Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Theranostics ; 12(18): 7681-7698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451864

RESUMEN

Rationale: Increased lipid droplet (LD) formation has been linked to tumor metastasis, stemness, and chemoresistance in various types of cancer. Here, we revealed that LD formation is critical for the adaptation to sorafenib in hepatocellular carcinoma (HCC) cells. We aim to investigate the LD function and its regulatory mechanisms in HCC. Methods: The key proteins responsible for LD formation were screened by both metabolomics and proteomics in sorafenib-resistant HCC cells and further validated by immunoblotting and immunofluorescence staining. Biological function of AKR1C3 was evaluated by CRISPR/Cas9-based gene editing. Isotopic tracing analysis with deuterium3-labeled palmitate or carbon13-labeled glucose was conducted to investigate fatty acid (FA) and glucose carbon flux. Seahorse analysis was performed to assess the glycolytic flux and mitochondrial function. Selective AKR1C3 inhibitors were used to evaluate the effect of AKR1C3 inhibition on HCC tumor growth and induction of autophagy. Results: We found that long-term sorafenib treatment impairs fatty acid oxidation (FAO), leading to LD accumulation in HCC cells. Using multi-omics analysis in cultured HCC cells, we identified that aldo-keto reductase AKR1C3 is responsible for LD accumulation in HCC. Genetic loss of AKR1C3 fully depletes LD contents, navigating FA flux to phospholipids, sphingolipids, and mitochondria. Furthermore, we found that AKR1C3-dependent LD accumulation is required for mitigating sorafenib-induced mitochondrial lipotoxicity and dysfunction. Pharmacologic inhibition of AKR1C3 activity instantly induces autophagy-dependent LD catabolism, resulting in mitochondrial fission and apoptosis in sorafenib-resistant HCC clones. Notably, manipulation of AKR1C3 expression is sufficient to drive the metabolic switch between FAO and glycolysis. Conclusions: Our findings revealed that AKR1C3-dependent LD formation is critical for the adaptation to sorafenib in HCC through regulating lipid and energy homeostasis. AKR1C3-dependent LD accumulation protects HCC cells from sorafenib-induced mitochondrial lipotoxicity by regulating lipophagy. Targeting AKR1C3 might be a promising therapeutic strategy for HCC tumors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Sorafenib/farmacología , Gotas Lipídicas , Neoplasias Hepáticas/tratamiento farmacológico , Ácidos Grasos , Glucosa , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas
2.
Cell Signal ; 95: 110336, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35452821

RESUMEN

The intratumoral androgen synthesis is one of the mechanisms by which androgen receptor (AR) is aberrantly re-activated in castration-resistant prostate cancer (CRPC) after androgen ablation. However, pathways controlling steroidogenic enzyme expression and de novo androgen synthesis in prostate cancer (PCa) cells are largely unknown. In this study, we explored the potential roles of DAB2IP in testosterone synthesis and CRPC tumor growth. Indeed, DAB2IP loss could maintain AR transcriptional activity, PSA re-expression and tumor growth under castrated condition in vitro and in vivo, and reprogram the expression profiles of steroidogenic enzymes, including AKR1C3. Mechanistically, DAB2IP could dramatically inhibit the AKR1C3 promoter activity and the conversion from androgen precursors (i.e., DHEA) to testosterone through PI3K/AKT/mTOR/ETS1 signaling. Consistently, there was a high co-expression of ETS1 and AKR1C3 in PCa tissues and xenografts, and their expression in prostate tissues could also restore AR nuclear staining in castrated DAB2IP-/- mice after DHEA supplement. Together, this study reveals a novel regulation of intratumoral de novo androgen synthesis in CRPC, and provides the DAB2IP/ETS1/AKR1C3 signaling as a potential therapeutic target.


Asunto(s)
Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Andrógenos , Neoplasias de la Próstata Resistentes a la Castración , Proteína Proto-Oncogénica c-ets-1 , Testosterona , Proteínas Activadoras de ras GTPasa , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Andrógenos/metabolismo , Animales , Línea Celular Tumoral , Deshidroepiandrosterona/farmacología , Humanos , Masculino , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteína Proto-Oncogénica c-ets-1/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal , Testosterona/biosíntesis , Testosterona/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
3.
Clin Cancer Res ; 25(14): 4493-4503, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31015346

RESUMEN

PURPOSE: OBI-3424 is a highly selective prodrug that is converted by aldo-keto reductase family 1 member C3 (AKR1C3) to a potent DNA-alkylating agent. OBI-3424 has entered clinical testing for hepatocellular carcinoma and castrate-resistant prostate cancer, and it represents a potentially novel treatment for acute lymphoblastic leukemia (ALL). EXPERIMENTAL DESIGN: We assessed AKR1C3 expression by RNA-Seq and immunoblotting, and evaluated the in vitro cytotoxicity of OBI-3424. We investigated the pharmacokinetics of OBI-3424 in mice and nonhuman primates, and assessed the in vivo efficacy of OBI-3424 against a large panel of patient-derived xenografts (PDX). RESULTS: AKR1C3 mRNA expression was significantly higher in primary T-lineage ALL (T-ALL; n = 264) than B-lineage ALL (B-ALL; n = 1,740; P < 0.0001), and OBI-3424 exerted potent cytotoxicity against T-ALL cell lines and PDXs. In vivo, OBI-3424 significantly prolonged the event-free survival (EFS) of nine of nine ALL PDXs by 17.1-77.8 days (treated/control values 2.5-14.0), and disease regression was observed in eight of nine PDXs. A significant reduction (P < 0.0001) in bone marrow infiltration at day 28 was observed in four of six evaluable T-ALL PDXs. The importance of AKR1C3 in the in vivo response to OBI-3424 was verified using a B-ALL PDX that had been lentivirally transduced to stably overexpress AKR1C3. OBI-3424 combined with nelarabine resulted in prolongation of mouse EFS compared with each single agent alone in two T-ALL PDXs. CONCLUSIONS: OBI-3424 exerted profound in vivo efficacy against T-ALL PDXs derived predominantly from aggressive and fatal disease, and therefore may represent a novel treatment for aggressive and chemoresistant T-ALL in an AKR1C3 biomarker-driven clinical trial.


Asunto(s)
Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Antineoplásicos Alquilantes/farmacología , Proliferación Celular , Supervivencia Celular , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Profármacos/farmacología , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Macaca fascicularis , Ratones , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Bioorg Med Chem ; 26(22): 5934-5943, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30429100

RESUMEN

AKR1C3 is a promising therapeutic target for castration-resistant prostate cancer. Herein, an evaluation of in-house library discovered substituted pyranopyrazole as a novel scaffold for AKR1C3 inhibitors. Preliminary SAR exploration identified its derivative 19d as the most promising compound with an IC50 of 0.160 µM among the 23 synthesized molecules. Crystal structure studies revealed that the binding mode of the pyranopyrazole scaffold is different from the current inhibitors. Hydroxyl, methoxy and nitro group at the C4-phenyl substituent together anchor the inhibitor to the oxyanion site, while the core of the scaffold dramatically enlarges but partially occupies the SP pockets with abundant hydrogen bond interactions. Strikingly, the inhibitor undergoes a conformational change to fit AKR1C3 and its homologous protein AKR1C1. Our results suggested that conformational changes of the receptor and the inhibitor should both be considered during the rational design of selective AKR1C3 inhibitors. Detailed binding features obtained from molecular dynamics simulations helped to finally elucidate the molecular basis of 6-amino-4-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles as AKR1C3 inhibitors, which would facilitate the future rational inhibitor design and structural optimization.


Asunto(s)
Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Nitrilos/farmacología , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Nitrilos/síntesis química , Nitrilos/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
5.
Nat Prod Commun ; 12(2): 245-246, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30428222

RESUMEN

Aldo-keto reductase 103 (AKRIC3) is an important human enzyme that participates in the reduction of steroids and prostaglandins, which leads to proliferative signaling. AKRIC3 is frequently upregulated in various cancers, and this enzyme has been suggested as a therapeutic target for the treatment of these pathological conditions. The fact that the isoquinoline alkaloid stylopine has been identified as a potent AKRIC3 inhibitor has prompted us to screen a library of diverse types of Amaryllidaceae alkaloids, which biogenetically are isoquinoline alkaloids, on a recombinant form of AKRIC3. From the tested compounds, only tazettine showed moderate AKRIC3 inhibitory potency with an IC5o value of 15.8 ? 1.2 pM. Tazettine is a common Amaryllidaceac alkaloid, which could be used as a model substance for the further development of either analogues or related compounds with better inhibition potency.


Asunto(s)
Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/antagonistas & inhibidores , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/química
6.
Phytomedicine ; 23(5): 558-65, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-27064015

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer. Its global incidence and mortality have been on the rise. Recent strategy of therapies has involved the use of non-steroid anti-inflammatory drugs and cyclooxygenase-selective inhibitors. Aerial parts of Imperata cylindrical L. Raeusch (IMP) have been used as an anti-inflammatory agent in traditional Chinese medicine. HYPOTHESIS: Asarachidonate acid cascadeis often involved in inflammation-related malignancy and IMP is an anti-inflammatory agent, hence it is hypothesized that IMP aerial part ethyl acetate extract exerts cytotoxic effects on colorectal cancer cells in vitro. STUDY DESIGN: The HT-29 adenocarcinoma cell line was used to elucidate its pro-apoptotic activities. Flow cytometry and fluorescent microscopy were performed to assess cell cycle arrest and the accumulation of reactive oxygen species (ROS). The mRNA and hormone levels of arachidonate acid pathways were studied via quantitative reverse transcription PCR (qRT-PCR) and ELISA. RESULTS: The 50% growth inhibitory effect (GI50) of the IMP extract on HT-29 was measured with a value of 14.5 µg/ml. Immuno-blot and caspase-3/7 activity assay showed the pro-apoptotic effect of IMP on the activation of caspase cascade. G2/M arrest was observed via flow cytometry. The ROS activity was modulated by the IMP extraction a concentration-dependent manner in HT-29 cells. The IMP extract increased PGE2 and PGF2α levels qRT-PCR revealed that transcripts of rate-limiting PGE2- and PGF2α-biosynthetic enzymes - COX-1, mPGES1 and AKR1C3 were notably up-regulated. Among the prostanoid receptors, EP1 and FP transcripts were up-regulated while EP4 transcripts decreased. The findings suggest that the proliferative effect of PGE2, which is generally believed to associate with heightened DNA synthesis and cross-talk with MAPK pathways, is likely triggered by the pro-apoptotic or -oxidative effects exerted by IMP extract in HT-29 cells. Concurring with this notion, indomethacin (COX-1/2-inhibitor) was demonstrated to potentiate the cytotoxic effect of IMP extract (GI50 ≦ 10.8 µg/ml). The results show that the cytotoxic effect of IMP extract predominates over the influence of proliferative prostanoids released by challenged colorectal cancer cells, and may present a potential source for development of novel anti-cancer drugs.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/patología , Extractos Vegetales/farmacología , Poaceae/química , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Antiinflamatorios no Esteroideos/farmacología , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclooxigenasa 1/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Dinoprost/metabolismo , Dinoprostona/metabolismo , Células HT29/efectos de los fármacos , Humanos , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Indometacina/farmacología , Componentes Aéreos de las Plantas/química , Especies Reactivas de Oxígeno/metabolismo
7.
PLoS One ; 8(11): e77543, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24223121

RESUMEN

Aromatase inhibitors (AIs) are the most effective class of drugs in the endocrine treatment of breast cancer, with an approximate 50% treatment response rate. Our objective was to determine whether intratumoral expression levels of estrogen-related genes are predictive of AI responsiveness in postmenopausal women with breast cancer. Primary breast carcinomas were obtained from 112 women who received AI therapy after failing adjuvant tamoxifen therapy and developing recurrent breast cancer. Tumor ERα and PR protein expression were analyzed by immunohistochemistry (IHC). Messenger RNA (mRNA) levels of 5 estrogen-related genes-AKR1C3, aromatase, ERα, and 2 estradiol/ERα target genes, BRCA1 and PR-were measured by real-time PCR. Tumor protein and mRNA levels were compared with breast cancer progression rates to determine predictive accuracy. Responsiveness to AI therapy-defined as the combined complete response, partial response, and stable disease rates for at least 6 months-was 51%; rates were 56% in ERα-IHC-positive and 14% in ERα-IHC-negative tumors. Levels of ERα, PR, or BRCA1 mRNA were independently predictive for responsiveness to AI. In cross-validated analyses, a combined measurement of tumor ERα and PR mRNA levels yielded a more superior specificity (36%) and identical sensitivity (96%) to the current clinical practice (ERα/PR-IHC). In patients with ERα/PR-IHC-negative tumors, analysis of mRNA expression revealed either non-significant trends or statistically significant positive predictive values for AI responsiveness. In conclusion, expression levels of estrogen-related mRNAs are predictive for AI responsiveness in postmenopausal women with breast cancer, and mRNA expression analysis may improve patient selection.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Inhibidores de la Aromatasa/farmacología , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Nitrilos/farmacología , Triazoles/farmacología , 3-Hidroxiesteroide Deshidrogenasas/genética , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Anastrozol , Antineoplásicos Hormonales/uso terapéutico , Aromatasa/genética , Aromatasa/metabolismo , Inhibidores de la Aromatasa/uso terapéutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Quimioterapia Adyuvante , Resistencia a Antineoplásicos , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica , Marcadores Genéticos , Humanos , Hidroxiprostaglandina Deshidrogenasas/genética , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Letrozol , Persona de Mediana Edad , Nitrilos/uso terapéutico , Curva ROC , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Resultado del Tratamiento , Triazoles/uso terapéutico
8.
Bioorg Med Chem ; 21(17): 5261-70, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23845281

RESUMEN

Type 5 17ß-hydroxysteroid dehydrogenase (17ß-HSD5), also known as aldo-keto reductase 1C3 (AKR1C3), is a member of the aldo-keto reductase superfamily of enzymes and is expressed in the human prostate. One of the main functions of 17ß-HSD5 is to catalyze the conversion of the weak androgen, androstenedione, to the potent androgen, testosterone. The concentration of intraprostatic 5α-dihydrotestosterone (DHT) in patients following chemical or surgical castration has been reported to remain as high as 39% of that of healthy men, with 17ß-HSD5 shown to be involved in this androgen synthesis. Inhibition of 17ß-HSD5 therefore represents a promising target for the treatment of castration-resistant prostate cancer (CRPC). To investigate this, we conducted high-throughput screening (HTS) and identified compound 2, which displayed a structure distinct from known 17ß-HSD5 inhibitors. To optimize the inhibitory activity of compound 2, we first introduced a primary alcohol group. We then converted the primary alcohol group to a tertiary alcohol, which further enhanced the inhibitory activity, improved metabolic stability, and led to the identification of compound 17. Oral administration of compound 17 to castrated nude mice bearing the CWR22R xenograft resulted in the suppression of androstenedione (AD)-induced intratumoral testosterone production. Compound 17 also demonstrated good isoform selectivity, minimal inhibitory activity against either CYP or hERG, and enhanced pharmacokinetic and physicochemical properties.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Hidroxiprostaglandina Deshidrogenasas/antagonistas & inhibidores , Indoles/química , Piperidinas/química , 3-Hidroxiesteroide Deshidrogenasas/genética , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Administración Oral , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/uso terapéutico , Células HEK293 , Semivida , Humanos , Hidroxiprostaglandina Deshidrogenasas/genética , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Indoles/farmacocinética , Indoles/uso terapéutico , Masculino , Ratones , Ratones Desnudos , Piperidinas/farmacocinética , Piperidinas/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Testosterona/metabolismo , Trasplante Heterólogo
9.
Chem Biol Interact ; 191(1-3): 227-33, 2011 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-21182831

RESUMEN

The human aldo-keto reductases 1C1 and 1C3 (AKR1C1 and AKR1C3) are important 20-ketosteroid reductases in pre-receptor regulation of progesterone action. Both AKR1C1 and AKR1C3 convert progesterone to the less potent metabolite 20α-hydroxyprogesterone, although AKR1C1 has a higher catalytic efficiency than AKR1C3. Recently, we reported significant up-regulation of AKR1C1 and AKR1C3 in ovarian endometriosis, a complex estrogen-dependent disease. The typical characteristics of endometriosis are increased formation of estradiol, which stimulates proliferation of endometriotic tissue, and disturbed action of the protective progesterone. Although progestins have been used for treatment of endometriosis since the 1960s, their detailed mechanisms of action are still not completely understood. In the present study, we evaluated the potential inhibitory effects of progestins on the pre-receptor regulatory enzymes AKR1C1 and AKR1C3. We examined the following progestins as inhibitors of progesterone reduction catalyzed by recombinant AKR1C1 and AKR1C3: progesterone derivatives (dydrogesterone, its metabolite, 20α-hydroxydydrogesterone; and medroxyprogesterone acetate), 19-nortestosterone derivatives (desogestrel, norethinodrone and levonorgestrel), and the androgen danazol. Dydrogesterone, medroxyprogesterone acetate, 20α-hydroxydydrogesterone and norethinodrone inhibited AKR1C1 and AKR1C3 with K(i) values of 1.9 µM, 7.9 µM, 20.8 µM and 48.0 µM, and of 0.5 µM, 1.4 µM, 18.2 µM and 6.6 µM, respectively. Levonorgestrel and desogestrel preferentially inhibited AKR1C3 with K(i) values of 5.6µM and 39.1µM, respectively. Our data thus show that dydrogesterone, medroxyprogesterone acetate, 20α-hydroxydydrogesterone and norethinodrone inhibit AKR1C1 and AKR1C3 in vitro, although their physiological inhibitory effects still need to be evaluated further. Additionally, we investigated whether progestin dydrogesterone can be metabolized to its active 20α-hydroxymetabolite by AKR1C1 and AKR1C3. AKR1C1 converted dydrogesterone with a high catalytic efficiency while AKR1C3 was less active, which suggests that in vivo dydrogesterone is metabolized mainly by AKR1C1. Docking simulations of dydrogesterone into AKR1C1 and AKR1C3 also support these experimental data.


Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 3-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Hidroxiprostaglandina Deshidrogenasas/antagonistas & inhibidores , Progestinas/farmacología , 20-Hidroxiesteroide Deshidrogenasas/química , 20-Hidroxiesteroide Deshidrogenasas/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/química , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Biocatálisis , Evaluación Preclínica de Medicamentos , Didrogesterona/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Hidroxiprostaglandina Deshidrogenasas/química , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Modelos Moleculares , Oxidación-Reducción/efectos de los fármacos , Progestinas/química , Progestinas/metabolismo , Conformación Proteica
10.
J Am Chem Soc ; 130(43): 14123-8, 2008 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-18826220

RESUMEN

We here present an optical method for monitoring the activity of the inducible aldo-keto reductases AKR1C2 and AKR1C3 in living human cells. The induction of these enzymes is regulated by the antioxidant response element (ARE), as demonstrated in recent literature, which in turn is dependent on the transcription factor Nrf2. The activation of ARE leads to the transcription of a coalition of cytoprotective enzymes and thus represents an important target for the development of new therapies in the area of neurodegenerative diseases and cancer. Through the use of Coumberone, a metabolic fluorogenic probe, and isoform-selective inhibitors, the upregulation of cellular stress markers AKR1C2 and AKR1C3 can be quantitatively measured in the presence of ARE activator compounds, via either a fluorimetric assay or fluorescence microscopy imaging of intact cells. The method has both high sensitivity and broad dynamic range, as demonstrated by induction studies in three cell lines with dramatically different metabolic capabilities (transfected monkey kidney COS-1 cells, human neuroblastoma IMR-32 cells, and human liver HepG2 cells). We applied the new method to examine a number of neurotrophic natural products (spirotenuipesine A, spirotenuipesine B, scabronine G-methylester, and panaxytriol), and discovered that panaxytriol, an active component of red ginseng extracts, is a potent ARE inducer. The upregulation of AKR1C enzymes, induced by chemically homogeneous panaxytriol, was partially dependent on PKC and PI3K kinases as demonstrated by the application of selective inhibitors. This cellular mechanism may account for panaxytriol's neurotrophic, neuroprotective, and anticancer properties. The protective effects of ARE inducers against tumorgenesis and neurodegeneration fuel the growing interest in this area of research and the method described here will greatly enable these endeavors.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/efectos de los fármacos , Enediinos/farmacología , Alcoholes Grasos/farmacología , Colorantes Fluorescentes/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Hidroxiprostaglandina Deshidrogenasas/efectos de los fármacos , Hidroxiesteroide Deshidrogenasas/efectos de los fármacos , Panax/química , 3-Hidroxiesteroide Deshidrogenasas/química , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Animales , Antineoplásicos/farmacología , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Citoprotección , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Enediinos/química , Activación Enzimática/efectos de los fármacos , Inducción Enzimática/efectos de los fármacos , Alcoholes Grasos/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Humanos , Hidroxiprostaglandina Deshidrogenasas/química , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Hidroxiesteroide Deshidrogenasas/química , Hidroxiesteroide Deshidrogenasas/metabolismo , Indometacina/farmacología , Microscopía Fluorescente/métodos , Modelos Biológicos , Estructura Molecular , Degeneración Nerviosa/prevención & control , Fármacos Neuroprotectores/farmacología , Sensibilidad y Especificidad , Regulación hacia Arriba/efectos de los fármacos , Ácido Ursodesoxicólico/farmacología
11.
Mol Cell Endocrinol ; 259(1-2): 30-42, 2006 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-16962702

RESUMEN

Phytoestrogens are plant-derived, non-steroidal constituents of our diets. They can act as agonists or antagonists of estrogen receptors, and they can modulate the activities of the key enzymes in estrogen biosynthesis. Much less is known about their actions on the androgen and progesterone metabolizing enzymes. We have examined the inhibitory action of phytoestrogens on the key human progesterone-metabolizing enzyme, 20alpha-hydroxysteroid dehydrogenase (AKR1C1). This enzyme inactivates progesterone and the neuroactive 3alpha,5alpha-tetrahydroprogesterone, to form their less active counterparts, 20alpha-hydroxyprogesterone and 5alpha-pregnane-3alpha,20alpha-diol, respectively. We overexpressed recombinant human AKR1C1 in Escherichia coli, purified it to homogeneity, and examined the selected phytoestrogens as inhibitors of NADPH-dependent reduction of a common AKR substrate, 9,10-phenantrenequinone, and progesterone. The most potent inhibitors were 7-hydroxyflavone, 3,7-dihydroxyflavone and flavanone naringenin with IC(50) values in the low microM range. Docking of the flavones in the active site of AKR1C1 revealed their possible binding modes, in which they are sandwiched between the Leu308 and Trp227 of AKR1C1.


Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Fitoestrógenos/farmacología , Progesterona/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Sitios de Unión , Simulación por Computador , Cumarinas/farmacología , Inhibidores Enzimáticos/farmacología , Congéneres del Estradiol/farmacología , Moduladores de los Receptores de Estrógeno/farmacología , Flavanonas/farmacología , Flavonas/química , Flavonas/farmacología , Humanos , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Isoflavonas/farmacología , Modelos Biológicos , Modelos Moleculares , Fenantrenos/antagonistas & inhibidores , Progesterona Reductasa/metabolismo , Unión Proteica , Proteínas Recombinantes/aislamiento & purificación , Estilbenos/farmacología , Zearalenona/farmacología
12.
Mol Cell Endocrinol ; 253(1-2): 44-55, 2006 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-16735089

RESUMEN

Paracrine interactions between adipose fibroblasts and malignant epithelial cells are essential for structural and hormonal support of breast tumors. Factors derived from malignant epithelial cells inhibit adipogenic differentiation of fibroblasts and upregulate expression of aromatase, which stimulates estrogen synthesis and creates a localized, growth-stimulatory environment. Here, we characterized the gene expression profile of breast adipose fibroblasts in an in vitro model of malignancy to identify other paracrine interactions that support tumor growth. Primary breast adipose fibroblasts from cancer-free women were treated with conditioned media from malignant breast epithelial cells or normal breast epithelial cells, and differences in gene expression were identified by microarray. A total of 79 differentially regulated genes encoding cytokines, enzymes, angiogenic factors, cytoskeletal proteins, extra-cellular matrix remodeling proteins, signal transduction proteins and cell surface receptors were identified, and 6 of these were verified by real-time PCR. Among these, the expression of aldo-keto reductase family 1, member C3 (AKR1C3) was upregulated. AKR1C3 has multiple enzymatic properties, including conversion of estrone to estradiol and androstenedione to testosterone. Immunoreactive AKR1C3 was detected in epithelial and stromal components of benign lesions and ductal carcinomas in situ, and in 59.8% of epithelial and 69.6% of stromal cells in invasive breast carcinomas. AKR1C3 expression was significantly higher in myoepithelial cells surrounding the neoplastic epithelium of ductal carcinoma in situ compared with those surrounding benign epithelial lesions. Importantly, AKR1C3 and aromatase mRNA levels correlated positively in 61 malignant breast tumors (R=0.3967, p=0.00156). Malignant epithelial cell-conditioned medium significantly increased formation of testosterone and estradiol from androstenedione in breast adipose fibroblasts. In conclusion, malignant epithelial cell-derived factors significantly upregulate the enzymes AKR1C3 and aromatase that catalyze a series of complementary reactions to convert the circulating precursor androstenedione to biologically active estradiol in vitro in the stromal fibroblasts, and in vivo, in stromal component of breast tumors.


Asunto(s)
Neoplasias de la Mama/metabolismo , Estradiol/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Comunicación Paracrina/genética , 3-Hidroxiesteroide Deshidrogenasas/genética , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Tejido Adiposo/citología , Adolescente , Adulto , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Aromatasa/genética , Aromatasa/metabolismo , Línea Celular Tumoral , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Hidroxiprostaglandina Deshidrogenasas/genética , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Inmunohistoquímica , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , ARN Mensajero/biosíntesis
13.
Mol Cell Endocrinol ; 248(1-2): 38-46, 2006 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-16480815

RESUMEN

17Beta-hydroxysteroid dehydrogenases/ketosteroid reductases (17beta-HSDs/KSRs) catalyze the last step of sex steroid synthesis or the first step of their degradation, and are thus critical for many physiological processes. The multispecificity demonstrated by 17beta-HSDs is important for steroid metabolism in gonadal and peripheral tissues, and is a consequence of the architecture of their binding and catalytic sites. Structurally, most of the family members are short chain dehydrogenase-reductases (SDRs) except the type 5 enzyme, which is an aldo-keto reductase (AKR). 17Beta-HSD type 1, a representative of the SDR family, has been studied extensively since the 1950s. However, its structure was not determined until the 1990s. It has always been considered as estrogen specific, in accord with the narrow binding tunnel that has been structurally determined and has been found to be complementary to estrogens. A recent study revealed that, in spite of the enzyme's narrow binding tunnel, the pseudo-symmetry of C19 steroids leads to its alternative binding, resulting in the multispecificity of the enzyme. Expressed in ovary, breast and placenta, the enzyme catalyzes the formation of another estrogen A-diol from DHEA in addition to the biosynthesis of estradiol; it also inactivates the most active androgen DHT by both 17beta-hydroxysteroid oxidation and 3-ketosteroid reduction. Type 5 17beta-HSD (AKR1C3) differs significantly from the type 1 enzyme by possessing a spacious and flexible steroid-binding site. This is estimated to be about 960 or 470 A3 in ternary complex with testosterone or 4-dione, respectively, whereas the binding site volume of 17beta-HSD1 is only about 340 A3. This characteristic of the 17beta-HSD5 binding site permits the docking of various steroids in different orientations, which encompasses a wider range of activities from 20alpha-, 17beta- and 3alpha-HSD/KSR to prostaglandin 11-ketoreductase. The in vitro activities of the enzyme are significantly lower than the type 1 enzyme. In the ternary complex with testosterone, the steroid C3-C17 position is quasi-reversed as compared to the complex with 4-dione. The multi-specificity contributes significantly to steroid metabolism in peripheral tissues, due to the high levels of 17beta-HSD5 mRNA in both breast and prostate tissues.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/química , 3-Hidroxiesteroide Deshidrogenasas/química , Estradiol Deshidrogenasas/química , Hidroxiprostaglandina Deshidrogenasas/química , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Estradiol Deshidrogenasas/metabolismo , Humanos , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Conformación Proteica , Esteroides/metabolismo , Especificidad por Sustrato , Distribución Tisular
14.
Mol Cell Endocrinol ; 248(1-2): 172-81, 2006 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-16368183

RESUMEN

A generalized numerical treatment of rapid-equilibrium enzyme kinetics is presented. This new approach relies on automatic computer derivation of the underlying mathematical model (a system of simultaneous nonlinear algebraic equations) from a symbolic representation of the reaction mechanism (a system of biochemical equations) provided by the researcher. The method allows experimental biochemists to analyze initial-rate enzyme kinetic data without having to use any mathematical equations. An illustrative example is based on the inhibition kinetics of 17beta-hydroxysteroid dehydrogenase type 5 by a class of natural compounds. A computer implementation of the new method, a newly modified software package DYNAFIT [Kuzmic, P., 1996. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 237, 260-273], is freely available to all academic researchers.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Biología Computacional/métodos , Inhibidores Enzimáticos/farmacología , Fitoestrógenos/farmacología , Programas Informáticos , 3-Hidroxiesteroide Deshidrogenasas , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Simulación por Computador , Humanos , Hidroxiprostaglandina Deshidrogenasas , Cinética , Modelos Moleculares
15.
Adv Exp Med Biol ; 505: 151-61, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12083459

RESUMEN

Phytoestrogens contained in a vegetarian diet are supposed to have beneficial effects on the development and progression of a variety of endocrine-related cancers. We have tested the effect of a variety of dietary phytoestrogens, especially flavonoids, on the activity of human 17beta-hydroxysteroid dehydrogenase type 5 (17beta-HSD 5), a key enzyme in the metabolism of estrogens and androgens. Our studies show that reductive and oxidative activity of the enzyme are inhibited by many compounds, especially zearalenone, coumestrol, quercetin and biochanin A. Among flavones, inhibitor potency is enhanced with increased degree of hydroxylation. The most effective inhibitors seem to bind to the hydrophilic cofactor binding pocket of the enzyme.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Estrógenos no Esteroides/farmacología , Flavonoides/farmacología , Isoflavonas , 3-Hidroxiesteroide Deshidrogenasas , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Androstano-3,17-diol/metabolismo , Androstenodiona/metabolismo , Androsterona/biosíntesis , Anticarcinógenos/química , Anticarcinógenos/farmacología , Sitios de Unión/efectos de los fármacos , Dieta , Inhibidores Enzimáticos/química , Estrógenos no Esteroides/sangre , Estrógenos no Esteroides/química , Flavonoides/química , Humanos , Hidroxilación , Hidroxiprostaglandina Deshidrogenasas , Neoplasias Hormono-Dependientes/prevención & control , Oxidación-Reducción , Fitoestrógenos , Preparaciones de Plantas , Plantas Comestibles/química , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Relación Estructura-Actividad , Tamoxifeno/farmacología , Testosterona/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA