Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Toxins (Basel) ; 12(4)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32225013

RESUMEN

Global warming, paired with eutrophication processes, is shifting phytoplankton communities towards the dominance of bloom-forming and potentially toxic cyanobacteria. The ecosystems of shallow lakes are especially vulnerable to these changes. Traditional monitoring via microscopy is not able to quantify the dynamics of toxin-producing cyanobacteria on a proper spatio-temporal scale. Molecular tools are highly sensitive and can be useful as an early warning tool for lake managers. We quantified the potential microcystin (MC) producers in Lake Peipsi using microscopy and quantitative polymerase chain reaction (qPCR) and analysed the relationship between the abundance of the mcyE genes, MC concentration, MC variants and toxin quota per mcyE gene. We also linked environmental factors to the cyanobacteria community composition. In Lake Peipsi, we found rather moderate MC concentrations, but microcystins and microcystin-producing cyanobacteria were widespread across the lake. Nitrate (NO3-) was a main driver behind the cyanobacterial community at the beginning of the growing season, while in late summer it was primarily associated with the soluble reactive phosphorus (SRP) concentration. A positive relationship was found between the MC quota per mcyE gene and water temperature. The most abundant variant-MC-RR-was associated with MC quota per mcyE gene, while other MC variants did not show any significant impact.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/genética , Monitoreo del Ambiente , Dosificación de Gen , Floraciones de Algas Nocivas , Lagos/microbiología , Microcistinas/genética , Péptido Sintasas/metabolismo , Microbiología del Agua , Proteínas Bacterianas/genética , Cromatografía Líquida de Alta Presión , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Marcadores Genéticos , Microcistinas/metabolismo , Nitratos/metabolismo , Péptido Sintasas/genética , Fósforo/metabolismo , Reacción en Cadena de la Polimerasa , Ribotipificación , Espectrometría de Masa por Ionización de Electrospray , Temperatura
2.
Toxins (Basel) ; 9(5)2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28513574

RESUMEN

An important goal of understanding harmful algae blooms is to determine how environmental factors affect the growth and toxin formation of toxin-producing species. In this study, we investigated the transcriptional responses of toxin formation gene (mcyB) and key photosynthesis genes (psaB, psbD and rbcL) of Microcystis aeruginosa FACHB-905 in different nutrient loading conditions using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR). Three physio-biochemical parameters (malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)) were also evaluated to provide insight into the physiological responses of Microcystis cells. We observed an upregulation of mcyB gene in nutrient-deficient conditions, especially in nitrogen (N) limitation condition, and the transcript abundance declined after the nutrient were resupplied. Differently, high transcription levels were seen in phosphorus (P) deficient treatments for key photosynthesis genes throughout the culture period, while those in N-deficient cells varied with time, suggesting an adaptive regulation of Microsystis cells to nutrient stress. Increased contents of antioxidant enzymes (SOD and GSH) were seen in both N and P-deficient conditions, suggesting the presence of excess amount of free radical generation caused by nutrient stress. The amount of SOD and GSH continued to increase even after the nutrient was reintroduced and a strong correlation was seen between the MDA and enzyme activities, indicating the robust effort of rebalancing the redox system in Microcystis cells. Based on these transcriptional and physiological responses of M. aeruginosa to nutrient loading, these results could provide more insight into Microcystis blooms management and toxin formation regulation.


Asunto(s)
Microcistinas/genética , Microcystis/efectos de los fármacos , Nitrógeno/farmacología , Fósforo/farmacología , Fotosíntesis/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Floraciones de Algas Nocivas , Malondialdehído/metabolismo , Microcystis/genética , Microcystis/crecimiento & desarrollo , Microcystis/metabolismo , Fotosíntesis/genética , Complejo de Proteína del Fotosistema I/genética , Ribulosa-Bifosfato Carboxilasa/genética , Superóxido Dismutasa/metabolismo
3.
FEMS Microbiol Ecol ; 89(1): 135-48, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24735048

RESUMEN

Nutrients have the capacity to change cyanobacterial toxin loads via growth-related toxin production, or shifts in the dominance of toxic and nontoxic strains. This study examined the effect of nitrogen (N) and phosphorus on cell division and strain-related changes in production of the toxins, cylindrospermopsins (CYNs) by the cyanobacterium, Cylindrospermopsis raciborskii. Two short-term experiments were conducted with mixed phytoplankton populations dominated by C. raciborskii in a subtropical reservoir where treatments had nitrate (NO3 ), urea (U) and inorganic phosphorus (P) added alone or in combination. Cell division rates of C. raciborskii were only statistically higher than the control on day 5 when U and P were co-supplied. In contrast, cell quotas of CYNs (QCYNS ) increased significantly in treatments where P was supplied, irrespective of whether N was supplied, and this increase was not necessarily related to cell division rates. Increased QCYNS did correlate with an increase in the proportion of the cyrA toxin gene to 16S genes in the C. raciborskii-dominated cyanobacterial population. Therefore, changes in strain dominance are the most likely factor driving differences in toxin production between treatments. Our study has demonstrated differential effects of nutrients on cell division and strain dominance reflecting a C. raciborskii population with a range of strategies in response to environmental conditions.


Asunto(s)
Cylindrospermopsis/metabolismo , Lagos/microbiología , Alcaloides , Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/genética , División Celular , Clorofila/metabolismo , Clorofila A , Medios de Cultivo , Toxinas de Cianobacterias , Cylindrospermopsis/citología , Cylindrospermopsis/crecimiento & desarrollo , Genes Bacterianos , Floraciones de Algas Nocivas , Toxinas Marinas/biosíntesis , Toxinas Marinas/genética , Microcistinas/biosíntesis , Microcistinas/genética , Nitratos/química , Fósforo/química , Fitoplancton/citología , Fitoplancton/crecimiento & desarrollo , Fitoplancton/metabolismo , Uracilo/análogos & derivados , Uracilo/biosíntesis , Urea/química
4.
Appl Microbiol Biotechnol ; 73(5): 1136-42, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17001477

RESUMEN

The production of food supplements containing cyanobacteria is a growing worldwide industry. While there have been several reports of health benefits that can be gained from the consumption of these supplements, there have also been a growing number of studies showing the presence of toxins some of which (for example microcystins) are known to affect human health. In this paper, we report a multiplex polymerase chain reaction (PCR) technique that can be used to identify microcystin contamination in dietary supplements produced for human consumption. This method involves a PCR reaction containing three primer pairs, the first of which is used to amplify a 220-bp fragment of 16s rDNA specific to Microcystis, the most common microcystin-producing cyanobacterium. The second primer pair is used to amplify a 300-bp fragment of the mcyA gene, linked to microcystin biosynthesis in Anabaena, Microcystis, and Planktothrix. A third primer pair, used as a positive control, results in the amplification of a 650-bp fragment from the phycocyanin operon common to all cyanobacteria. This technique was found to be useful for detecting the presence of toxigenic Microcystis in all dietary supplements produced from the nontoxic cyanobacterium Aphanizomenon flos-aquae.


Asunto(s)
Cianobacterias/aislamiento & purificación , ADN Bacteriano/análisis , Suplementos Dietéticos/microbiología , Microbiología de Alimentos , Reacción en Cadena de la Polimerasa/métodos , Cianobacterias/genética , ADN Bacteriano/genética , Electroforesis en Gel de Agar , Humanos , Espectrometría de Masas , Microcistinas/análisis , Microcistinas/genética , Ficocianina/análisis , Ficocianina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA