZL in treating AIS. AIM OF THE STUDY: To explore the underlying mechanism of macrophage polarization and inflammation mediated by ZL, and to provide a reference for AIS treatment. MATERIALS AND METHODS: Sixteen SD rats were fed with different dose of ZL (0, 0.4, 0.8, and 1.6 g/kg/d) for 4 days to prepare ZL serum. After 500 ng/mL lipopolysaccharide (LPS) stimulation, RAW264.7 cells were administrated with ZL serum. Then, experiments including ELISA, flow cytometry, real-time quantitative PCR and Western blot were performed to verify the effects of ZL on macrophage polarization and inflammation. Next, let-7i inhibitor was transfected in RAW264.7 cells when treated with LPS and ZL serum to verify the regulation of ZL on the let-7i/TLR9/MyD88 signaling pathway. Moreover, the interaction between let-7i and TLR9 was confirmed by the dual-luciferase assay. RESULTS: ZL serum significantly decreased the expression of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and increased the expression of IL-10 and transforming growth factor ß1 (TGF-ß1) of LPS stimulated-macrophages. Furthermore, ZL serum polarized macrophages toward M2, decreased the expressions of TLR9, MyD88, and iNOS, as well as increased the expressions of let-7i, CHIL3, and Arginase-1. It is worth mentioning that the effect of ZL serum is dose-dependent. However, let-7i inhibitor restored all the above effects in LPS stimulated-macrophages. In addition, TLR9 was the target of let-7i. CONCLUSIONS: ZL targeted let-7i to inhibit TLR9 expression, thereby inhibiting the activation of the TLR9/MyD88 pathway, promoting the M2 polarization, and inhibiting the development of inflammation in AIS.


Asunto(s)
Medicamentos Herbarios Chinos , Macrófagos , MicroARNs , Factor 88 de Diferenciación Mieloide , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 9 , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Ratones , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Receptor Toll-Like 9/metabolismo , Medicamentos Herbarios Chinos/farmacología , MicroARNs/metabolismo , Ratas , Masculino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos , Antiinflamatorios/farmacología
4.
Neuroscience ; 545: 185-195, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38522660

RESUMEN

Post-stroke cognitive impairment is a significant challenge with limited treatment options. Electroacupuncture (EA) has shown promise in improving cognitive function after stroke. Our study explores the underlying mechanism of EA in alleviating cognitive impairment through the inhibition of autophagy. We utilized a rat model of stroke induced by middle cerebral artery occlusion (MCAO) to evaluate the efficacy of EA. Treatment with EA was observed to markedly improve cognitive function and reduce inflammation in MCAO rats, as evidenced by decreased neurological deficit scores, shorter latencies in the water maze test, and diminished infarct volumes. EA also attenuated tissue damage in the hippocampus and lowered the levels of pro-inflammatory cytokines and oxidative stress markers. Although autophagy was upregulated in MCAO rats, EA treatment suppressed this process, indicated by a reduction in autophagosome formation and alteration of autophagy-related protein expression. The protective effects of EA were reversed by the autophagy activator rapamycin. EA treatment elevated the levels of microRNA (miR)-135a-5p expression, and suppression of this elevation attenuated the remedial efficacy of EA in addressing cognitive impairment and inflammation. MiR-135a-5p targeted mammalian target of rapamycin (mTOR)/NOD-like receptor protein 3 (NLRP3) signaling to repress autophagy. EA treatment inhibits autophagy and alleviates cognitive impairment in post-stroke rats. It exerts its beneficial effects by upregulating miR-135a-5p and targeting the mTOR/NLRP3 axis.


Asunto(s)
Autofagia , Disfunción Cognitiva , Electroacupuntura , MicroARNs , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Accidente Cerebrovascular , Serina-Treonina Quinasas TOR , Animales , Electroacupuntura/métodos , MicroARNs/metabolismo , Autofagia/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Masculino , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Disfunción Cognitiva/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Ratas , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Transducción de Señal/fisiología , Hipocampo/metabolismo , Modelos Animales de Enfermedad
5.
Comput Biol Med ; 172: 108221, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452473

RESUMEN

BACKGROUND: Gastric carcinoma (GC) remains a significant therapeutic challenge, garnering widespread attention. Oxymatrine (OMT), an active component of the traditional Chinese medicine compound Kushen injection (CKI), has shown promising results in combination with chemotherapy for the treatment of GC. However, the molecular mechanisms underlying OMT's therapeutic effects in GC have yet to be elucidated. METHODS: The transcriptomic expression data of HGC-27 post-OMT intervention were obtained through microarray sequencing, while the miRNA and mRNA sequencing data for GC patients were sourced from the TCGA database. The mechanism of OMT intervention in GC is analyzed in multiple aspects, including Protein-Protein Interactions (PPI), Competitive Endogenous RNA (ceRNA) networks, correlation and co-expression analyses, immune infiltration, and clinical implications. RESULTS: By analyzing key modules, five critical mRNAs were identified, and their interacting miRNAs were predicted to construct a ceRNA network. Among these, TGFBR2 and hsa-miR-107 have correlations or co-expression relationships with other genes in the network. They are differentially expressed in most other cancers, associated with prognosis, and have diagnostic value. TGFBR2 also exhibits immune infiltration phenomena, and its high expression is linked to poor patient prognosis. Low expression of hsa-miR-107 is associated with poor patient prognosis. OMT may act on the TGFß/Smad signaling pathway or negatively regulate the WNT signaling pathway through the hsa-miR-107/BTRC axis, thereby inhibiting the onset and progression of GC. CONCLUSION: The mechanisms of OMT intervention in GC are diverse, TGFBR2 and hsa-miR-107 may serve as prognostic molecular biomarkers or potential therapeutic targets.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Biología Computacional/métodos , MicroARNs/genética , MicroARNs/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , ARN Mensajero/genética , Neoplasias Gástricas/genética
6.
Sci Total Environ ; 925: 171774, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38508246

RESUMEN

This study investigates the intricate interplay between environmental pollutants and exosomes, shedding light on a novel paradigm in environmental health and disease. Cellular stress, induced by environmental toxicants or disease, significantly impacts the production and composition of exosomes, crucial mediators of intercellular communication. The heat shock response (HSR) and unfolded protein response (UPR) pathways, activated during cellular stress, profoundly influence exosome generation, cargo sorting, and function, shaping intercellular communication and stress responses. Environmental pollutants, particularly lipophilic ones, directly interact with exosome lipid bilayers, potentially affecting membrane stability, release, and cellular uptake. The study reveals that exposure to environmental contaminants induces significant changes in exosomal proteins, miRNAs, and lipids, impacting cellular function and health. Understanding the impact of environmental pollutants on exosomal cargo holds promise for biomarkers of exposure, enabling non-invasive sample collection and real-time insights into ongoing cellular responses. This research explores the potential of exosomal biomarkers for early detection of health effects, assessing treatment efficacy, and population-wide screening. Overcoming challenges requires advanced isolation techniques, standardized protocols, and machine learning for data analysis. Integration with omics technologies enhances comprehensive molecular analysis, offering a holistic understanding of the complex regulatory network influenced by environmental pollutants. The study underscores the capability of exosomes in circulation as promising biomarkers for assessing environmental exposure and systemic health effects, contributing to advancements in environmental health research and disease prevention.


Asunto(s)
Contaminantes Ambientales , Exosomas , MicroARNs , Exosomas/metabolismo , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , MicroARNs/metabolismo , Biomarcadores/metabolismo , Salud Ambiental
7.
Plant Physiol Biochem ; 208: 108524, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38518432

RESUMEN

Plant secondary metabolites are important raw materials for the pharmaceutical industry, and their biosynthetic processes are subject to diverse and precise regulation by miRNA. The identification of miRNA molecules in medicinal plants and exploration of their mechanisms not only contribute to a deeper understanding of the molecular genetic mechanisms of plant growth, development and resistance to stress, but also provide a theoretical basis for elucidating the pharmacological effects of authentic medicinal materials and constructing bioreactors for the synthesis of medicinal secondary metabolite components. This paper summarizes the research reports on the discovery of miRNA in medicinal plants and their regulatory mechanisms on the synthesis of secondary metabolites by searching the relevant literature in public databases. It summarizes the currently discovered miRNA and their functions in medicinal plants, and summarizes the molecular mechanisms regulating the synthesis and degradation of secondary metabolites. Furthermore, it provides a prospect for the research and development of medicinal plant miRNA. The compiled information contributes to a comprehensive understanding of the research progress on miRNA in medicinal plants and provides a reference for the industrial development of related secondary metabolite biosynthesis.


Asunto(s)
MicroARNs , Plantas Medicinales , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Metabolismo Secundario/genética
8.
Physiol Res ; 73(1): 37-45, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466003

RESUMEN

Aspirin supplemented with quercetin was reported to enhance the therapeutic effects of aspirin in a rat model of preeclampsia. In this study, the underlying mechanisms were further explored. Preeclampsia was induced by L-NAME (50 mg/kg/day) via oral gavage from gestation day (GD)14 to GD19. Aspirin (1.5 mg/kg/day) administration was performed using aspirin mixed with rodent dough from GD0 to GD19. The administration of quercetin (2 mg/kg/day) was performed by intraperitoneal infusion from GD0 to GD19. Protein levels were evaluated using ELISA or Western blot, and microRNA (miRNA) level was evaluated by RT-PCR. Aspirin supplemented with quercetin ameliorated the increase of systolic blood pressure (SBP), proteinuria, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) levels, and improved the pregnancy outcomes in preeclampsia rats. Aspirin supplemented with quercetin inhibited miR-155 expression in preeclampsia rats. The decreased miR-155 level in placenta further increased the protein level of SOCS1 and inhibited the phosphorylation of p65. In this study, we demonstrated that aspirin supplemented with quercetin enhanced the effects of aspirin for the treatment of preeclampsia.


Asunto(s)
MicroARNs , Preeclampsia , Embarazo , Humanos , Femenino , Ratas , Animales , Preeclampsia/inducido químicamente , Preeclampsia/tratamiento farmacológico , Preeclampsia/prevención & control , Aspirina/efectos adversos , Quercetina/farmacología , Quercetina/uso terapéutico , NG-Nitroarginina Metil Éster/farmacología , Placenta/metabolismo , MicroARNs/metabolismo
9.
Chem Biol Drug Des ; 103(3): e14472, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38458967

RESUMEN

Brucine is a weak alkaline indole alkaloid with wide pharmacological activities and has been identified to protect against rheumatoid arthritis (RA) process. Circular RNAs (circRNAs) are also reported to be involved in the pathogenesis of RA. Here, we aimed to probe the role and mechanism of Brucine and circ_0139658 in RA progression. The fibroblast-like synoviocytes of RA (RA-FLSs) were isolated for functional analysis. Cell proliferation, apoptosis, invasion, migration, as well as inflammatory response were evaluated by CCK-8 assay, EdU assay, flow cytometry, transwell assay, and ELISA analysis, respectively. qRT-PCR and western blotting analyses were utilized to measure the levels of genes and proteins. The binding between miR-653-5p and circ_0139658 or Yin Yang 1 (YY1), was verified using dual-luciferase reporter and RNA pull-down assays. Brucine suppressed the proliferation, migration, and invasion of RA-FLSs, and alleviated inflammation by reducing the release of pro-inflammatory factors and macrophage M1 polarization. RA-FLSs showed increased circ_0139658 and YY1 levels and decreased miR-653-5p levels. Circ_0139658 is directly bound to miR-653-5p to regulate YY1 expression. Brucine treatment suppressed circ_0139658 and YY1 expression but increased YY1 expression in RA-FLSs. Functionally, circ_0139658 overexpression reversed the suppressing effects of Brucine on RA-FLS dysfunction and inflammation. Moreover, circ_0139658 silencing alleviated the dysfunction and inflammation in RA-FLSs, which were reverted by YY1 overexpression. Brucine suppressed the proliferation, migration, invasion, and inflammation in RA-FLSs by decreasing YY1 via circ_0139658/miR-653-5p axis.


Asunto(s)
Artritis Reumatoide , MicroARNs , Estricnina/análogos & derivados , Sinoviocitos , Humanos , Sinoviocitos/metabolismo , Sinoviocitos/patología , MicroARNs/genética , MicroARNs/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Fibroblastos/metabolismo , Proliferación Celular , Células Cultivadas , Apoptosis , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
10.
Biochem Pharmacol ; 222: 116118, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467376

RESUMEN

Diabetes-related hyperglycemia inhibits bone marrow mesenchymal stem cell (BMSC) function, thereby disrupting osteoblast capacity and bone regeneration. Dietary supplementation with phytic acid (PA), a natural inositol phosphate, has shown promise in preventing osteoporosis and diabetes-related complications. Emerging evidence has suggested that circular (circ)RNAs implicate in the regulation of bone diseases, but their specific regulatory roles in BMSC osteogenesis in hyperglycemic environments remain elucidated. In this study, in virto experiments demonstrated that PA treatment effectively improved the osteogenic capability of high glucose-mediated BMSCs. Differentially expressed circRNAs in PA-induced BMSCs were identified using circRNA microarray analysis. Here, our findings highlight an upregulation of circEIF4B expression in BMSCs stimulated with PA under a high-glucose microenvironment. Further investigations demonstrated that circEIF4B overexpression promoted high glucose-mediated BMSC osteogenesis. In contrast, circEIF4B knockdown exerted the opposite effect. Mechanistically, circEIF4B sequestered microRNA miR-186-5p and triggered osteogenesis enhancement in BMSCs by targeting FOXO1 directly. Furthermore, circEIF4B inhibited the ubiquitin-mediated degradation of IGF2BP3, thereby stabilizing ITGA5 mRNA and promoting BMSC osteogenic differentiation. In vivo experiments, circEIF4B inhibition attenuated the effectiveness of PA treatment in diabetic rats with cranial defects. Collectively, our study identifies PA as a novel positive regulator of BMSC osteogenic differentiation through the circEIF4B/miR-186-5p/FOXO1 and circEIF4B/IGF2BP3/ITGA5 axes, which offers a new strategy for treating high glucose-mediatedBMSCosteogenic dysfunction and delayed bone regeneration in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Células Madre Mesenquimatosas , MicroARNs , Ratas , Animales , Osteogénesis , MicroARNs/metabolismo , Ácido Fítico/farmacología , Ácido Fítico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Células de la Médula Ósea/metabolismo , Células Cultivadas
11.
Nat Commun ; 15(1): 2131, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459068

RESUMEN

AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.


Asunto(s)
Hambre , MicroARNs , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Hambre/fisiología , Hipotálamo/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo
12.
Int Immunopharmacol ; 131: 111852, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38492338

RESUMEN

BACKGROUND: We recently found that butyrate could ameliorate inflammation of alcoholic liver disease (ALD) in mice. However, the exact mechanism remains incompletely comprehended. Here, we examined the role of butyrate on ALD-associated inflammation through macrophage (Mψ) regulation and polarization using in vivo and in vitro experiments. METHODS: For in vivo experiments, C57BL/6J mice were fed modified Lieber-DeCarli liquid diets supplemented with or without ethanol and sodium butyrate (NaB). After 6 weeks of treatment, mice were euthanized and associated indicators were analyzed. For in vitro experiments, lipopolysaccharide (LPS)-induced inflammatory murine RAW264.7 cells were treated with NaB or miR-155 inhibitor/mimic to verify the anti-inflammatory effect and underlying mechanism. RESULTS: The administration of NaB alleviated pathological damage and associated inflammation, including LPS, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1ß levels in ALD mice. NaB intervention restored the imbalance of macrophage polarization by inhibiting inducible nitric oxide synthase (iNOS) and elevating arginase-1 (Arg-1). Moreover, NaB reduced histone deacetylase-1 (HDAC1), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), and miR-155 expression in ALD mice, but also increased peroxisome proliferator-activated receptor-γ (PPAR-γ). Thus, MiR-155 was identified as a strong regulator of ALD. To further penetrate the role of miR-155, LPS-stimulated RAW264.7 cells co-cultured with NaB were treated with the specific inhibitor or mimic. Intriguingly, miR-155 was capable of negatively regulated inflammation with NaB intervention by targeting SOCS1, SHIP1, and IRAK-M genes. CONCLUSION: Butyrate suppresses the inflammation in mice with ALD by regulating macrophage polarization via the HDAC1/miR-155 axis, which may potentially contribute to the novel therapeutic treatment for the disease.


Asunto(s)
Hepatitis Alcohólica , Hepatopatías Alcohólicas , MicroARNs , Ratones , Animales , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Hepatopatías Alcohólicas/patología , Inflamación/metabolismo , Macrófagos , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Ácido Butírico/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , MicroARNs/metabolismo
13.
Aging (Albany NY) ; 16(7): 5916-5928, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38536006

RESUMEN

BACKGROUND: Fluorouracil (5-FU) might produce serious cardiac toxic reactions. miRNA-199a-5p is a miRNA primarily expressed in myocardial cells and has a protective effect on vascular endothelium. Under hypoxia stress, the expression level of miRNA-199a-5p was significantly downregulated and is closely related to cardiovascular events such as coronary heart disease, heart failure, and hypertension. We explored whether 5-FU activates the endoplasmic reticulum stress ATF6 pathway by regulating the expression of miRNA-199a-5p in cardiac toxicity. METHODS: This project established a model of primary cardiomyocytes derived from neonatal rats and treated them with 5-FU in vitro. The expression of miRNA-199a-5p and its regulation were explored in vitro and in vivo. RESULTS: 5-FU decreases the expression of miRNA-199a-5p in cardiomyocytes, activates the endoplasmic reticulum stress ATF6 pathway, and increases the expression of GRP78 and ATF6, affecting the function of cardiomyocytes, and induces cardiac toxicity. The rescue assay further confirmed that miRNA-199a-5p supplementation can reduce the cardiotoxicity caused by 5-FU, and its protective effect on cardiomyocytes depends on the downregulation of the endoplasmic reticulum ATF6 signaling pathway. CONCLUSIONS: 5-FU can down-regulate expression of miRNA-199a-5p, then activate the endoplasmic reticulum stress ATF6 pathway, increase the expression of GRP78 and ATF6, affect the function of cardiomyocytes, and induce cardiac toxicity.


Asunto(s)
Factor de Transcripción Activador 6 , Cardiotoxicidad , Regulación hacia Abajo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Fluorouracilo , MicroARNs , Miocitos Cardíacos , Transducción de Señal , Animales , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/genética , MicroARNs/metabolismo , MicroARNs/genética , Ratas , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Fluorouracilo/toxicidad , Fluorouracilo/efectos adversos , Cardiotoxicidad/metabolismo , Cardiotoxicidad/genética , Cardiotoxicidad/etiología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Cultivadas , Ratas Sprague-Dawley , Masculino
14.
Phytomedicine ; 128: 155261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493716

RESUMEN

BACKGROUND: Recurrence and metastasis are the main causes of disease deterioration in colorectal cancer (CRC) patients, yet efficient therapeutic strategies are lacking. Natural compounds for efficient antitumour therapeutics are becoming increasingly prominent. Kaempferol, one of the main components of flavonoids in plants, displays a variety of pharmacological activities. Our preliminary experiments suggested that kaempferol could inhibit CRC metastasis and is significantly associated with the ß-catenin signalling pathway. Moreover, we also defined the regulatory roles of JMJD2C in ß-catenin signalling in our previous work. PURPOSE: This study aims to reveal the mechanism by which kaempferol inhibits CRC progression and regulates the JMJD2C/ß-catenin signalling pathway. METHODS: The migratory capabilities of CRC cells after kaempferol intervention were measured by scratch wound healing and transwell assays. Circ_0000345 knockdown CRC stable cell lines were generated by lentivirus infection. The possible mechanism of kaempferol on circ_0000345 was verified by molecular-protein docking and verification program cellular thermal shift assay (CETSA). A dual luciferase reporter gene assay was carried out for the targeting relationship among circ_0000345, miR-205-5p and JMJD2C. Fluorescence in situ hybridization (FISH) was performed to determine the expression of circ_0000345 in tumour tissues. A pulmonary metastatic model of CRC in vitro was built to assess the antimetastatic effect and mechanism of kaempferol in vivo. RESULTS: In vitro, kaempferol inhibits the ability to migrate of CRC cells by reducing the activation of the JMJD2C/ß-catenin signalling pathway. MiR-205-5p is a key bridge for kaempferol to inhibit the expression of JMJD2C. The function of miR-205-5p is impeded by circ_0000345, which shows higher expression levels in human metastatic CRC tissues than nonmetastatic CRC tissues, and its formation is regulated by the RNA-binding proteins HNRNPK and HNRNPL. Mechanistically, kaempferol physically interacts with HNRNPK and HNRNPL to suppress JMJD2C by downregulating the expression of circ_0000345. In vivo, kaempferol suppresses CRC lung metastasis. Kaempferol inhibits the activation of JMJD2C/ß-catenin signalling through reducing the expression of circ_0000345 in the CRC lung metastasis model. CONCLUSION: Circ_0000345 enhances activation of the JMJD2C/ß-catenin signalling pathway through miR-205-5p to promote CRC metastasis. Kaempferol inhibits CRC metastasis through the circ_0000345-mediated JMJD2C/ß-catenin signalling pathway, and this effect is influenced as a direct consequence of the binding of kaempferol with HNRNPK and HNRNPL. This provides promising therapeutic and/or adjuvant agents for advanced CRC and sheds light on the multifaceted role of phytomedicine in cancer.


Asunto(s)
Neoplasias Colorrectales , Histona Demetilasas con Dominio de Jumonji , Quempferoles , beta Catenina , Quempferoles/farmacología , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Histona Demetilasas con Dominio de Jumonji/metabolismo , beta Catenina/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , ARN Circular/metabolismo , ARN Circular/genética , Transducción de Señal/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C , Masculino , MicroARNs/metabolismo , MicroARNs/genética , Ratones , Simulación del Acoplamiento Molecular
15.
Chin J Integr Med ; 30(5): 398-407, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38386253

RESUMEN

OBJECTIVE: To investigate the pharmacological mechanism of Qili Qiangxin Capsule (QLQX) improvement of heart failure (HF) based on miR133a-endoplasmic reticulum stress (ERS) pathway. METHODS: A left coronary artery ligation-induced HF after myocardial infarction model was used in this study. Rats were randomly assigned to the sham group, the model group, the QLQX group [0.32 g/(kg·d)], and the captopril group [2.25 mg/(kg·d)], 15 rats per group, followed by 4 weeks of medication. Cardiac function such as left ventricular ejection fraction (EF), fractional shortening (FS), left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), the maximal rate of increase of left ventricular pressure (+dp/dt max), and the maximal rate of decrease of left ventricular pressure (-dp/dt max) were monitored by echocardiography and hemodynamics. Hematoxylin and eosin (HE) and Masson stainings were used to visualize pathological changes in myocardial tissue. The mRNA expression of miR133a, glucose-regulated protein78 (GRP78), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), X-box binding protein1 (XBP1), C/EBP homologous protein (CHOP) and Caspase 12 were detected by RT-PCR. The protein expression of GRP78, p-IRE1/IRE1 ratio, cleaved-ATF6, XBP1-s (the spliced form of XBP1), CHOP and Caspase 12 were detected by Western blot. TdT-mediated dUTP nick-end labeling (TUNEL) staining was used to detect the rate of apoptosis. RESULTS: QLQX significantly improved cardiac function as evidenced by increased EF, FS, LVSP, +dp/dt max, -dp/dt max, and decreased LVEDP (P<0.05, P<0.01). HE staining showed that QLQX ameliorated cardiac pathologic damage to some extent. Masson staining indicated that QLQX significantly reduced collagen volume fraction in myocardial tissue (P<0.01). Results from RT-PCR and Western blot showed that QLQX significantly increased the expression of miR133a and inhibited the mRNA expressions of GRP78, IRE1, ATF6 and XBP1, as well as decreased the protein expressions of GRP78, cleaved-ATF6 and XBP1-s and decreased p-IRE1/IRE1 ratio (P<0.05, P<0.01). Further studies showed that QLQX significantly reduced the expression of CHOP and Caspase12, resulting in a significant reduction in apoptosis rate (P<0.05, P<0.01). CONCLUSION: The pharmacological mechanism of QLQX in improving HF is partly attributed to its regulatory effect on the miR133a-IRE1/XBP1 pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Estrés del Retículo Endoplásmico , Insuficiencia Cardíaca , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Masculino , Ratas Sprague-Dawley , Cápsulas , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/genética , Chaperón BiP del Retículo Endoplásmico , Apoptosis/efectos de los fármacos , Caspasa 12/metabolismo , Caspasa 12/genética , Miocardio/patología , Miocardio/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Ratas , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología
16.
Drug Discov Ther ; 18(1): 1-9, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417896

RESUMEN

Endometriosis (EM), also known as Zhengjia in traditional Chinese medicine, is a common disease that significantly impacts women's health. An integrated treatment approach combining traditional Chinese medicine (TCM) and western medicine has demonstrated significant clinical efficacy in the management of this condition. Specifically, it has been effective in addressing blood circulation and other diseases. MicroRNAs (miRNAs), which are molecules important in gene regulation, have been implicated in various physiologic and pathologic processes. In this review, we systematically summarized the potential mechanisms underlying the integrated EM treatment, with a focus on the role of microRNAs (miRNAs). Current research suggests that integrated TCM and western medicine treatment may exert their therapeutic effects on EM by influencing the expression of miRNAs. Through miRNA modulation, such a treatment approach may inhibit the growth of ectopic lesions and alleviate clinical symptoms. This review will shed light on the specific miRNAs that have been implicated in the integrated treatment of EM, as well as their potential mechanisms of action. By consolidating the existing evidence, we aim to provide clinicians and researchers with a clearer understanding of the therapeutic benefits of the integrated approach and potentially identify new avenues for improving clinical treatment outcomes. Ultimately, this review will contribute to the growing body of knowledge in this field, providing a basis for further research and the development of more targeted and efficient treatment strategies for EM.


Asunto(s)
Medicamentos Herbarios Chinos , Endometriosis , MicroARNs , Humanos , Femenino , Medicina Tradicional China , MicroARNs/genética , MicroARNs/uso terapéutico , MicroARNs/metabolismo , Endometriosis/tratamiento farmacológico , Endometriosis/genética , Resultado del Tratamiento , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
17.
Drug Des Devel Ther ; 18: 407-423, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370565

RESUMEN

Ethnopharmacological Relevance: Zishen Yutai pills (ZYP), a traditional Chinese patent medicine, was listed in China in 1981. It is composed of 15 traditional Chinese medicines and has the effects of regulating menstruation, helping pregnancy, and preventing abortion. In clinical practice, it is effective in preventing habitual and threatened miscarriages, and continuing to explore its mechanism of action is very meaningful research. Aim of the Study: To explore the possible mechanism of ZYP promoting angiogenesis at the maternal-fetal interface in recurrent spontaneous abortion (RSA). Materials and Methods: In vitro experiments, placental trophoblast cells (PTCs) were isolated from the placental tissue of RSA mice and divided into six groups: Control group, Model group, ZYP group, miR-187 inhibitor NC group, miR-18 7 inhibitor group, and miR-187 inhibitor+ZYP group. Cell viability and cell cycle were measured using CCK8 and flow cytometry, respectively. The expression levels of miR-187, VEGF, VEGF-R1, and VEGF-R2 were measured using RT-qPCR, WB, and IF staining. Animal experiments first establish an RSA mice model (CBA/J × DBA/2) and then randomly divide the mice into four groups (n=10): normal pregnancy group, RSA model group, ZYP group, and progesterone capsule group. Observed the changes in embryo absorption rate, pathological morphology of decidual tissue, and ultrastructure of vascular endothelial cells in each group of mice. RT-qPCR, WB, and IF staining methods were used to determine the expression of miR-187, VEGF, VEGF-R1, and VEGF-R2. Results: In vitro, ZYP promoted the viability of PTCs and regulated their cell cycle, and ZYP down-regulated miR-187, up-regulated VEGF, VEGF-R1 and VEGF-R2 levels. miR-187 inhibitor showed the same effects, and further ZYP intervention enhanced the effects. In vivo, ZYP remarkably reduced embryo resorption rates, and improved the pathological morphology of decidual tissues and ultrastructure of vascular endothelial cells. Moreover, ZYP down-regulated miR-187, up-regulated VEGF, VEGF-R1 and VEGF-R2. Conclusion: In summary, ZYP can regulate the expression of VEGF via miR-187, then promote the angiogenesis at the maternal-fetal interface, and playing a therapeutic role in RSA.


Asunto(s)
Aborto Habitual , Medicamentos Herbarios Chinos , MicroARNs , Animales , Femenino , Ratones , Embarazo , Aborto Habitual/tratamiento farmacológico , Aborto Habitual/metabolismo , Angiogénesis , Células Endoteliales/metabolismo , Ratones Endogámicos CBA , Ratones Endogámicos DBA , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Factor A de Crecimiento Endotelial Vascular
18.
Clinics (Sao Paulo) ; 79: 100336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38325020

RESUMEN

BACKGROUND: Xuebijing (XBJ) is widely applied in the treatment of Acute Lung Injury (ALI). This study focused on the potential mechanism of XBJ in Lipopolysaccharide (LPS)-induced ALI. METHODS: The rat ALI model was established by injection of LPS (10 mg/kg) and pretreated with XBJ (4 mL/kg) three days before LPS injection. BEAS-2B cell line was stimulated with LPS (1 µg/mL) and ATP (5 mM) to induce pyroptosis, and XBJ (2 g/L) was pretreated 24h before induction. The improvement effects of XBJ on pulmonary edema, morphological changes, and apoptosis in ALI lung tissue were evaluated by lung wet/dry weight ratio, HE-staining, and TUNEL staining. Inflammatory cytokines in lung tissue and cell supernatant were determined by ELISA. pyroptosis was detected by flow cytometry. Meanwhile, the expressions of miR-181d-5p, SPP1, p-p65, NLRP3, ASC, caspase-1, p20, and GSDMD-N in tissues and cells were assessed by RT-qPCR and immunoblotting. The relationship between miR-181d-5p and SPP1 in experimental inflammation was reported by dual luciferase assay. RESULTS: XBJ could improve inflammation and pyroptosis of ALI by inhibiting contents of inflammatory cytokines, and levels of inflammation- and pyroptosis-related proteins. Mechanistically, XBJ could up-regulate miR-181d-5p and inhibit SPP1 in ALI. miR-181d-5p can target the regulation of SPP1. Depressing miR-181d-5p compensated for the ameliorative effect of XBJ on ALI, and overexpressing SPP1 suppressed the attenuating effect of XBJ on LPS-induced inflammation and pyroptosis. CONCLUSION: XBJ can regulate the miR-181d-5p/SPP1 axis to improve inflammatory response and pyroptosis in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Medicamentos Herbarios Chinos , MicroARNs , Ratas , Animales , Piroptosis , Lipopolisacáridos , MicroARNs/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Citocinas
19.
Int J Biol Sci ; 20(4): 1436-1451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385079

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with high incidence and mortality, accounting for approximately 90% of liver cancer. The development of HCC is a complex process involving the abnormal activation or inactivation of multiple signaling pathways. Transforming growth factor-ß (TGF-ß)/Small mothers against decapentaplegic (SMAD) signaling pathway regulates the development of HCC. TGF-ß activates intracellular SMADs protein through membrane receptors, resulting in a series of biological cascades. Accumulating studies have demonstrated that TGF-ß/SMAD signaling plays multiple regulatory functions in HCC. However, there is still controversy about the role of TGF-ß/SMAD in HCC. Because it involves different pathogenic factors, disease stages, and cell microenvironment, as well as upstream and downstream relationships with other signaling pathways. This review will summary the regulatory mechanism of the TGF-ß/SMAD signaling pathway in HCC, involving the regulation of different pathogenic factors, different disease stages, different cell populations, microenvironments, and the interaction with microRNAs. In addition, we also introduced small molecule inhibitors, therapeutic vaccines, and traditional Chinese medicine extracts based on targeting the TGF-ß/SMAD signaling pathway, which will provide future research direction for HCC therapy targeting the TGF-ß/SMAD signaling pathway.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/genética , MicroARNs/metabolismo , Proteínas Smad/metabolismo , Microambiente Tumoral
20.
J Ethnopharmacol ; 326: 117908, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38367931

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Goiters are enlargements of the thyroid gland and are a global public issue. Quemeiteng granule (QMTG) is a traditional Chinese medicine (TCM) formula used to treat goiter in Yunnan Province. However, the effectiveness and underlying mechanism of these treatments have not been fully elucidated. AIM OF THE STUDY: This study aimed to investigate the therapeutic effects of QMTG on goiter and the downstream regulatory mechanisms. MATERIALS AND METHODS: In this study, we first evaluated the antigoiter efficacy of QMTG through biochemical indices [body weight, thyroid coefficient, triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), and thyroid stimulating hormone (TSH)] and hematoxylin-eosin (HE) staining in a Propylthiouracil (PTU)-induced model. Based on microRNA sequencing (miRNA-seq) and bioinformatics analysis, key miRNA was screened out. A dual-luciferase reporter assay was performed to confirm the transcriptional regulation of the target gene by the miRNA. The viability of rat thyroid microvascular endothelial cells (RTMECs) and human thyroid microvascular endothelial cells (HTMECs) was assessed using the CCK-8 assays. The migration and angiogenesis of RTMECs and HTMECs were visualized through tube formation and wound scratch assays. Proteins involved in angiogenesis and the ERK pathway were assessed via Western blotting. RESULTS: QMTG significantly increased body weight, decreased the thyroid coefficient, increased the levels of T3, T4, FT3 and FT4 and reduced TSH levels in rats with goiter. QMTG also promoted the morphological recovery of thyroid follicles. MiR-217-5p was identified as a key miRNA. Our studies revealed that miR-217-5p directly targets FGF2 and that QMTG promotes the recovery of thyroid hormone (TH) levels and morphological changes in the thyroid, suppresses thyroid microvascular endothelial cell vitality, tube formation and migration, and reduces the expression of VEGF, Ang-1 and VCAM-1 triggered by miR-217-5p, thereby inhibiting the Ras/MEK/ERK cascade through FGF2. CONCLUSIONS: Our experiments demonstrated that the QMTG had therapeutic effects on goiter. These effects were attributed to the inhibition of ERK pathway-induced proliferation and angiogenesis through the targeting of FGF2 by miR-217-5p.


Asunto(s)
Bocio , MicroARNs , Humanos , Ratas , Animales , Sistema de Señalización de MAP Quinasas , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Triyodotironina/farmacología , Tiroxina , Células Endoteliales/metabolismo , Angiogénesis , China , MicroARNs/genética , MicroARNs/metabolismo , Hormonas Tiroideas , Bocio/tratamiento farmacológico , Proliferación Celular , Tirotropina/metabolismo , Peso Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA