Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.308
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 208: 108459, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484684

RESUMEN

The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential". In soil, most of Si is found in complex forms as mineral silicates which is not available for plant uptake. Monosilicic acid [Si(OH)4] is the only plant-available form of silicon (PAS) present in the soil. The ability of a plant to uptake Si is positively correlated with the PAS concentration of the soil. Since many cultivated soils often lack a sufficient amount of PAS, it has become common practice to supplement Si through the use of Si-based fertilizers in various crop cultivation systems. This review outlines the use of natural and chemical sources of Si as fertilizer, different regimes of Si fertilization, and conclude by identifying the optimum concentration of Si required to observe the beneficial effects in plants. Also, the different mathematical models defining the mineral dynamics for Si uptake at whole plant scale considering various natural factors like plant morphology, mineral distribution, and transporter expression have been discussed. Information provided here will further help in increasing understanding of Si role and thereby facilitate efficient exploration of the element as a fertilizer in crop production.


Asunto(s)
Fertilizantes , Silicio , Silicio/farmacología , Suelo/química , Transporte Biológico , Plantas/metabolismo , Minerales/metabolismo
2.
Sci Rep ; 14(1): 4883, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418503

RESUMEN

Supplementing minerals beyond dietary requirements can increase the risk of toxicity and mineral excretion, making the selection of more bioavailable sources crucial. Thus, this work aimed to use metalloproteomics tools to investigate possible alterations in the hepatic proteome of broilers fed with diets containing two sources (sulfate and hydroxychloride) and two levels of copper (15 and 150 ppm) and manganese (80 and 120 ppm), totaling four treatments: low Cu/Mn SO4, high Cu/Mn SO4, low Cu/Mn (OH)Cl and high Cu/Mn (OH)Cl. The difference in abundance of protein spots and copper and manganese concentrations in liver and protein pellets were analyzed by analysis of variance with significance level of 5%. The Cu and Mn concentrations determined in liver and protein pellets suggested greater bioavailability of hydroxychloride sources. We identified 19 Cu-associated proteins spots, 10 Mn-associated protein spots, and 5 Cu and/or Mn-associated protein spots simultaneously. The analysis also indicated the induction of heat shock proteins and detoxification proteins in broilers fed with high levels of copper and manganese, suggesting the involvement of these proteins in metal tolerance and stress.


Asunto(s)
Cobre , Manganeso , Animales , Manganeso/metabolismo , Cobre/metabolismo , Pollos/metabolismo , Suplementos Dietéticos/análisis , Zinc/metabolismo , Minerales/metabolismo , Dieta , Hígado/metabolismo , Alimentación Animal/análisis
3.
BMC Genomics ; 25(1): 220, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413895

RESUMEN

BACKGROUND: The appropriate mineral nutrients are essential for sheep growth and reproduction. However, traditional grazing sheep often experience mineral nutrient deficiencies, especially copper (Cu), due to inadequate mineral nutrients from natural pastures. RESULTS: The results indicated that dietary Cu deficiency and supplementation significantly reduced and elevated liver concentration of Cu, respectively (p < 0.05). FOXO3, PLIN1, ACTN2, and GHRHR were identified as critical genes using the weighted gene co-expression network analysis (WGCNA), quantitative real-time polymerase chain reaction (qRT-PCR), and receiver operating characteristic curve (ROC) validation as potential biomarkers for evaluating Cu status in grazing sheep. Combining these critical genes with gene functional enrichment analysis, it was observed that dietary Cu deficiency may impair liver regeneration and compromise ribosomal function. Conversely, dietary Cu supplementation may enhance ribosomal function, promote lipid accumulation, and stimulate growth and metabolism in grazing sheep. Metabolomics analysis indicated that dietary Cu deficiency significantly decreased the abundance of metabolites such as cholic acid (p < 0.05). On the other hand, dietary Cu supplementation significantly increased the abundance of metabolites such as palmitic acid (p < 0.05). Integrative analysis of the transcriptome and metabolome revealed that dietary Cu deficiency may reduce liver lipid metabolism while Cu supplementation may elevate it in grazing sheep. CONCLUSIONS: The Cu content in diets may have an impact on hepatic lipid metabolism in grazing sheep. These findings provide new insights into the consequences of dietary Cu deficiency and supplementation on sheep liver and can provide valuable guidance for herders to rationalize the use of mineral supplements.


Asunto(s)
Cobre , Hígado , Ovinos , Animales , Cobre/farmacología , Hígado/metabolismo , Suplementos Dietéticos , Minerales/metabolismo , Perfilación de la Expresión Génica , Expresión Génica
4.
Animal ; 18(3): 101084, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367312

RESUMEN

Procedures such as transport and marketing can subject animals to water and feed deprivation and impair animal health and performance. Maintaining the mineral status of animals under these conditions can bring benefits to health and performance. The use of hydroxychloride mineral sources can improve mineral status, nutrient digestibility and performance. Two studies were conducted to investigate how the supplementation of 02 trace mineral sources of Cu and Zn and 48-hour water/feed deprivation would affect the performance and metabolism of grass-fed beef cattle. In the first study, 20 castrated and rumen-canulated Nellore steers (BW = 350 ±â€¯132 kg; 20 m) were distributed in individual pens, in a 2 × 2 factorial arrangement: supplemental Cu and Zn sources from inorganic vs hydroxychloride (HTM) and 48-hours deprivation (WFD) vs unrestricted (WFU) access to water and feed. The 57d of study was divided into two periods: (1) Adaptation from -21d to -1d and (2) evaluation from 0d to 36d. Interaction between deprivation × period was detected (P < 0.05) for digestibility of DM (DMD), organic matter (OMD), neutral detergent fiber (NDFD), and acid detergent fiber (ADFD). Deprivation increased DMD, OMD, NDFD, and ADFD immediately after the deprivation period (3-5d), but impaired digestibility at longer periods such as 11-13d and 32-34d. DM (DMI) and nutrient intake (P = 0.075), as well as NDFD were higher in HTM. Several ruminal parameters were affected by deprivation: short-chain fatty acids concentration decreased, while rumen pH increased (deprivation × time; P < 0.05); decreased propionate, butyrate and increased isobutyrate, isovalerate, and valerate in WFD (deprivation × time; P < 0.05), respectively. In the second study, eighty-four intact Nellore males (BW = 260 ±â€¯35 kg) were blocked by BW and randomly assigned to Urochloa brizantha cv. Marandu paddocks for 131d in a 2 × 2 factorial arrangement. Liver Cu was higher in WFU/HTM animals (mineral × deprivation; P < 0.05). Interaction between deprivation × period (P < 0.05) was detected for BW and average daily gain (ADG). On 2d and 12d after deprivation, WFD increased ADG and recovered the BW lost. In conclusion, water and feed deprivation imposed in these trials were able to impact several nutrient digestibility and ruminal fermentation parameters in short- and long-term. Performance was not affected by the studied factors. Furthermore, supplementation with sources of Cu and Zn hydroxychloride increased Cu in the liver and tended to increase DMI and NDFD.


Asunto(s)
Cobre , Zinc , Masculino , Bovinos , Animales , Suplementos Dietéticos , Dieta/veterinaria , Agua/metabolismo , Detergentes/metabolismo , Digestión , Minerales/metabolismo , Fermentación , Alimentación Animal/análisis , Rumen/metabolismo
5.
Environ Sci Pollut Res Int ; 31(7): 10766-10784, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38200199

RESUMEN

Currently, there is limited understanding of the structures and variabilities of bacterial communities in oil-contaminated soil within shale gas development. The Changning shale gas well site in Sichuan province was focused, and high-throughput sequencing was used to investigate the structures of bacterial communities and functions of bacteria in soil with different degrees of oil pollution. Furthermore, the influences of the environmental factors including pH, moisture content, organic matter, total nitrogen, total phosphorus, oil, and the biological toxicity of the soil on the structures of bacterial communities were analyzed. The results revealed that Proteobacteria and Firmicutes predominated in the oil-contaminated soil. α-Proteobacteria and γ-Proteobacteria were the main classes under the Proteobacteria phylum. Bacilli was the main class in the Firmicutes phylum. Notably, more bacteria were only found in CN-5 which was the soil near the storage pond for abandoned drilling mud, including Marinobacter, Balneola, Novispirillum, Castellaniella, and Alishewanella. These bacteria exhibited resilience to higher toxicity and demonstrated proficiency in oil degradation. The functions including carbohydrate transport and metabolism, energy metabolism, replication, recombination and repair replication, signal transduction mechanisms, and amino acid transport and metabolism responded differently to varying concentrations of oil. The disparities in bacterial genus composition across samples stemmed from a complex play of pH, moisture content, organic matter, total nitrogen, total phosphorus, oil concentration, and biological toxicity. Notably, bacterial richness correlated positively with moisture content, while bacterial diversity showed a significant positive correlation with pH. Acidobacteria exhibited a significant positive correlation with moisture content. Litorivivens and Luteimonas displayed a significant negative correlation with pH, while Rhizobium exhibited a significant negative correlation with moisture content. Pseudomonas, Proteiniphilum, and Halomonas exhibited positive correlations not only with organic matter but also with oil concentration. Total nitrogen exhibited a significant positive correlation with Taonella and Sideroxydans. On the other hand, total phosphorus showed a significant negative correlation with Sphingomonas. Furthermore, Sphingomonas, Gp6, and Ramlibacter displayed significant negative correlations with biological toxicity. The differential functions exhibited no significant correlation with environmental factors but displayed a significant positive correlation with the Proteobacteria phylum. Aridibacter demonstrated a significant positive correlation with cell motility and cellular processes and signaling. Conversely, Pseudomonas, Proteiniphilum, and Halomonas were negatively correlated with differential functions, particularly in amino acid metabolism, carbohydrate metabolism, and membrane transport. Compared with previous research, more factors were considered in this research when studying structural changes in bacterial communities, such as physicochemical properties and biological toxicity of soil. In addition, the correlations of differential functions of communities with environmental factors, bacterial phyla, and genera were investigated.


Asunto(s)
Gas Natural , Yacimiento de Petróleo y Gas , Bacterias/metabolismo , Proteobacteria , Firmicutes , Suelo/química , Acidobacteria , Minerales/metabolismo , Fósforo/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Nitrógeno/análisis , Aminoácidos/metabolismo , Microbiología del Suelo
6.
Food Chem ; 439: 138132, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081094

RESUMEN

The ferritin cage can not only load iron ions in its inner cavity, but also has the capacity to carry other metal ions, thus constructing a new biological nano-transport system. The nanoparticles formed by ferritin and minerals can be used as ingredients of mineral supplements, which overcome the shortcomings of traditional mineral ingredients such as low bioavailability. Moreover, ferritin can be used to remove heavy metal ions from contaminated food. Silver and palladium nanoparticles formed by ferritin are also applied as anticancer agents. Ferritin combined with metal ions can be also used to detect harmful substances. This review aims to provide a comprehensive overview of ferritin's function in transporting and binding metal ions, and discusses the limitations and future prospects, which offers valuable insights for the application of ferritin in mineral supplements, food detoxifiers, anticancer agents, and food detections.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Ferritinas/química , Paladio , Minerales/metabolismo , Iones
7.
J Dairy Sci ; 107(2): 1228-1243, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37769944

RESUMEN

The onset of lactation is characterized by substantially altered calcium (Ca) metabolism; recently, emphasis has been placed on understanding the dynamics of blood Ca in the peripartal cow in response to this change. Thus, the aim of our study was to delineate how prepartum dietary cation-anion difference (DCAD) diets and the magnitude of Ca decline at the onset of lactation altered blood Ca dynamics in the periparturient cow. Thirty-two multiparous Holstein cows were blocked by parity, previous 305-d milk yield and expected parturition date, and randomly allocated to either a positive (+120 mEq/kg) or negative (-120 mEq/kg) DCAD diet from 251 d of gestation until parturition (n = 16/diet). Immediately after parturition cows were continuously infused for 24 h with (1) an intravenous solution of 10% dextrose or (2) Ca gluconate (CaGlc) to maintain blood ionized (iCa) concentrations at ∼1.2 mM (normocalcemia) to form 4 treatment groups (n = 8/treatment). Blood was sampled every 6 h from 102 h before parturition until 96 h after parturition and every 30 min during 24 h continuous infusion. Cows fed a negative DCAD diet prepartum exhibited a less pronounced decline in blood iCa approaching parturition with lesser magnitude of decline relative to positive DCAD-fed cows. Cows fed a negative DCAD diet prepartum required lower rates of CaGlc infusion to maintain normocalcemia in the 24 h postpartum relative to positive DCAD-fed cows. Infusion of CaGlc disrupted blood Ca and P dynamics in the immediate 24 h after parturition and in the days following infusion. Collectively, these data demonstrate that prepartum negative DCAD diets facilitate a more transient hypocalcemia and improve blood Ca profiles at the onset of lactation whereas CaGlc infusion disrupts mineral metabolism.


Asunto(s)
Calcio , Suplementos Dietéticos , Embarazo , Femenino , Bovinos , Animales , Lactancia/fisiología , Dieta/veterinaria , Calcio de la Dieta , Periodo Posparto/metabolismo , Aniones , Minerales/metabolismo , Cationes , Alimentación Animal/análisis
8.
Nephrol Dial Transplant ; 39(2): 190-201, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37660247

RESUMEN

Phosphorus is an essential mineral that is, in the form of inorganic phosphate (Pi), required for building cell membranes, DNA and RNA molecules, energy metabolism, signal transduction and pH buffering. In bone, Pi is essential for bone stability in the form of apatite. Intestinal absorption of dietary Pi depends on its bioavailability and has two distinct modes of active transcellular and passive paracellular absorption. Active transport is transporter mediated and partly regulated, while passive absorption depends mostly on bioavailability. Renal excretion controls systemic Pi levels, depends on transporters in the proximal tubule and is highly regulated. Deposition and release of Pi into and from soft tissues and bone has to be tightly controlled. The endocrine network coordinating intestinal absorption, renal excretion and bone turnover integrates dietary intake and metabolic requirements with renal excretion and is critical for bone stability and cardiovascular health during states of hypophosphataemia or hyperphosphataemia as evident from inborn or acquired diseases. This review provides an integrated overview of the biology of phosphate and Pi in mammals.


Asunto(s)
Hiperfosfatemia , Fosfatos , Animales , Humanos , Fosfatos/metabolismo , Fósforo , Absorción Intestinal , Minerales/metabolismo , Mamíferos/metabolismo
9.
Biol Trace Elem Res ; 202(4): 1582-1593, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37466757

RESUMEN

In the present work we aimed to study the effects of parenteral vitamin and mineral supplementation on hepatic fatty acid metabolism as well as on the oxidative stress biomarkers in biological samples of transition cows. The supplemented group (SG, n = 11) received a subcutaneous injection of 5 mL of vitamin A palmitate 35 mg/mL, vitamin E acetate 50 mg/mL plus other injection of 5 mL of copper edetate 10 mg/mL, zinc edetate 40 mg/mL, manganese edetate 10 mg/mL, and sodium selenite 5 mg/mL on days - 60, - 30, and 7 (± 3) relative to calving. The control group (CG, n = 11) received two subcutaneous injections of 5 mL of 9 mg/mL sodium chloride at the same times of the SG. Blood, urine, and liver biopsies were sampled 21 (± 3) days before the expected calving date and 7 and 21 (± 3) days after calving. Results revealed that supplemented animals had higher glutation peroxidase (GSH-Px) activity, lower and higher concentration of 3-nitrotyrosine (3-NT) in the liver and plasma, respectively, higher expression of the mitochondrial beta-oxidation enzyme carnitine palmitoyltransferase 1 in the liver, and lower content of hepatic triacylglycerol, mirroring plasma liver function parameters. No differences between groups were found in the superoxide dismutase activity, MDA concentrations, the protein abundance of peroxisomal acyl-CoA oxidase 1, diacylglycerol O-acyltransferase 1, and peroxisome proliferator-activated receptor alpha. These results suggest that the vitamin and mineral supplementation provided to dairy cows had a beneficial effect on GSH-Px activity, hepatic 3-NT concentration, and on the metabolic adaptation during the peripartum period.


Asunto(s)
Hígado , Vitaminas , Femenino , Bovinos , Animales , Vitaminas/farmacología , Ácido Edético , Hígado/metabolismo , Estrés Oxidativo , Suplementos Dietéticos , Minerales/metabolismo , Ácidos Grasos/metabolismo , Biomarcadores/metabolismo , Lactancia , Leche/metabolismo , Dieta/veterinaria
10.
Biol Trace Elem Res ; 202(5): 2133-2142, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37656390

RESUMEN

The aim of this study was to investigate how zinc deficiency and supplementation affect liver markers including autotaxin, kallistatin, endocan, and zinc carrier proteins ZIP14 and ZnT9 in rats exposed to maternal zinc deficiency. Additionally, the study aimed to assess liver tissue damage through histological examination. A total of forty male pups were included in the research, with thirty originating from mothers who were given a zinc-deficient diet (Groups 1, 2, and 3), and the remaining ten born to mothers fed a standard diet (Group 4). Subsequently, Group 1 was subjected to a zinc-deficient diet, Group 2 received a standard diet, Group 3 received zinc supplementation, and Group 4 served as the control group without any supplementation. Upon completion of the experimental phases of the study, all animals were sacrificed under general anesthesia, and samples of liver tissue were obtained. The levels of autotaxin, kallistatin, endocan, ZIP 14, and ZnT9 in these liver tissue samples were determined using the ELISA technique. In addition, histological examination was performed to evaluate tissue damage in the liver samples. In the group experiencing zinc deficiency, both endocan and autotaxin levels increased compared to the control group. With zinc supplementation, the levels of endocan and autotaxin returned to the values observed in the control group. Similarly, the suppressed levels of kallistatin, ZIP14, and ZnT9 observed in the zinc deficiency group were reversed with zinc supplementation. Likewise, the reduced levels of kallistatin, ZIP14, and ZnT9 seen in the zinc deficiency group were rectified with zinc supplementation. Moreover, the application of zinc partially ameliorated the heightened liver tissue damage triggered by zinc deficiency. This study is the pioneering one to demonstrate that liver tissue dysfunction induced by a marginal zinc-deficient diet in rats with marginal maternal zinc deficiency can be alleviated through zinc supplementation.


Asunto(s)
Minerales , Zinc , Ratas , Animales , Masculino , Zinc/farmacología , Minerales/metabolismo , Hígado/metabolismo , Proteínas Portadoras/metabolismo
11.
Poult Sci ; 103(2): 103273, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096671

RESUMEN

To study the effects of mineral fulvic acid (FuA) on broiler performance, slaughter performance, blood biochemistry index, antioxidant function, immune performance, and intestinal microflora, 360 Arbor Acres (AA) broiler chickens with similar body weights were randomly divided into 5 groups with 6 replicates in each group and 12 chickens in each replicate in the current study. Chickens in the control group (C) were fed with the basal diet, and chickens in the test groups (I, II, III, and IV) were fed with the diet supplemented with 0.05%, 0.1%, 0.2%, and 0.3% mineral FuA, respectively. The indicators were measured on the hatching day, d 21 and d 35. From the whole experimental period, FuA supplement significantly increased average body weight (ABW) (P < 0.05), average daily gain (ADG) of broilers (P < 0.05), and thymus weight (P < 0.05) in II and IV groups, but bascially reduced the pH value of thigh meat. FuA supplement significantly improved aspartate aminotransferase (AST) activity in the group III on d 35 (P < 0.05) and the serum levels of IgA and IgG on d 21 and d 35 (P < 0.05), but reduced glutathione peroxidase (GSH-Px) level on d 21 (P < 0.05) and malondialdehyde (MDA) level in serum on d 35 (P < 0.05). FuA supplement significantly affected the abundance of Barnesiella, Lachnospiraceae, Alistipes, Lactobacillus, and Christensenellaceae on genus level. Differences between group III and other groups were significant in the genera microflora composition on d 21 and d 35. Functional analysis showed that the cecum microbiota were mainly enriched in carbohydrate metabolism, amino acid metabolism, and energy metabolism. In conclusion, FuA may potentially have significant positive effects on the growth performance and immune function of AA chickens through the modulation of the gut microbiota, and the 0.1% FuA was the best in broiler diet based on the present study.


Asunto(s)
Benzopiranos , Microbioma Gastrointestinal , Animales , Pollos , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Dieta/veterinaria , Minerales/metabolismo
12.
Molecules ; 28(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38138643

RESUMEN

The aim of the present study was to evaluate the differential expression of plasma proteins in broiler chickens supplemented with different sources (sulfates and hydroxychlorides) and levels of copper (15 and 150 mg kg-1) and manganese (80 and 120 mg kg-1). For this, plasma samples from 40 broiler chickens were used, divided into four experimental groups: S15-80 (15 ppm CuSO4 and 80 ppm MnSO4), S150-120 (150 ppm CuSO4 and 120 ppm MnSO4), H15-80 (15 ppm Cu(OH)Cl and 80 ppm Mn(OH)Cl), and H150-120 (150 ppm Cu(OH)Cl and 120 ppm Mn(OH)Cl). From plasma samples obtained from each bird from the same treatment, four pools were made considering 10 birds per group. Plasma proteome fractionation was performed by 2D-PAGE. Concentrations of the studied minerals were also evaluated in both plasma and protein pellet samples. A higher concentration of Cu and Mn was observed in the plasma and protein pellets of groups that received higher mineral supplementation levels compared to those receiving lower levels. Mn concentrations were higher in plasma and protein pellets of the hydroxychloride-supplemented groups than the sulfate-supplemented groups. Analysis of the gels revealed a total of 40 differentially expressed spots among the four treatments. Supplementation with different sources of minerals, particularly at higher levels, resulted in changes in protein regulation, suggesting a potential imbalance in homeostasis.


Asunto(s)
Cobre , Manganeso , Animales , Manganeso/metabolismo , Cobre/metabolismo , Pollos/metabolismo , Proteómica , Suplementos Dietéticos/análisis , Minerales/metabolismo , Sulfatos/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis
13.
JCI Insight ; 8(24)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37943605

RESUMEN

Fibroblast growth factor 23 (FGF23) is a phosphate-regulating (Pi-regulating) hormone produced by bone. Hereditary hypophosphatemic disorders are associated with FGF23 excess, impaired skeletal growth, and osteomalacia. Blocking FGF23 became an effective therapeutic strategy in X-linked hypophosphatemia, but testing remains limited in autosomal recessive hypophosphatemic rickets (ARHR). This study investigates the effects of Pi repletion and bone-specific deletion of Fgf23 on bone and mineral metabolism in the dentin matrix protein 1-knockout (Dmp1KO) mouse model of ARHR. At 12 weeks, Dmp1KO mice showed increased serum FGF23 and parathyroid hormone levels, hypophosphatemia, impaired growth, rickets, and osteomalacia. Six weeks of dietary Pi supplementation exacerbated FGF23 production, hyperparathyroidism, renal Pi excretion, and osteomalacia. In contrast, osteocyte-specific deletion of Fgf23 resulted in a partial correction of FGF23 excess, which was sufficient to fully restore serum Pi levels but only partially corrected the bone phenotype. In vitro, we show that FGF23 directly impaired osteoprogenitors' differentiation and that DMP1 deficiency contributed to impaired mineralization independent of FGF23 or Pi levels. In conclusion, FGF23-induced hypophosphatemia is only partially responsible for the bone defects observed in Dmp1KO mice. Our data suggest that combined DMP1 repletion and FGF23 blockade could effectively correct ARHR-associated mineral and bone disorders.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Hipofosfatemia , Osteomalacia , Animales , Ratones , Calcificación Fisiológica/genética , Proteínas de la Matriz Extracelular/metabolismo , Raquitismo Hipofosfatémico Familiar/genética , Factores de Crecimiento de Fibroblastos , Hipofosfatemia/genética , Ratones Noqueados , Minerales/metabolismo , Osteomalacia/genética , Osteomalacia/metabolismo
14.
J Agric Food Chem ; 71(50): 19903-19919, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37955969

RESUMEN

Ferritin, a distinctive iron-storage protein, possesses a unique cage-like nanoscale structure that enables it to encapsulate and deliver a wide range of biomolecules. Recent advances prove that ferritin can serve as an efficient 8 nm diameter carrier for various bioinorganic nutrients, such as minerals, bioactive polyphenols, and enzymes. This review offers a comprehensive summary of ferritin's structural features from different sources and emphasizes its functions in iron supplementation, calcium delivery, single- and coencapsulation of polyphenols, and enzyme package. Additionally, the influence of innovative food processing technologies, including manothermosonication, pulsed electric field, and atmospheric cold plasma, on the structure and function of ferritin are examined. Furthermore, the limitations and prospects of ferritin in food and nutritional applications are discussed. The exploration of ferritin as a multifunctional protein with the capacity to load various biomolecules is crucial to fully harnessing its potential in food applications.


Asunto(s)
Ferritinas , Hierro , Ferritinas/química , Hierro/metabolismo , Minerales/metabolismo , Polifenoles/química
15.
Curr Top Med Chem ; 23(28): 2621-2639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37855294

RESUMEN

AIMS: The purpose of this review was to emphasize the nutritional value, and pharmacological and phytochemical properties of Salvia hispanica, as well as its toxicological evaluation. BACKGROUND: Salvia hispanica L. (S. hispanica), also called chia seeds, is an annual herbaceous plant belonging to the family Lamiaceae. It is a species of medicinal and dietary plant used since ancient times by the Maya and Aztecs. Its product is an indehiscent dry fruit that is commonly called a seed. It is utilized for its health benefits and uses in cooking. OBJECTIVE: The study aimed to investigate the pharmacological, phytochemical, and toxicological properties of S. hispanica seeds. The research also attempted to explore and compile all existing knowledge and data on these seeds' nutritional value and medical applications. MATERIALS AND METHODS: The current review was conducted using numerous scientific databases, including Science Direct, Scopus, PubMed, Google Scholar, etc. The correct plant name was verified from plantlist.org. The results of this search were interpreted, analyzed, and documented based on the obtained bibliographic information. RESULTS: S. hispanica is a pseudo cereal that is consumed by the world's population because of its preventive, functional, and antioxidant characteristics, attributable to the presence of lipids, dietary fiber, protein, phenolic compounds, vitamins, and minerals. According to research, chia offers hypoglycemic, antimicrobial, anticancer, anti-inflammatory, antioxidant, antihypersensitive, anti-obesity, and cardioprotective properties. Chia consumption has grown because of its favorable benefits on obesity, cardiovascular disease, diabetes, and several forms of cancer. These advantages are mostly due to the high concentration of essential fatty acids, dietary fiber, antioxidants, flavonoids, anthocyanins, vitamins, carotenoids, and minerals found in this seed. Based on the beneficial components, chia seeds have enormous potential in the areas of health, food, animal feed, medicines, and nutraceuticals. Finally, toxicological investigations have indicated the greater doses of chia seed extracts as safe. CONCLUSION: The current evaluation has focused on the distribution, chemical composition, nutritional value, and principal uses of S. hispanica in order to determine future research requirements and examine its pharmacological applications through clinical studies.


Asunto(s)
Salvia hispanica , Salvia , Animales , Antioxidantes/farmacología , Antioxidantes/química , Etnofarmacología , Salvia/química , Salvia/metabolismo , Antocianinas , Minerales/metabolismo , Vitaminas/metabolismo , Fibras de la Dieta/metabolismo , Valor Nutritivo , Fitoquímicos/farmacología , Fitoquímicos/metabolismo
16.
Poult Sci ; 102(12): 103096, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37797492

RESUMEN

Efforts to achieve sustainable phosphorus (P) inputs in broiler farming which meet the physiological demand of animals include nutritional intervention strategies that have the potential to modulate and utilize endogenous and microbiota-associated capacities. A temporal P conditioning strategy in broiler nutrition is promising as it induces endocrinal and transcriptional responses to maintain mineral homeostasis. In this context, the current study aims to evaluate the composition of the jejunal microbiota as a functional entity located at the main absorption site involved in nutrient metabolism. Starting from a medium or high P supply in the first weeks of life of broilers, a depletion strategy was applied at growth intervals from d 17 to 24 and d 25 to 37 to investigate the consequences on the composition of the jejunal microbiota. The results on fecal mineral P, calcium (Ca), and phytate contents showed that the diets applied to the depleted and non-depleted cohorts were effective. Microbial diversity in jejunum was represented by alpha diversity indices which appeared unaffected between dietary groups. However, chickens assigned to the dietary P depletion groups showed significantly higher abundances of Facklamia, Lachnospiraceae, and Ruminococcaceae compared to non-depleted control groups. Based on current knowledge of microbial function, these microorganisms make only a minor contribution to the birds' adaptive mechanism in the jejunum following P depletion. Microbial taxa such as Brevibacterium, Brachybacterium, and genera of the Staphylococcaceae family proliferated in a P-enriched environment and might be considered biomarkers for excessive P supply in commercial broiler chickens.


Asunto(s)
Microbiota , Fósforo , Animales , Fósforo/metabolismo , Yeyuno/metabolismo , Pollos/fisiología , Minerales/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
17.
Poult Sci ; 102(11): 103051, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37774520

RESUMEN

Global warming and climate changes have a detrimental impact on poultry production, causing substantial economic losses. This study investigated the effects of incorporating dietary betaine (BT) and organic minerals (OMs) on broilers' performance as well as their potential to mitigate the negative impacts of heat stress (HS). Six hundred 1-day-old Ross 308 chicks were randomly allocated to 12 experimental treatments with 5 replicates of 10 birds each (5 male + 5 female). The birds were provided with diets containing BT (0 and 2,000 ppm) and OMs (0, 250, and 500 ppm), either individually or in combination, under both thermoneutral and HS-inducing temperatures. The HS conditions involved exposing the birds to cyclic periods of elevated temperature (35°C ± 2°C) for 6 h daily, from 10:00 am to 4:00 pm, starting from d 10 and continuing until d 35. The exposure to HS deteriorated birds' growth performance; however, dietary BT and OMs inclusion improved the growth performance parameters bringing them close to normal levels. Carcass traits were not affected by dietary supplementation of BT, OMs, HS, or their interaction. Interestingly, while HS led to increased (P < 0.05) levels of total cholesterol, LDL-cholesterol, and hepatic malondialdehyde (MDA), these adverse effects were mitigated (P < 0.05) by the addition of BT and OMs. Moreover, dietary BT supplementation led to elevated serum total protein and globulin concentrations. Cyclic HS did not alter Mn, Zn, and Cu contents in the pectoral muscle. However, the incorporation of OMs at both levels increased concentrations of these minerals. Notably, the combination of 500 ppm OMs and 2,000 ppm BT improved Mn, Zn, Cu, and Fe digestibility, which has been compromised under HS conditions. Cyclic HS upregulated gene expression of interleukin-1ß, heat shock protein 70, and Toll-like receptor-4 while downregulated the expression of claudin-1, uncoupling protein, growth hormone receptor, superoxide dismutase 1, glutathione peroxidase 1 and insulin-like growth factor 1. The aforementioned gene expressions were reversed by the combination of higher dietary levels of BT and OMs. In conclusion, the dietary supplementation of 500 ppm OMs along with 2,000 ppm BT yielded significant improvements in growth performance and mineral digestibility among broiler chickens, regardless of thermal conditions. Moreover, this combination effectively restored the expression of growth-related genes even under heat-stress conditions.


Asunto(s)
Betaína , Suplementos Dietéticos , Animales , Masculino , Femenino , Pollos/fisiología , Minerales/metabolismo , Dieta/veterinaria , Respuesta al Choque Térmico , Alimentación Animal/análisis , Calor
18.
Plant J ; 116(6): 1748-1765, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37715733

RESUMEN

The plant citrate transporters, functional in mineral nutrient uptake and homeostasis, usually belong to the multidrug and toxic compound extrusion transporter family. We identified and functionally characterized a rice (Oryza sativa) citrate transporter, OsCT1, which differs from known plant citrate transporters and is structurally close to rice silicon transporters. Domain analysis depicted that OsCT1 carries a bacterial citrate-metal transporter domain, CitMHS. OsCT1 showed citrate efflux activity when expressed in Xenopus laevis oocytes and is localized to the cell plasma membrane. It is highly expressed in the shoot and reproductive tissues of rice, and its promoter activity was visible in cells surrounding the vasculature. The OsCT1 knockout (KO) lines showed a reduced citrate content in the shoots and the root exudates, whereas overexpression (OE) line showed higher citrate exudation from their roots. Further, the KO and OE lines showed variations in the manganese (Mn) distribution leading to changes in their agronomical traits. Under deficient conditions (Mn-sufficient conditions followed by 8 days of 0 µm MnCl2 · 4H2 O treatment), the supply of manganese towards the newer leaf was found to be obstructed in the KO line. There were no significant differences in phosphorus (P) distribution; however, P uptake was reduced in the KO and increased in OE lines at the vegetative stage. Further, experiments in Xenopus oocytes revealed that OsCT1 could efflux citrate with Mn. In this way, we provide insights into a mechanism of citrate-metal transport in plants and its role in mineral homeostasis, which remains conserved with their bacterial counterparts.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Manganeso/metabolismo , Fósforo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácido Cítrico/metabolismo , Minerales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
19.
Sci Total Environ ; 904: 167001, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37704155

RESUMEN

As a toxic element of global concern, the elevated concentration of antimony (Sb) in the environment has attracted increasing attention. Microorganisms have been reported as important driving forces for Sb transformation. Iron (Fe) is the most important metal associated element of Sb, however, how Fe-bearing minerals affect the biological transformation of Sb is still unclear. In this study, the effects of Fe-bearing minerals on biological Sb(V) reduction were investigated by employing a marine Shewanella sp. CNZ-1 (CNZ-1). Our results showed that the presence of hematite, magnetite and ferrihydrite (1 g/L) resulted in a decrease in Sb(III) concentration of ~19-31 % compared to the Fe(III)-minerals free system. The calculated Sb(V) reduction rates are 0.0256 (R2 0.71), 0.0389 (R2 0.87), 0.0299 (R2 0.96) and 0.0428 (R2 0.95) h-1 in the hematite-, magnetite-, ferrihydrite-supplemented and Fe(III)-minerals free systems, respectively. The cube-shaped Sb2O3 was characterized as a reductive product by using XRD, XPS, FTIR, TG and SEM approaches. Differential proteomic analysis showed that flagellar protein, cytochrome c, electron transfer flavoprotein, nitrate reductase and polysulfide reductase (up-regulation >1.5-fold, p value <0.05) were supposed to be included in the electron transport pathway of Sb(V) reduction by strain CNZ-1, and the key role of nitrate reductases was further highlighted during this reaction process based on the RT-qPCR and confirmatory experiments. Overall, these findings are beneficial to understand the environmental fate of Sb in the presence of Fe-bearing minerals and provide guidance in developing the bacteria/enzyme-mediated control strategy for Sb pollution.


Asunto(s)
Compuestos Férricos , Hierro , Compuestos Férricos/metabolismo , Hierro/metabolismo , Nitrato-Reductasa/metabolismo , Óxido Ferrosoférrico , Proteómica , Oxidación-Reducción , Minerales/metabolismo , Antimonio/análisis
20.
J Environ Manage ; 344: 118695, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37542865

RESUMEN

Phosphorous (P) resources are finite. Sewage sludge recyclates (SSR) are not only of interest as plant fertilizer but also as potential source of minerals in animal nutrition. However, besides P and calcium (Ca), SSR contain heavy metals. Under EU legislation, the use of SSR derivatives in animal feed is not permitted, but given the need to improve nutrient recycling, it could be an environmentally sound future mineral source. Black soldier fly larvae (BSFL) convert low-grade biomass into valuable proteins and lipids, and accumulate minerals in their body. It was hypothesized that BSFL modify and increase their mineral content in response to feeding on SSR containing substrates. The objective was to evaluate the upcycling of minerals from SSR into agri-food nutrient cycles through BSFL. Growth, nutrient and mineral composition were compared in BSFL reared either on a modified Gainesville fly diet (FD) or on FD supplemented with either 4% of biochar (FD + BCH) or 3.6% of single-superphosphate (FD + SSP) recyclate (n = 6 BSFL rearing units/group). Larval mass, mineral and nutrient concentrations and yields were determined, and the bioaccumulation factor (BAF) was calculated. The FD + SSP substrate decreased specific growth rate and crude fat of BSFL (P < 0.05) compared to FD. The FD + SSP larvae had higher Ca and P contents and yields but the BAF for Ca was lowest. The FD + BCH larvae increased Ca, iron, cadmium and lead contents compared to FD. Larvae produced on FD + SSP showed lower lead and higher arsenic concentration than on FD + BCH. Frass of FD + BCH had higher heavy metal concentration than FD + SSP and FD (P < 0.05). Except for cadmium and manganese, the larval heavy metal concentration was below the legally permitted upper concentrations for feed. In conclusion, the SSR used could enrich BSFL with Ca and P but at the expense of growth. Due to the accumulation of Cd and Mn, BSFL or products thereof can only be a component of farmed animal feed whereas in BSFL frass heavy metal concentrations remained below the upper limit authorized by EU.


Asunto(s)
Dípteros , Metales Pesados , Animales , Larva/metabolismo , Aguas del Alcantarillado , Cadmio/metabolismo , Alimentación Animal/análisis , Minerales/metabolismo , Calcio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA