RESUMEN
In Duchenne muscular dystrophy (DMD), lack of dystrophin leads to progressive muscle degeneration, with DMD patients suffering from cardiorespiratory failure. Cell therapy is an alternative to life-long corticoid therapy. Satellite cells, the stem cells of skeletal muscles, do not completely compensate for the muscle damage in dystrophic muscles. Elevated levels of proinflammatory and profibrotic factors, such as metalloproteinase 9 (MMP-9), impair muscle regeneration, leading to extensive fibrosis and poor results with myoblast transplantation therapies. Omega-3 is an anti-inflammatory drug that protects against muscle degeneration in the mdx mouse model of DMD. In the present study, we test our hypothesis that omega-3 affects MMP-9 and thereby benefits muscle regeneration and myoblast transplantation in the mdx mouse. We observe that omega-3 reduces MMP-9 gene expression and improves myoblast engraftment, satellite cell activation, and muscle regeneration by mechanisms involving, at least in part, the regulation of macrophages, as shown here with the fluorescence-activated cell sorting technique. The present study demonstrates the benefits of omega-3 on satellite cell survival and muscle regeneration, further supporting its use in clinical trials and cell therapies in DMD.
Asunto(s)
Distrofina/deficiencia , Ácidos Grasos Omega-3/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Fibras Musculares Esqueléticas/patología , Mioblastos/enzimología , Mioblastos/trasplante , Células Satélite del Músculo Esquelético/patología , Animales , Biomarcadores/metabolismo , Distrofina/metabolismo , Femenino , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/efectos de los fármacos , Atrofia Muscular/patología , Mioblastos/efectos de los fármacos , Necrosis , Receptores Notch/metabolismo , Regeneración/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Vía de Señalización Wnt/efectos de los fármacosRESUMEN
Mutations in the gene that encodes the principal l-carnitine transporter, OCTN2, can lead to a reduced intracellular l-carnitine pool and the disease Primary Carnitine Deficiency. l-Carnitine supplementation is used therapeutically to increase intracellular l-carnitine. As AMPK and insulin regulate fat metabolism and substrate uptake, we hypothesized that AMPK-activating compounds and insulin would increase l-carnitine uptake in C2C12 myotubes. The cells express all three OCTN transporters at the mRNA level, and immunohistochemistry confirmed expression at the protein level. Contrary to our hypothesis, despite significant activation of PKB and 2DG uptake, insulin did not increase l-carnitine uptake at 100 nM. However, l-carnitine uptake was modestly increased at a dose of 150 nM insulin. A range of AMPK activators that increase intracellular calcium content [caffeine (10 mM, 5 mM, 1 mM, 0.5 mM), A23187 (10 µM)], inhibit mitochondrial function [sodium azide (75 µM), rotenone (1 µM), berberine (100 µM), DNP (500 µM)], or directly activate AMPK [AICAR (250 µM)] were assessed for their ability to regulate l-carnitine uptake. All compounds tested significantly inhibited l-carnitine uptake. Inhibition by caffeine was not dantrolene (10 µM) sensitive despite dantrolene inhibiting caffeine-mediated calcium release. Saturation curve analysis suggested that caffeine did not competitively inhibit l-carnitine transport. To assess the potential role of AMPK in this process, we assessed the ability of the AMPK inhibitor Compound C (10 µM) to rescue the effect of caffeine. Compound C offered a partial rescue of l-carnitine uptake with 0.5 mM caffeine, suggesting that AMPK may play a role in the inhibitory effects of caffeine. However, caffeine likely inhibits l-carnitine uptake by alternative mechanisms independently of calcium release. PKA activation or direct interference with transporter function may play a role.
Asunto(s)
Carnitina/antagonistas & inhibidores , Activadores de Enzimas/farmacología , Mioblastos/efectos de los fármacos , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Berberina/farmacología , Transporte Biológico/efectos de los fármacos , Cafeína/farmacología , Calcimicina/farmacología , Calcio/metabolismo , Carnitina/metabolismo , Línea Celular , Dantroleno/farmacología , Activación Enzimática/efectos de los fármacos , Expresión Génica , Insulina/farmacología , Ratones , Mioblastos/citología , Mioblastos/enzimología , Proteínas de Transporte de Catión Orgánico/genética , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ribonucleótidos/farmacología , Rotenona/farmacología , Azida Sódica/farmacología , Miembro 5 de la Familia 22 de Transportadores de SolutosRESUMEN
Toona Sinensis leaf (TSL) extract with a beneficial effect for managing hyperglycemia has been reported, however the underlying mechanism by which TSL extract acts as an insulin sensitizer remains uncertain, especially in peripheral tissues. TSL 95% ethanol extract exhibited the highest transactivity of PPARγ and contained the highest amounts of natural PPARγ ligands including palmitic acid, linoleic acid, and α-linolenic acid among different TSL ethanol extracts (0, 10, 50, 70, and 95%). The efficacy and the mechanism of TSL ethanol extract (95%) mediated anti-diabetic effects were examined by both in vivo and in vitro models in this study. An improved whole-body insulin sensitivity was observed in high-fat diet-fed (HFD) mice after 14 weeks of TSL treatment, as evidenced by a faster rate of plasma glucose clearing. The improved insulin sensitivity was through direct stimulation of PPARγ and adiponectin expression in adipose tissues of HFD mice. In addition to the PPARγ pathway, TSL stimulated glucose uptake via directly inducing AMPKα but not AS160 activation in C2C12 myotubes under palmitate-induced insulin resistance. TSL successfully induced sirtuin 1 and restored PGC1α, but failed to restore mitochondrial electron transport complexes I, III, IV and V in mRNA levels. Loss of the mitochondrial membrane potential coupled with AMPK activation suggests that TSL acts as a mitochondrial inhibitor to stimulate AMPK-mediated glucose uptake. This study demonstrated that TSL stimulated glucose uptake via AMPK activation in skeletal muscles and promoted PPARγ and normalized adiponectin expression in adipose tissues, thereby ameliorating insulin resistance.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Meliaceae/química , PPAR gamma/agonistas , Extractos Vegetales/uso terapéutico , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Animales , Línea Celular , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Etnobotánica , Células Hep G2 , Humanos , Hipoglucemiantes/farmacología , Ligandos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Mioblastos/metabolismo , Obesidad/complicaciones , Obesidad/etiología , PPAR gamma/genética , PPAR gamma/metabolismo , Extractos Vegetales/farmacología , Hojas de la Planta/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Taiwán , Activación Transcripcional/efectos de los fármacosRESUMEN
Low-level laser irradiation (LLLI) is increasingly used to treat musculoskeletal disorders, with satisfactory results described in the literature. Skeletal muscle satellite cells play a key role in muscle regeneration. The aim of the present study was to evaluate the effect of LLLI on cell viability, creatine kinase (CK) activity, and the expression of myogenic regulatory factors in C2C12 myoblasts during the differentiation process. C2C12 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 2% horse serum and submitted to irradiation with GaAlAs diode laser (wavelength, 780 nm; output power, 10 mW; energy density, 5 J/cm2). Cell viability and the expression of myogenic regulatory factors were assessed 24, 48, and 72 h after irradiation by 3-(4,5-dimethylthiazol-2-yl)-2,5,-diphenyltetrazolium bromide (MTT) assay and quantitative real-time polymerase chain reaction (RT-qPCR), respectively. CK activity was analyzed at 24 and 72 h. An increase in cell viability was found in the laser group in comparison to the control group at all evaluation times. CK activity was significantly increased in the laser group at 72 h. Myogenin messenger RNA (mRNA) demonstrated a tendency toward an increase in the laser group, but the difference in comparison to the control group was non-significant. In conclusion, LLLI was able to modulate cell viability and CK activity in C2C12 myoblasts during the differentiation process.
Asunto(s)
Diferenciación Celular/efectos de la radiación , Creatina Quinasa/metabolismo , Terapia por Luz de Baja Intensidad , Mioblastos/citología , Mioblastos/enzimología , Animales , Diferenciación Celular/genética , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Regulación de la Expresión Génica/efectos de la radiación , Ratones , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/efectos de la radiación , Miogenina/genética , Miogenina/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
This study was designed to confirm the protective effect of Schisandrae Fructus, which are the dried fruits of Schisandra chinensis (Turcz.) Baill, against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms in C2C12 myoblasts. Preincubating C2C12 cells with a Schisandrae Fructus ethanol extract (SFEE) significantly attenuated hydrogen peroxide (H2O2)-induced inhibition of growth and induced scavenging activity against intracellular reactive oxygen species (ROS) induced by H2O2. SFEE also inhibited comet tail formation and phospho-histone γH2A.X expression, suggesting that it prevents H2O2-induced cellular DNA damage. Furthermore, treating C2C12 cells with SFEE significantly induced heme oxygenase-1 (HO-1) and phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2). However, zinc protoporphyrin IX, a potent inhibitor of HO-1 activity, significantly reversed the protective effects of SFEE against H2O2-induced growth inhibition and ROS generation in C2C12 cells. Additional experiments revealed that the potential of the SFEE to induce HO-1 expression and protect against H2O2-mediated cellular damage was abrogated by transient transfection with Nrf2-specific small interfering RNA, suggesting that the SFEE protected C2C12 cells against oxidative stress-induced injury through the Nrf2/HO-1 pathway.
Asunto(s)
Antioxidantes/farmacología , Etanol/química , Hemo-Oxigenasa 1/biosíntesis , Proteínas de la Membrana/biosíntesis , Mioblastos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/farmacología , Schisandra , Solventes/química , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inducción Enzimática , Inhibidores Enzimáticos/farmacología , Frutas , Hemo-Oxigenasa 1/antagonistas & inhibidores , Peróxido de Hidrógeno/toxicidad , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Mioblastos/enzimología , Factor 2 Relacionado con NF-E2/genética , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Schisandra/química , Transducción de Señal/efectos de los fármacos , TransfecciónRESUMEN
Pompe disease is due to a deficiency in acid-α-glucosidase (GAA) and results in debilitating skeletal muscle wasting, characterized by the accumulation of glycogen and autophagic vesicles. Given the role of lysosomes as a platform for mTORC1 activation, we examined mTORC1 activity in models of Pompe disease. GAA-knockdown C2C12 myoblasts and GAA-deficient human skin fibroblasts of infantile Pompe patients were found to have decreased mTORC1 activation. Treatment with the cell-permeable leucine analog L-leucyl-L-leucine methyl ester restored mTORC1 activation. In vivo, Pompe mice also displayed reduced basal and leucine-stimulated mTORC1 activation in skeletal muscle, whereas treatment with a combination of insulin and leucine normalized mTORC1 activation. Chronic leucine feeding restored basal and leucine-stimulated mTORC1 activation, while partially protecting Pompe mice from developing kyphosis and the decline in muscle mass. Leucine-treated Pompe mice showed increased spontaneous activity and running capacity, with reduced muscle protein breakdown and glycogen accumulation. Together, these data demonstrate that GAA deficiency results in reduced mTORC1 activation that is partly responsible for the skeletal muscle wasting phenotype. Moreover, mTORC1 stimulation by dietary leucine supplementation prevented some of the detrimental skeletal muscle dysfunction that occurs in the Pompe disease mouse model.
Asunto(s)
Suplementos Dietéticos , Dipéptidos/farmacología , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Complejos Multiproteicos/metabolismo , Músculo Esquelético/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , alfa-Glucosidasas/deficiencia , Animales , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Enfermedad del Almacenamiento de Glucógeno Tipo II/fisiopatología , Humanos , Insulina/farmacología , Cifosis/enzimología , Cifosis/patología , Cifosis/fisiopatología , Cifosis/prevención & control , Lisosomas/efectos de los fármacos , Lisosomas/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/enzimología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Atrofia Muscular/prevención & control , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Interferencia de ARN , Transfección , alfa-Glucosidasas/genéticaRESUMEN
The reduced regenerative potential of muscle fibres, most likely due to a decreased number and/or function of satellite cells, could play a significant role in the progression of muscle ageing. Accumulation of reactive oxygen species has been clearly correlated to sarcopenia and could contribute to the impairment of satellite cell function. In this work we have investigated the effect of oxidative stress generated by hydrogen peroxide in cultured human skeletal muscle satellite cells. We specifically focused on the activity and regulation of calpains. These calcium-dependent proteases are known to regulate many transduction pathways including apoptosis and play a critical role in satellite cell function. In our experimental conditions, which induce an increase in calcium concentration, protein oxidation and apoptotic cell death, a significant up-regulation of calpain expression and activity were observed and ATP synthase, a major component of the respiratory chain, was identified as a calpain target. Interestingly we were able to protect the cells from these H(2)O(2)-induced effects and prevent calpain up-regulation with a natural antioxidant extracted from pine bark (Oligopin). These data strongly suggest that oxidative stress could impair satellite cell functionality via calpain-dependent pathways and that an antioxidant such as Oligopin could prevent apoptosis and calpain activation.
Asunto(s)
Señalización del Calcio/fisiología , Calpaína/metabolismo , Mioblastos/metabolismo , Estrés Oxidativo/fisiología , Regulación hacia Arriba/fisiología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Calpaína/antagonistas & inhibidores , Calpaína/genética , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Citoplasma/metabolismo , Estructuras Citoplasmáticas/metabolismo , Dipéptidos/farmacología , Flavonoides/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Humanos , Peróxido de Hidrógeno/farmacología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Pinus/química , Extractos Vegetales/farmacología , Polifenoles , Carbonilación Proteica/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
AIMS/HYPOTHESIS: Insulin stimulates phosphorylation cascades, including phosphatidylinositol-3-kinase (PI3K), phosphatidylinositol-dependent kinase (PDK1), Akt, and protein kinase C (PKC). Myristoylated alanine-rich C-kinase substrate (MARCKS), a PKCbetaII substrate, could link the effects of insulin to insulin-stimulated glucose transport (ISGT) via phosphorylation of its effector domain since MARCKS has a role in cytoskeletal rearrangements. METHODS: We examined phosphoPKCbetaII after insulin treatment of L6 myocytes, and cytosolic and membrane phosphoMARCKS, MARCKS and phospholipase D1 in cells pretreated with LY294002 (PI3K inhibitor), CG53353 (PKCbetaII inhibitor) or W13 (calmodulin inhibitor), PI3K, PKCbetaII and calmodulin inhibitors, respectively, before insulin treatment, using western blots. ISGT was examined after cells had been treated with inhibitors, small inhibitory RNA (siRNA) for MARCKS, or transfection with MARCKS mutated at a PKC site. MARCKS, PKCbetaII, GLUT4 and insulin receptor were immunoblotted in subcellular fractions with F-actin antibody immunoprecipitates to demonstrate changes following insulin treatment. GLUT4 membrane insertion was followed after insulin with or without CG53353. RESULTS: Insulin increased phosphoPKCbetaII(Ser660 and Thr641); LY294002 blocked this, indicating its activation by PI3K. Insulin treatment increased cytosolic phosphoMARCKS, decreased membrane MARCKS and increased membrane phospholipase D1 (PLD1), a protein regulating glucose transporter vesicle fusion resulted. PhosphoMARCKS was attenuated by CG53353 or MARCKS siRNA. MARCKS siRNA blocked ISGT. Association of PKCbetaII and GLUT4 with membrane F-actin was enhanced by insulin, as was that of cytosolic and membrane MARCKS. ISGT was attenuated in myocytes transfected with mutated MARCKS (Ser152Ala), whereas overproduction of wild-type MARCKS enhanced ISGT. CG53353 blocked insertion of GLUT4 into membranes of insulin treated cells. CONCLUSIONS/INTERPRETATION: The results suggest that PKCbetaII is involved in mediating downstream steps of ISGT through MARCKS phosphorylation and cytoskeletal remodelling.
Asunto(s)
Glucosa/metabolismo , Insulina/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Proteína Quinasa C/metabolismo , Animales , Diferenciación Celular , Cromonas/farmacología , ADN Complementario/genética , Desoxiglucosa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Morfolinas/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Mioblastos/metabolismo , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C beta , ARN Interferente Pequeño/genética , RatasRESUMEN
Phosphoinositide 3-kinase (PI3K) activation and synthesis of phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2) and phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3) lipids mediate growth factor signaling that leads to cell proliferation, migration, and survival. PI3K-dependent activation of Akt is critical for myoblast differentiation induced by serum withdrawal, suggesting that in these cells PI3K signaling is activated in an unconventional manner. Here we investigate the mechanisms by which PI3K signaling and Akt are regulated during myogenesis. We report that PI-3,4-P2 and PI-3,4,5-P3 accumulated in the plasma membranes of serum-starved 3T3-L6 myoblasts due to de novo synthesis and increased lipid stability. Surprisingly, only newly synthesized lipids were capable of activating Akt. Knockdown of the lipid phosphatase PTEN moderately increased PI3K lipids but significantly increased Akt phosphorylation and promoted myoblast differentiation. Knockdown of the lipid phosphatase Ship2, on the other hand, dramatically increased the steady-state levels of PI-3,4,5-P3 but did not affect Akt phosphorylation and increased apoptotic cell death. Together, these results reveal the existence of two distinct pools of PI3K lipids in differentiating 3T3-L6 myoblasts: a pool of nascent lipids that is mainly dephosphorylated by PTEN and is capable of activating Akt and promoting myoblast differentiation and a stable pool that is dephosphorylated by Ship2 and is unable to activate Akt.