Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 161-162: 22-30, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564842

RESUMEN

Modern precision sequencing techniques have established humans as a holobiont that live in symbiosis with the microbiome. Microbes play an active role throughout the life of a human ranging from metabolism and immunity to disease tolerance. Hence, it is of utmost significance to study the eukaryotic host in conjunction with the microbial antigens to obtain a complete picture of the host-microbiome crosstalk. Previous attempts at profiling host-microbiome interactions have been either superficial or been attempted to catalogue eukaryotic transcriptomic profile and microbial communities in isolation. Additionally, the nature of such immune-microbial interactions is not random but spatially organised. Hence, for a holistic clinical understanding of the interplay between hosts and microbiota, it's imperative to concurrently analyze both microbial and host genetic information, ensuring the preservation of their spatial integrity. Capturing these interactions as a snapshot in time at their site of action has the potential to transform our understanding of how microbes impact human health. In examining early-life microbial impacts, the limited presence of communities compels analysis within reduced biomass frameworks. However, with the advent of spatial transcriptomics we can address this challenge and expand our horizons of understanding these interactions in detail. In the long run, simultaneous spatial profiling of host-microbiome dialogues can have enormous clinical implications especially in gaining mechanistic insights into the disease prognosis of localised infections and inflammation. This review addresses the lacunae in host-microbiome research and highlights the importance of profiling them together to map their interactions while preserving their spatial context.


Asunto(s)
Microbiota , Simbiosis , Humanos , Bacterias/genética , Microbiota/genética , Interacciones Microbianas
2.
PeerJ ; 12: e17165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590706

RESUMEN

Background: Plastic waste is a global environmental issue that impacts the well-being of humans, animals, plants, and microorganisms. Microplastic contamination has been previously reported at Kung Wiman Beach, located in Chanthaburi province along with the Eastern Gulf of Thailand. Our research aimed to study the microbial population of the sand and plastisphere and isolate microorganisms with potential plastic degradation activity. Methods: Plastic and sand samples were collected from Kung Wiman Beach for microbial isolation on agar plates. The plastic samples were identified by Fourier-transform infrared spectroscopy. Plastic degradation properties were evaluated by observing the halo zone on mineral salts medium (MSM) supplemented with emulsified plastics, including polystyrene (PS), polylactic acid (PLA), polyvinyl chloride (PVC), and bis (2-hydroxyethyl) terephthalate (BHET). Bacteria and fungi were identified by analyzing nucleotide sequence analysis of the 16S rRNA and internal transcribed spacer (ITS) regions, respectively. 16S and ITS microbiomes analysis was conducted on the total DNA extracted from each sample to assess the microbial communities. Results: Of 16 plastic samples, five were identified as polypropylene (PP), four as polystyrene (PS), four as polyethylene terephthalate (PET), two as high-density polyethylene (HDPE), and one sample remained unidentified. Only 27 bacterial and 38 fungal isolates were found to have the ability to degrade PLA or BHET on MSM agar. However, none showed degradation capabilities for PS or PVC on MSM agar. Notably, Planococcus sp. PP5 showed the highest hydrolysis capacity of 1.64 ± 0.12. The 16S rRNA analysis revealed 13 bacterial genera, with seven showing plastic degradation abilities: Salipiger, Planococcus, Psychrobacter, Shewanella, Jonesia, Bacillus, and Kocuria. This study reports, for the first time of the BHET-degrading properties of the genera Planococcus and Jonesia. Additionally, The ITS analysis identified nine fungal genera, five of which demonstrated plastic degradation abilities: Aspergillus, Penicillium, Peacilomyces, Absidia, and Cochliobolus. Microbial community composition analysis and linear discriminant analysis effect size revealed certain dominant microbial groups in the plastic and sand samples that were absent under culture-dependent conditions. Furthermore, 16S and ITS amplicon microbiome analysis revealed microbial groups were significantly different in the plastic and sand samples collected. Conclusions: We reported on the microbial communities found on the plastisphere at Kung Wiman Beach and isolated and identified microbes with the capacity to degrade PLA and BHET.


Asunto(s)
Actinomycetales , Microbiota , Actinomycetales/genética , Agar/metabolismo , Bacterias/genética , Microbiota/genética , Plásticos/metabolismo , Poliésteres/metabolismo , Poliestirenos/metabolismo , ARN Ribosómico 16S/genética , Arena
3.
Sci Rep ; 14(1): 5513, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448523

RESUMEN

As a typical sub-deep reservoir in the upper reaches of the Yangtze River in the southwest region, Zhangjiayan Reservoir is also an important source of drinking water. Exploring the role of microorganisms in the material cycle of water bodies is of great significance for preventing the exacerbation of eutrophication in the reservoir. In this study, water samples from the overlying water of five points in the reservoir were collected four times in spring (April), summer (July), autumn (November), and winter (January) of 2022-2023 using a gas-tight water sampler. Physicochemical factors were measured, and the microbial community structure was analyzed by high-throughput MiSeq sequencing of the V3-V4 hypervariable region of 16S rRNA gene in order to explore the relationship between physicochemical factors and microbial community structure and the dominant microbial populations that affect eutrophication of the reservoir. The following results were obtained through analysis. Among the 20 overlying water samples from Zhangjiayan Reservoir, a total of 66 phyla, 202 classes, 499 orders, 835 families, 1716 genera, and 27,904 ASVs of the bacterial domain were detected. The phyla Proteobacteria and Actinobacteria were dominant in the microbial community of the overlying water in Zhangjiayan Reservoir. At the genus level, hgcI_clade and Actinobacteria had the highest abundance and was the dominant population. The microbial community in the water of Zhangjiayan Reservoir has a high level of diversity. The diversity index ranked by numerical order was winter > autumn > summer > spring. Significant differences were found in the composition and structure of the microbial community between the spring/summer and autumn/winter seasons (p < 0.05). Total phosphorus, dissolved total phosphorus, soluble reactive phosphorus, and dissolved oxygen have a significant impact on the composition and structure of the microbial community (p < 0.01). The bacterial community in the overlying water of Zhangjiayan Reservoir showed a mainly positive correlation. Sphingomonas, Brevundimonas, and Blastomonas were the central populations of the bacterial community in the overlying water of Zhangjiayan Reservoir. This study indicates that environmental factors, such as phosphorus and other nutrients, have a significant impact on the formation of the microbial community structure in different seasons. Sphingomonas, Brevundimonas, and Blastomonas are key populations that may have a significant impact on eutrophication in Zhangjiayan Reservoir.


Asunto(s)
Actinobacteria , Caulobacteraceae , Microbiota , Humanos , Estaciones del Año , ARN Ribosómico 16S/genética , Microbiota/genética , Agua , Actinobacteria/genética , Fósforo
4.
Environ Microbiol ; 26(3): e16600, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38482770

RESUMEN

Microbial community structure and function were assessed in the organic and upper mineral soil across a ~4000-year dune-based chronosequence at Big Bay, New Zealand, where total P declined and the proportional contribution of organic soil in the profile increased with time. We hypothesized that the organic and mineral soils would show divergent community evolution over time with a greater dependency on the functionality of phosphatase genes in the organic soil layer as it developed. The structure of bacterial, fungal, and phosphatase-harbouring communities was examined in both horizons across 3 dunes using amplicon sequencing, network analysis, and qPCR. The soils showed a decline in pH and total phosphorus (P) over time with an increase in phosphatase activity. The organic horizon had a wider diversity of Class A (phoN/phoC) and phoD-harbouring communities and a more complex microbiome, with hub taxa that correlated with P. Bacterial diversity declined in both horizons over time, with enrichment of Planctomycetes and Acidobacteria. More complex fungal communities were evident in the youngest dune, transitioning to a dominance of Ascomycota in both soil horizons. Higher phosphatase activity in older dunes was driven by less diverse P-mineralizing communities, especially in the organic horizon.


Asunto(s)
Microbiota , Suelo , Suelo/química , Fósforo/análisis , Bosque Lluvioso , Bacterias/genética , Microbiota/genética , Minerales , Monoéster Fosfórico Hidrolasas/genética , Microbiología del Suelo
5.
Arch Microbiol ; 206(3): 106, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363349

RESUMEN

Uncaria rhynchophylla is an important herbal medicine, and the predominant issues affecting its cultivation include a single method of fertilizer application and inappropriate chemical fertilizer application. To reduce the use of inorganic nitrogen fertilization and increase the yield of Uncaria rhynchophylla, field experiments in 2020-2021 were conducted. The experimental treatments included the following categories: S1, no fertilization; S2, application of chemical NPK fertilizer; and S3-S6, application of chemical fertilizers and green manures, featuring nitrogen fertilizers reductions of 0%, 15%, 30%, and 45%, respectively. The results showed that a moderate application of nitrogen fertilizer when combined with green manure, can help alleviate soil acidification and increase urease activity. Specifically, the treatment with green manure provided in a 14.71-66.67% increase in urease activity compared to S2. Metagenomics sequencing results showed a decrease in diversity in S3, S4, S5, and S6 compared to S2, but the application of chemical fertilizer with green manure promoted an increase in the relative abundance of Acidobacteria and Chloroflexi. In addition, the nitrification pathway displayed a progressive augmentation in tandem with the reduction in nitrogen fertilizer and application of green manure, reaching its zenith at S5. Conversely, other nitrogen metabolism pathways showed a decline in correlation with diminishing nitrogen fertilizer dosages. The rest of the treatments showed an increase in yield in comparison to S1, S5 showing significant differences (p < 0.05). In summary, although S2 demonstrate the ability to enhance soil microbial diversity, it is important to consider the long-term ecological impacts, and S5 may be a better choice.


Asunto(s)
Microbiota , Uncaria , Vicia sativa , Suelo , Agricultura/métodos , Estiércol , Fertilizantes/análisis , Nitrógeno/metabolismo , Ureasa , Microbiota/genética , Microbiología del Suelo , Fertilización
6.
Microbiome ; 12(1): 17, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303006

RESUMEN

BACKGROUND: The recent recognition of the importance of the microbiome to the host's health and well-being has yielded efforts to develop therapies that aim to shift the microbiome from a disease-associated state to a healthier one. Direct manipulation techniques of the species' assemblage are currently available, e.g., using probiotics or narrow-spectrum antibiotics to introduce or eliminate specific taxa. However, predicting the species' abundances at the new state remains a challenge, mainly due to the difficulties of deciphering the delicate underlying network of ecological interactions or constructing a predictive model for such complex ecosystems. RESULTS: Here, we propose a model-free method to predict the species' abundances at the new steady state based on their presence/absence configuration by utilizing a multi-dimensional k-nearest-neighbors (kNN) regression algorithm. By analyzing data from numeric simulations of ecological dynamics, we show that our predictions, which consider the presence/absence of all species holistically, outperform both the null model that uses the statistics of each species independently and a predictive neural network model. We analyze real metagenomic data of human-associated microbial communities and find that by relying on a small number of "neighboring" samples, i.e., samples with similar species assemblage, the kNN predicts the species abundance better than the whole-cohort average. By studying both real metagenomic and simulated data, we show that the predictability of our method is tightly related to the dissimilarity-overlap relationship of the training data. CONCLUSIONS: Our results demonstrate how model-free methods can prove useful in predicting microbial communities and may facilitate the development of microbial-based therapies. Video Abstract.


Asunto(s)
Microbiota , Humanos , Microbiota/genética , Metagenoma
7.
Sci Rep ; 14(1): 3866, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365802

RESUMEN

Hydrocarbon pollution is a major ecological problem facing oil-producing countries, especially in the Niger Delta region of Nigeria. In this study, a site that had been previously polluted by artisanal refining activity was investigated using 16S rRNA Illumina high-throughput sequencing technology and bioinformatics tools. These were used to investigate the bacterial diversity in soil with varying degrees of contamination, determined with a gas chromatography-flame ionization detector (GC-FID). Soil samples were collected from a heavily polluted (HP), mildly polluted (MP), and unpolluted (control sample, CS) portion of the study site. DNA was extracted using the Zymo Research (ZR) Fungi/Bacteria DNA MiniPrep kit, followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized based on the V3 and V4 hypervariable regions of the 16S rRNA gene. QIIME (Quantitative Insights Into Microbial Ecology) 2 software was used to analyse the sequence data. The final data set covered 20,640 demultiplexed high-quality reads and a total of 160 filtered bacterial OTUs. Proteobacteria dominated samples HP and CS, while Actinobacteria dominated sample MP. Denitratisoma, Pseudorhodoplanes, and Spirilospora were the leading genera in samples HP, CS, and MP respectively. Diversity analysis indicated that CS [with 25.98 ppm of total petroleum hydrocarbon (TPH)] is more diverse than HP (with 490,630 ppm of TPH) and MP (with 5398 ppm of TPH). A functional prediction study revealed that six functional modules dominated the dataset, with metabolism covering up to 70%, and 11 metabolic pathways. This study demonstrates that a higher hydrocarbon concentration in soil adversely impacts microbial diversity, creating a narrow bacterial diversity dominated by hydrocarbon-degrading species, in addition to the obvious land and ecosystem degradation caused by artisanal refining activities. Overall, the artisanal refining business is significantly driving ecosystem services losses in the Niger Delta, which calls for urgent intervention, with focus on bioremediation.


Asunto(s)
Microbiota , Petróleo , Contaminantes del Suelo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Niger , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Microbiota/genética , Petróleo/metabolismo , Hidrocarburos/metabolismo , Suelo/química , ADN/metabolismo
8.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38317643

RESUMEN

Understanding the complex interactions between plants and their associated microorganisms is crucial for optimizing plant health and productivity. While microbiomes of soil-bound cultivated crops are extensively studied, microbiomes of hydroponically cultivated crops have received limited attention. To address this knowledge gap, we investigated the rhizosphere and root endosphere of hydroponically cultivated lettuce. Additionally, we sought to explore the potential impact of the oomycete pathogen Phytophthora cryptogea on these microbiomes. Root samples were collected from symptomatic and nonsymptomatic plants in three different greenhouses. Amplicon sequencing of the bacterial 16S rRNA gene revealed significant alterations in the bacterial community upon P. cryptogea infection, particularly in the rhizosphere. Permutational multivariate analysis of variance (perMANOVA) revealed significant differences in microbial communities between plants from the three greenhouses, and between symptomatic and nonsymptomatic plants. Further analysis uncovered differentially abundant zero-radius operational taxonomic units (zOTUs) between symptomatic and nonsymptomatic plants. Interestingly, members of Pseudomonas and Flavobacterium were positively associated with symptomatic plants. Overall, this study provides valuable insights into the microbiome of hydroponically cultivated plants and highlights the influence of pathogen invasion on plant-associated microbial communities. Further research is required to elucidate the potential role of Pseudomonas and Flavobacterium spp. in controlling P. cryptogea infections within hydroponically cultivated lettuce greenhouses.


Asunto(s)
Microbiota , Phytophthora , Lactuca , Phytophthora/genética , ARN Ribosómico 16S/genética , Raíces de Plantas/microbiología , Microbiota/genética , Rizosfera , Flavobacterium/genética , Microbiología del Suelo
9.
Mol Ecol ; 33(2): e17203, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37962103

RESUMEN

The amphibian skin microbiome plays a crucial role in host immunity and pathogen defence, yet we know little about the environmental drivers of skin microbial variation across host individuals. Inter-individual variation in the availability of micro-nutrients such as dietary carotenoids, which are involved in amphibian immunity, may be one factor that influences skin microbial assembly across different life history stages. We compared the effect of four carotenoid supplementation regimes during different life stages on the adult skin microbiome using a captive population of the critically endangered southern corroboree frog, Pseudophryne corroboree. We applied 16S rRNA sequencing paired with joint-species distribution models to examine the effect of supplementation on taxon abundances. We found that carotenoid supplementation had subtle yet taxonomically widespread effects on the skin microbiome, even 4.5 years post supplementation. Supplementation during any life-history stage tended to have a positive effect on the number of bacterial taxa detected, although explanatory power was low. Some genera were sensitive to supplementation pre-metamorphosis, but most demonstrated either additive or dominant effects, whereby supplementation during one life history stage had intermediate or similar effects, respectively, to supplementation across life. Carotenoid supplementation increased abundances of taxa belonging to lactic acid bacteria, including Lactococcus and Enterococcus, a group of bacteria that have previously been linked to protection against the amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd). While the fitness benefits of these microbial shifts require further study, these results suggest a fundamental relationship between nutrition and the amphibian skin microbiome which may be critical to amphibian health and the development of novel conservation strategies.


Asunto(s)
Quitridiomicetos , Microbiota , Humanos , Animales , ARN Ribosómico 16S/genética , Anuros/genética , Bacterias/genética , Piel/microbiología , Microbiota/genética , Carotenoides , Suplementos Dietéticos
10.
BMC Microbiol ; 23(1): 377, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036970

RESUMEN

BACKGROUND: Growing evidence suggests that soil microbes can improve plant fitness under drought. However, in potato, the world's most important non-cereal crop, the role of the rhizosphere microbiome under drought has been poorly studied. Using a cultivation independent metabarcoding approach, we examined the rhizosphere microbiome of two potato cultivars with different drought tolerance as a function of water regime (continuous versus reduced watering) and manipulation of soil microbial diversity (i.e., natural (NSM), vs. disturbed (DSM) soil microbiome). RESULTS: Water regime and soil pre-treatment showed a significant interaction with bacterial community composition of the sensitive (HERBST) but not the resistant cultivar (MONI). Overall, MONI had a moderate response to the treatments and its rhizosphere selected Rhizobiales under reduced watering in NSM soil, whereas Bradyrhizobium, Ammoniphilus, Symbiobacterium and unclassified Hydrogenedensaceae in DSM soil. In contrast, HERBST response to the treatments was more pronounced. Notably, in NSM soil treated with reduced watering, the root endophytic fungus Falciphora and many Actinobacteriota members (Streptomyces, Glycomyces, Marmoricola, Aeromicrobium, Mycobacterium and others) were largely represented. However, DSM soil treatment resulted in no fungal taxa and fewer enrichment of these Actinobacteriota under reduced watering. Moreover, the number of bacterial core amplicon sequence variants (core ASVs) was more consistent in MONI regardless of soil pre-treatment and water regimes as opposed to HERBST, in which a marked reduction of core ASVs was observed in DSM soil. CONCLUSIONS: Besides the influence of soil conditions, our results indicate a strong cultivar-dependent relationship between the rhizosphere microbiome of potato cultivars and their capacity to respond to perturbations such as reduced soil moisture. Our study highlights the importance of integrating soil conditions and plant genetic variability as key factors in future breeding programs aiming to develop drought resistance in a major food crop like potato. Elucidating the molecular mechanisms how plants recruit microbes from soil which help to mitigate plant stress and to identify key microbial taxa, which harbour the respective traits might therefore be an important topic for future research.


Asunto(s)
Actinomycetales , Microbiota , Solanum tuberosum , Streptomyces , Rizosfera , Microbiología del Suelo , Solanum tuberosum/microbiología , Fitomejoramiento , Microbiota/genética , Suelo , Plantas , Agua , Raíces de Plantas/microbiología
11.
BMC Microbiol ; 23(1): 348, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978422

RESUMEN

BACKGROUND: The vaginal microbiome is a dynamic community of microorganisms in the vagina. Its alteration may be influenced by multiple factors, including gestational status, menstrual cycle, sexual intercourse, hormone levels, hormonal contraceptives, and vaginal drug administration. Povidone iodine has been used before delivery to reduce infection that may be caused by the ascendance of pathogenic and opportunistic bacteria from the vagina to the uterus. This study aimed to elucidate the impact of povidone iodine use during delivery on the vaginal microbiome. METHODS: This study enrolled a total of 67 women from maternity services in three hospitals. During the delivery process, we have applied povidone iodine in three doses such as low dose, medium dose, and high dose based on the amount of povidone iodine administered, thus, we studied the three groups of women based on the doses applied. Vaginal swab samples were collected both before and immediately after delivery, and the microbial communities were characterized using 16 S rRNA sequencing. The identification of differentially abundant microbial taxa was performed using ZicoSeq software. RESULTS: Before delivery, the vaginal microbiome was dominated by the genus Lactobacillus, with different percentage observed (86.06%, 85.24%, and 73.42% for the low, medium, and high dose groups, respectively). After delivery, the vaginal microbial community was restructured, with a significant decrease in the relative abundance of Lactobacillus in all three groups (68.06%, 50.08%, and 25.89%), and a significant increase in alpha diversity across all 3 groups (P < 0.01). Furthermore, as the dose of povidone iodine used during delivery increased, there was a corresponding decrease in the relative abundance of Lactobacillus (P < 0.01). Contrary, there was an increase in microbial diversity and the relative abundances of Pseudomonas (0.13%, 0.26%, and 13.04%, P < 0.01) and Ralstonia (0.01%, 0.02%, and 16.07%, P < 0.01) across the groups. Notably, some functional metabolic pathways related to sugar degradation were observed to have significant change with increasing use of povidone iodine. CONCLUSION: Povidone iodine was associated with the vaginal microbiome alterations after parturition, and its significant change was associated to the dosage of povidone iodine administered. The escalation in iodine dosage was linked to a decrease in Lactobacilli abundance, and elevated prevalence of Pseudomonas and Ralstonia. There is a need for longitudinal studies to clearly understanding the effect of povidone iodine use on maternal and infant microbiome.


Asunto(s)
Microbiota , Povidona Yodada , Femenino , Humanos , Embarazo , Povidona Yodada/farmacología , Vagina/microbiología , Microbiota/genética , Bacterias/genética , Ciclo Menstrual , ARN Ribosómico 16S/genética
12.
Sci Rep ; 13(1): 18477, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898712

RESUMEN

Brazilian coffee production relies on the cultivation of Coffea arabica and Coffea canephora. Climate change has been responsible for the decreasing yield of the crops in the country yet the associated microbial community can mitigate these effects by improving plant growth and defense. Although some studies have tried to describe the microorganisms associated with these Coffea species, a study that compares the microbiome on a wider spatial scale is needed for a better understanding of the terroir of each coffee planting region. Therefore, our aim was to evaluate the microbial communities harbored in soils and fruits of these Coffea species in four Brazilian floristic domains (Amazon, Atlantic Forest Caatinga, and Cerrado). One hundred and eight samples (90 of soil and 90 of fruits) were used in the extraction and sequencing of the fungal and bacterial DNA. We detected more than 1000 and 500 bacterial and fungal genera, respectively. Some soil microbial taxa were more closely related to one coffee species than the other species. Bacillus bataviensis tends to occur more in arid soils from the Caatinga, while the fungus Saitozyma sp. was more related to soils cultivated with C. arabica. Thus, the species and the planting region (floristic domain) of coffee affect the microbial composition associated with this crop. This study is the first to report microbial communities associated with coffee produced in four floristic domains that include sites in eight Brazilian states. Data generated by DNA sequencing provides new insights into microbial roles and their potential for the developing more sustainable coffee management, such as the production of biofertilizers and starter culture for fermentation of coffee cherries.


Asunto(s)
Coffea , Microbiota , Café , Brasil , Microbiota/genética , Suelo
13.
Environ Microbiol ; 25(12): 3207-3224, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37732569

RESUMEN

The sponge microbiome underpins host function through provision and recycling of essential nutrients in a nutrient poor environment. Genomic data suggest that carbohydrate degradation, carbon fixation, nitrogen metabolism, sulphur metabolism and supplementation of B-vitamins are central microbial functions. However, validation beyond the genomic potential of sponge symbiont pathways is rarely explored. To evaluate metagenomic predictions, we sequenced the metagenomes and metatranscriptomes of three common coral reef sponges: Ircinia ramosa, Ircinia microconulosa and Phyllospongia foliascens. Multiple carbohydrate active enzymes were expressed by Poribacteria, Bacteroidota and Cyanobacteria symbionts, suggesting these lineages have a central role in assimilating dissolved organic matter. Expression of entire pathways for carbon fixation and multiple sulphur compound transformations were observed in all sponges. Gene expression for anaerobic nitrogen metabolism (denitrification and nitrate reduction) were more common than aerobic metabolism (nitrification), where only the I. ramosa microbiome expressed the nitrification pathway. Finally, while expression of the biosynthetic pathways for B-vitamins was common, the expression of additional transporter genes was far more limited. Overall, we highlight consistencies and disparities between metagenomic and metatranscriptomic results when inferring microbial activity, while uncovering new microbial taxa that contribute to the health of their sponge host via nutrient exchange.


Asunto(s)
Cianobacterias , Microbiota , Poríferos , Animales , Filogenia , Cianobacterias/genética , Microbiota/genética , Vitaminas/metabolismo , Carbohidratos , Simbiosis
14.
BMC Genom Data ; 24(1): 51, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710149

RESUMEN

BACKGROUND: Panax ginseng cultivated under the forest is popular because its shape and effective ingredients are similar to wild ginseng. The growth of P. ginseng in the larch forest is generally better than in the broad-leaved forest, and the incidence rate of diseases is low. Therefore, the selection of forest species is one of the basic factors in the successful cropping of P. ginseng. METHODS: Illumina HiSeq high-throughput sequencing was used to analyze the 16S rRNA/ITS gene sequence of P. ginseng rhizosphere soil under larch forest to study the rhizosphere microbiome's diversity and community composition structure. RESULTS: The species classification and richness of rhizosphere bacterial and fungal communities in the same-aged P. ginseng were similar. Consistent with the soil system of commonly cultivated crops, Proteobacteria, Actinobacteriota, Acidobacteriota, Verrucomicrobiota, Chloroflexi, and Basidiomycota, Ascomycota were the dominant phylum of bacteria and fungi, respectively. Compared with the soil without planting P. ginseng, the diversity of microorganisms and community structure of continuous planting for 2 years, 5 years, and 18 years of P. ginseng rhizosphere soil had little change. The accumulation levels of Ilyonectria, Fusarium, Gibberella, and Cylindrocarpon were not significantly increased with planting P. ginseng and the increased age of cropping P. ginseng. CONCLUSIONS: The results of this study showed that the soil function of the larch forest was good, which provided a theoretical basis for the land selection and soil improvement of cultivating P. ginseng under the larch forest.


Asunto(s)
Fusarium , Hypocreales , Larix , Microbiota , Panax , ARN Ribosómico 16S/genética , Rizosfera , Microbiota/genética , Bosques
15.
Microb Ecol ; 86(4): 2934-2948, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37667132

RESUMEN

The plant's endophytic fungi play an important role in promoting host development and metabolism. Studies have shown that the factors affecting the assembly of the endophyte community mainly include host genotype, vertical transmission, and soil origin. However, we do not know the role of vertically transmitted endohytic fungi influences on the host-plant's endophytic community assembly. Salvia miltiorrhiza from three production areas were used as research objects; we constructed three production area genotypes of S. miltiorrhiza regenerated seedlings simultaneously. Based on high-throughput sequencing, we analyzed the effects of genotype, soil origin, and vertical transmission on endophytic fungal communities. The results show that the community of soil origins significantly affected the endophytic fungal community in the regenerated seedlings of S. miltiorrhiza. The influence of genotype on community composition occurs through a specific mechanism. Genotype may selectively screen certain communities into the seed, thereby exerting selection pressure on the community composition process of offspring. As the number of offspring increases gradually, the microbiota, controlled by genotype and transmitted vertically, stabilizes, ultimately resulting in a significant effect of genotype on community composition.Furthermore, we observed that the taxa influencing the active ingredients are also selected as the vertically transmitted community. Moreover, the absence of an initial vertically transmitted community in S. miltiorrhiza makes it more vulnerable to infection by pathogenic fungi. Therefore, it is crucial to investigate and comprehend the selection model of the vertically transmitted community under varying genotypes and soil conditions. This research holds significant implications for enhancing the quality and yield of medicinal plants and economic crops.


Asunto(s)
Microbiota , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Hongos/genética , Endófitos/genética , Microbiota/genética , Suelo , Plantones , Raíces de Plantas/microbiología
16.
Environ Res ; 234: 116516, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399986

RESUMEN

Polycyclic aromatic hydrocarbons found in crude oil can impair fish health following sublethal exposure. However, the dysbiosis of microbial communities within the fish host and influence it has on the toxic response of fish following exposure has been less characterized, particularly in marine species. To better understand the effect of dispersed crude oil (DCO) on juvenile Atlantic cod (Gadus morhua) microbiota composition and potential targets of exposure within the gut, fish were exposed to 0.05 ppm DCO for 1, 3, 7, or 28 days and 16 S metagenomic and metatranscriptomic sequencing on the gut and RNA sequencing on intestinal content were conducted. In addition to assessing species composition, richness, and diversity from microbial gut community analysis and transcriptomic profiling, the functional capacity of the microbiome was determined. Mycoplasma and Aliivibrio were the two most abundant genera after DCO exposure and Photobacterium the most abundant genus in controls, after 28 days. Metagenomic profiles were only significantly different between treatments after a 28-day exposure. The top identified pathways were involved in energy and the biosynthesis of carbohydrates, fatty acids, amino acids, and cellular structure. Biological processes following fish transcriptomic profiling shared common pathways with microbial functional annotations such as energy, translation, amide biosynthetic process, and proteolysis. There were 58 differently expressed genes determined from metatranscriptomic profiling after 7 days of exposure. Predicted pathways that were altered included those involved in translation, signal transduction, and Wnt signaling. EIF2 signaling was consistently dysregulated following exposure to DCO, regardless of exposure duration, with impairments in IL-22 signaling and spermine and spermidine biosynthesis in fish after 28 days. Data were consistent with predictions of a potentially reduced immune response related to gastrointestinal disease. Herein, transcriptomic-level responses helped explain the relevance of differences in gut microbial communities in fish following DCO exposure.


Asunto(s)
Gadus morhua , Microbioma Gastrointestinal , Microbiota , Petróleo , Contaminantes Químicos del Agua , Animales , Gadus morhua/metabolismo , Petróleo/análisis , Petróleo/metabolismo , Petróleo/toxicidad , Peces , Microbiota/genética , Contaminantes Químicos del Agua/análisis
17.
Mol Omics ; 19(10): 756-768, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37477619

RESUMEN

Crude oil contamination is one of the biggest problems in modern society. As oil enters into contact with the environment, especially if the point of contact is a body of water, it begins a weathering process by mixing and spreading. This is dangerous to local living organisms' communities and can impact diversity. However, despite unfavorable conditions, some microorganisms in these environments can survive using hydrocarbons as a nutrient source. Thus, understanding the local community dynamics of contaminated areas is essential. In this work, we analyzed the 16S rRNA amplicon sequencing and metatranscriptomic data of uncontaminated versus contaminated shallow marine sediment from publicly available datasets. We investigated the local population's taxonomic composition, species diversity, and fluctuations over time. Co-expression analysis coupled with functional enrichment showed us a prevalence of hydrocarbon-degrading functionality while keeping a distinct transcriptional profile between the late stages of oil contamination and the uncontaminated control. Processes related to the degradation of aromatic compounds and the metabolism of propanoate and butanoate were coupled with evidence of enhanced activity such as flagellar assembly and two-component system. Many enzymes of the anaerobic toluene degradation pathways were also enriched in our results. Furthermore, our diversity and taxonomical analyses showed a prevalence of the class Desulfobacteria, indicating interesting targets for bioremediation applications on marine sediment.


Asunto(s)
Microbiota , Petróleo , Bacterias , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Sedimentos Geológicos/microbiología , Microbiota/genética , Petróleo/metabolismo , Hidrocarburos/metabolismo
18.
PeerJ ; 11: e15514, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361045

RESUMEN

Microorganism plays a pivotal role in regulating sustainable development of agriculture. The excessive application of nitrogen fertilizer is considered to affect the microbial structure in many agricultural systems. The present study aimed to assess the impacts of nitrogen application rate on microbial diversity, community and functionality in rhizosphere of Tartary buckwheat in short-time. The nitrogen fertilizer was applied at rates of 90 kg (N90), 120 kg (N120) and 150 kg (N150) urea per hectare, respectively. The soil properties were measured chemical analysis and displayed no difference among treatments. Metagenome analysis results showed that the microbial diversity was not affected, but the microbial community and functionality were affected by the nitrogen application rate. According to the Linear discriminant analysis effect size (LEfSe) analysis, 15 taxa were significantly enriched in the N120 and N150 groups, no taxon was enriched in the N90 group. Kyoto Encyclopaedia of Genes and Genomes (KEGG) annotation results revealed that the genes related to butanoate and beta alanine metabolism were significantly enriched in the N90 group, the genes related to thiamine metabolism, lipopolysaccharide biosynthesis and biofilm formation were significantly enriched in the N120 group, and the genes related to neurodegenerative disease was significantly enriched in the N150 group. In conclusion, short-time nitrogen fertilizer application shifted the microbial community structure and functionality.


Asunto(s)
Fagopyrum , Microbiota , Enfermedades Neurodegenerativas , Rizosfera , Fagopyrum/metabolismo , Nitrógeno/análisis , Fertilizantes/análisis , Microbiología del Suelo , Microbiota/genética
19.
Food Res Int ; 169: 112909, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254344

RESUMEN

In this work, raw Pu-erh tea (RAPT) was employed for kombucha preparation, and the microbial composition and volatile flavor compounds of the fermented tea had been investigated during natural fermentation process. The head space-solid phase microextraction-gas chromatograph mass spectrometry (HS-SPME-GC-MS) was performed for volatiles analysis of unfermented tea and kombucha fermented for 3 days (KF-3) and 6 days (KF-6). Meanwhile, the microbial community of KF-3 and KF-6 were evaluated by metagenomic analysis. A total of 72 volatile compounds were identified and obvious changes in volatiles were observed during the fermentation process based on the results of GC-MS and principal component analysis (PCA). Metagenomic sequencing analysis demonstrated that bacterium Komagataeibacter saccharivorans and unclassified-g-komagataeibacter and yeast Saccharomyces cerevisiae and Brettanomyces bruxellensis were the most common microbes contained in the sampled kombucha communities. Furthermore, the relevance among microbial community and volatile compounds was evaluated through correlation heatmap analysis. The results suggested that the main flavor volatiles of kombucha (i.e., acids, esters and terpenes) were closely related to species of genus Komagataeibacter, Gluconacetobacter, Saccharomyces, Brettanomyces, Acetobacter, Novacetimonas and Pichia microorganisms. The obtained results would help to better understand microbial communities and volatile compounds of kombucha, which could provide useful information for enhancing the flavor quality of kombucha products.


Asunto(s)
Microbiota , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Microbiota/genética , Metagenoma , Saccharomyces cerevisiae , Té/química
20.
Curr Opin Microbiol ; 73: 102307, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37002975

RESUMEN

The human gut microbiome is often described as the collection of bacteria, archaea, fungi, protists, and viruses associated with an individual, with no acknowledgement of the plasmid constituents. However, like viruses, plasmids are autonomous intracellular replicating entities that can influence the genotype and phenotype of their host and mediate trans-kingdom interactions. Plasmids are frequently noted as vehicles for horizontal gene transfer and for spreading antibiotic resistance, yet their multifaceted contribution to mutualistic and antagonistic interactions within the human microbiome and impact on human health is overlooked. In this review, we highlight the importance of plasmids and their biological properties as overlooked components of microbiomes. Subsequent human microbiome studies should include dedicated analyses of plasmids, particularly as a holistic understanding of human-microbial interactions is required before effective and safe interventions can be implemented to improve human well-being.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Plásmidos/genética , Microbiota/genética , Bacterias/genética , Metagenómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA