Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 180: 262-271, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33737182

RESUMEN

The present study aimed to produce thermoplastic starch films with different concentrations of thermoplastic pectin and the addition of 4% lignin microparticles as a reinforcing and active agent. The pectin improved the modulus of elasticity, and decreased the elongation at break. In addition, it improved the UV light protection to 100% at 320 nm and 95.9% at 400 nm. The incorporation of lignin microparticles improved the thermal stability of the blends made with 25% and 50% thermoplastic pectin when compared to the pectin-free blends. The blend with 25% thermoplastic pectin led to an increase of 75.8% and 34% in elongation at break and deformation of the films, respectively. This blend also improved the UV light protection to 100% due to its dark brown color. Regarding the permeability properties, the films with 25% and 50% thermoplastic pectin showed lower oxygen permeability (48% and 65%) and an increase in the antioxidant activities from 2.7% to 71.08% and 4.1% to 79.28%, respectively. Thus, the polymer blend with 25% thermoplastic pectin with the incorporation of lignin microparticles proved to be a good alternative for use in foods sensitive to the effects of oxygen and UV light.


Asunto(s)
Antioxidantes/química , Plásticos Biodegradables/química , Lignina/química , Microplásticos/química , Pectinas/química , Almidón/química , Color , Elasticidad , Industria de Alimentos , Oxígeno/química , Pectinas/efectos de la radiación , Permeabilidad , Solubilidad , Vapor , Rayos Ultravioleta , Agua/química
2.
Ecotoxicol Environ Saf ; 208: 111665, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396175

RESUMEN

Microplastics are ubiquitous in aquatic ecosystems, but little information is currently available on the dangers and risks to living organisms. In order to assess the ecotoxicity of environmental microplastics (MPs), samples were collected from the beaches of two islands in the Guadeloupe archipelago, Petit-Bourg (PB) located on the main island of Guadeloupe and Marie-Galante (MG) on the second island of the archipelago. These samples have a similar polymer composition with mainly polyethylene (PE) and polypropylene (PP). However, these two samples are very dissimilar with regard to their contamination profile and their toxicity. MPs from MG contain more lead, cadmium and organochlorine compounds while those from PB have higher levels of copper, zinc and hydrocarbons. The leachates of these two samples of MPs induced sublethal effects on the growth of sea urchins and on the pulsation frequency of jellyfish ephyrae but not on the development of zebrafish embryos. The toxic effects are much more marked for samples from the PB site than those from the MG site. This work demonstrates that MPs can contain high levels of potentially bioavailable toxic substances that may represent a significant ecotoxicological risk, particularly for the early life stages of aquatic animals.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Estadios del Ciclo de Vida/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/crecimiento & desarrollo , Ecosistema , Ecotoxicología , Islas , Microplásticos/química , Escifozoos/efectos de los fármacos , Escifozoos/crecimiento & desarrollo , Erizos de Mar/efectos de los fármacos , Erizos de Mar/crecimiento & desarrollo , Contaminantes Químicos del Agua/química
3.
ACS Appl Mater Interfaces ; 13(1): 207-218, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33348979

RESUMEN

Functional core/shell particles are highly sought after in analytical chemistry, especially in methods suitable for single-particle analysis such as flow cytometry because they allow for facile multiplexed detection of several analytes in a single run. Aiming to develop a powerful bead platform of which the core particle can be doped in a straightforward manner while the shell offers the highest possible sensitivity when functionalized with (bio)chemical binders, polystyrene particles were coated with different kinds of mesoporous silica shells in a convergent growth approach. Mesoporous shells allow us to obtain distinctly higher surface areas in comparison with conventional nonporous shells. While assessing the potential of narrow- as well as wide-pore silicas such as Mobil composition of matter no. 41 (MCM-41) and Santa Barbara amorphous material no. 15 (SBA-15), especially the synthesis of the latter shells that are much more suitable for biomolecule anchoring was optimized by altering the pH and both, the amount and type of the mediator salt. Our studies showed that the best performing material resulted from a synthesis using neutral conditions and MgSO4 as an ionic mediator. The analytical potential of the particles was investigated in flow cytometric DNA assays after their respective functionalization for individual and multiplexed detection of short oligonucleotide strands. These experiments revealed that a two-step modification of the silica surface with amino silane and succinic anhydride prior to coupling of an amino-terminated capture DNA (c-DNA) strand is superior to coupling carboxylic acid-terminated c-DNA to aminated core/shell particles, yielding limits of detection (LOD) down to 5 pM for a hybridization assay, using labeled complementary single-stranded target DNA (t-DNA) 15mers. The potential of the use of the particles in multiplexed analysis was shown with the aid of dye-doped core particles carrying a respective SBA-15 shell. Characteristic genomic sequences of human papillomaviruses (HPV) were chosen as the t-DNA analytes here, since their high relevance as carcinogens and the high number of different pathogens is a relevant model case. The title particles showed a promising performance and allowed us to unequivocally detect the different high- and low-risk HPV types in a single experimental run.


Asunto(s)
ADN Viral/análisis , Citometría de Flujo/métodos , Microplásticos/química , Poliestirenos/química , Dióxido de Silicio/química , Alphapapillomavirus/química , Compuestos de Boro/química , ADN de Cadena Simple/análisis , ADN de Cadena Simple/genética , ADN Viral/genética , Fluoresceínas/química , Colorantes Fluorescentes/química , Límite de Detección , Hibridación de Ácido Nucleico , Oligonucleótidos/química , Oligonucleótidos/genética , Porosidad
4.
Chemosphere ; 257: 127225, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32505036

RESUMEN

The role of plastic as a vector for bioaccumulation of hydrophobic organic pollutants has been widely studied. However, the interactions between microplastics (MPs) and crude oil, and the transfer kinetics of sorbed oil from ingested MPs into aquatic biota are largely unknown. In this study, interactions between MPs and crude oil in seawater and digestive tract mimic of aquatic biota have been examined. To mimic the living, transportation and cooking conditions of aquatic organisms, sorption and desorption behaviors were investigated under room temperature-bath (25 °C), ice-bath (0∼4 °C) and boiling water-bath (95∼100 °C), and pH was set as 4 and 7 for the simulated gut fluid. The results showed that sorption capacity of polyethylene (PE) MPs for crude oil in seawater was higher than that in intestinal tract, indicating more oil residue in aqueous phase of gut fluid in the present of organic particles. The sorption kinetics models were well fitted to the pseudo-order model, and isotherms models were well fitted to the Freundlich model. In addition, the results demonstrated that temperature played a significant effect on crude oil viscosity, and the sorption capacity under different temperatures was in the order of 25 °C > 95∼100 °C > 0∼4 °C, indicating that more oil was remained in aqueous phase at boiling water-bath and ice-bath. The increment of pH enhances the sorption capacities of PE MPs. Moreover, the desorption experiment has supplemented the current findings from the sorption experiments.


Asunto(s)
Microplásticos/química , Petróleo , Polietileno/química , Contaminantes Químicos del Agua/química , Adsorción , Organismos Acuáticos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Plásticos/química , Agua de Mar/química , Contaminantes Químicos del Agua/análisis
5.
Proc Natl Acad Sci U S A ; 117(18): 9699-9705, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32300006

RESUMEN

A ubiquitous structural feature in biological systems is texture in extracellular matrix that gains functions when hardened, for example, cell walls, insect scales, and diatom tests. Here, we develop patterned liquid crystal elastomer (LCE) particles by recapitulating the biophysical patterning mechanism that forms pollen grain surfaces. In pollen grains, a phase separation of extracellular material into a pattern of condensed and fluid-like phases induces undulations in the underlying elastic cell membrane to form patterns on the cell surface. In this work, LCE particles with variable surface patterns were created through a phase separation of liquid crystal oligomers (LCOs) droplet coupled to homeotropic anchoring at the droplet interface, analogously to the pollen grain wall formation. Specifically, nematically ordered polydisperse LCOs and isotropic organic solvent (dichloromethane) phase-separate at the surface of oil-in-water droplets, while, different LCO chain lengths segregate to different surface curvatures simultaneously. This phase separation, which creates a distortion in the director field, is in competition with homeotropic anchoring induced by sodium dodecyl sulfate (SDS). By tuning the polymer chemistry of the system, we are able to influence this separation process and tune the types of surface patterns in these pollen-like microparticles. Our study reveals that the energetically favorable biological mechanism can be leveraged to offer simple yet versatile approaches to synthesize microparticles for mechanosensing, tissue engineering, drug delivery, energy storage, and displays.


Asunto(s)
Elastómeros/química , Cristales Líquidos/química , Microplásticos/química , Polen/química , Biofisica/métodos , Matriz Extracelular/química , Cloruro de Metileno/química , Dodecil Sulfato de Sodio/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA